Биографии Характеристики Анализ

Десятичный логарифм в квадрате числа 7. Уравнения, квадратные относительно логарифма, и прочие нестандартные приемы

Приведены основные свойства логарифма, график логарифма, область определения, множество значений, основные формулы, возрастание и убывание. Рассмотрено нахождение производной логарифма. А также интеграл, разложение в степенной ряд и представление посредством комплексных чисел.

Определение логарифма

Логарифм с основанием a - это функция y(x) = log a x , обратная к показательной функции с основанием a: x(y) = a y .

Десятичный логарифм - это логарифм по основанию числа 10 : lg x ≡ log 10 x .

Натуральный логарифм - это логарифм по основанию числа e : ln x ≡ log e x .

2,718281828459045... ;
.

График логарифма получается из графика показательной функции зеркальным отражением относительно прямой y = x . Слева изображены графики функции y(x) = log a x для четырех значений основания логарифма : a = 2 , a = 8 , a = 1/2 и a = 1/8 . На графике видно, что при a > 1 логарифм монотонно возрастает. С увеличением x рост существенно замедляется. При 0 < a < 1 логарифм монотонно убывает.

Свойства логарифма

Область определения, множество значений, возрастание, убывание

Логарифм является монотонной функцией, поэтому экстремумов не имеет. Основные свойства логарифма представлены в таблице.

Область определения 0 < x < + ∞ 0 < x < + ∞
Область значений - ∞ < y < + ∞ - ∞ < y < + ∞
Монотонность монотонно возрастает монотонно убывает
Нули, y = 0 x = 1 x = 1
Точки пересечения с осью ординат, x = 0 нет нет
+ ∞ - ∞
- ∞ + ∞

Частные значения


Логарифм по основанию 10 называется десятичным логарифмом и обозначается так:

Логарифм по основанию e называется натуральным логарифмом :

Основные формулы логарифмов

Свойства логарифма, вытекающие из определения обратной функции:

Основное свойство логарифмов и его следствия

Формула замены основания

Логарифмирование - это математическая операция взятия логарифма. При логарифмировании, произведения сомножителей преобразуются в суммы членов.

Потенцирование - это математическая операция обратная логарифмированию. При потенцировании заданное основание возводится в степень выражения, над которым выполняется потенцирование. При этом суммы членов преобразуются в произведения сомножителей.

Доказательство основных формул логарифмов

Формулы, связанные с логарифмами вытекают из формул для показательных функций и из определения обратной функции.

Рассмотрим свойство показательной функции
.
Тогда
.
Применим свойство показательной функции
:
.

Докажем формулу замены основания.
;
.
Полагая c = b , имеем:

Обратная функция

Обратной для логарифма по основанию a является показательная функция с показателем степени a .

Если , то

Если , то

Производная логарифма

Производная логарифма от модуля x :
.
Производная n-го порядка:
.
Вывод формул > > >

Для нахождения производной логарифма, его нужно привести к основанию e .
;
.

Интеграл

Интеграл от логарифма вычисляется интегрированием по частям : .
Итак,

Выражения через комплексные числа

Рассмотрим функцию комплексного числа z :
.
Выразим комплексное число z через модуль r и аргумент φ :
.
Тогда, используя свойства логарифма, имеем:
.
Или

Однако, аргумент φ определен не однозначно. Если положить
, где n - целое,
то будет одним и тем же числом при различных n .

Поэтому логарифм, как функция от комплексного переменного, является не однозначной функцией.

Разложение в степенной ряд

При имеет место разложение:

Использованная литература:
И.Н. Бронштейн, К.А. Семендяев, Справочник по математике для инженеров и учащихся втузов, «Лань», 2009.

Инструкция

Запишите заданное логарифмическое выражение. Если в выражении используется логарифм 10, то его запись укорачивается и выглядит так: lg b - это десятичный логарифм. Если же логарифм имеет в виде основания число е, то записывают выражение: ln b – натуральный логарифм. Подразумевается, что результатом любого является степень, в которую надо возвести число основания, чтобы получилось число b.

При нахождении от суммы двух функций, необходимо просто их по очереди продифференцировать, а результаты сложить: (u+v)" = u"+v";

При нахождении производной от произведения двух функций, необходимо производную от первой функции умножить на вторую и прибавить производную второй функции, умноженную на первую функцию: (u*v)" = u"*v+v"*u;

Для того, чтобы найти производную от частного двух функций необходимо, из произведения производной делимого, умноженной на функцию делителя, вычесть произведение производной делителя, умноженной на функцию делимого, и все это разделить на функцию делителя возведенную в квадрат. (u/v)" = (u"*v-v"*u)/v^2;

Если дана сложная функция, то необходимо перемножить производную от внутренней функции и производную от внешней. Пусть y=u(v(x)), тогда y"(x)=y"(u)*v"(x).

Используя полученные выше , можно продифференцировать практически любую функцию. Итак, рассмотрим несколько примеров:

y=x^4, y"=4*x^(4-1)=4*x^3;

y=2*x^3*(e^x-x^2+6), y"=2*(3*x^2*(e^x-x^2+6)+x^3*(e^x-2*x));
Также встречаются задачи на вычисление производной в точке. Пусть задана функция y=e^(x^2+6x+5), нужно найти значение функции в точке х=1.
1) Найдите производную функции: y"=e^(x^2-6x+5)*(2*x +6).

2) Вычислите значение функции в заданной точке y"(1)=8*e^0=8

Видео по теме

Полезный совет

Выучите таблицу элементарных производных. Это заметно сэкономит время.

Источники:

  • производная константы

Итак, чем же отличается иррациональное уравнение от рационального? Если неизвестная переменная находиться под знаком квадратного корня, то уравнение считается иррациональным.

Инструкция

Основной метод решения таких уравнений - метод возведения обоих частей уравнения в квадрат. Впрочем. это естественно, первым делом необходимо избавиться от знака . Технически этот метод не сложен, но иногда это может привести к неприятностям. Например, уравнение v(2х-5)=v(4х-7). Возведя обе его стороны в квадрат, вы получите 2х-5=4х-7. Такое уравнение решить не составит труда; х=1. Но число 1 не будет являться данного уравнения . Почему? Подставьте единицу в уравнение вместо значения х.И в правой и в левой части будут содержаться выражения, не имеющие смысла, то есть . Такое значение не допустимо для квадратного корня. Поэтому 1 - посторонний корень, и следовательно данное уравнение не имеет корней.

Итак, иррациональное уравнение решается с помощью метода возведения в квадрат обоих его частей. И решив уравнение, необходимо обязательно , чтобы отсечь посторонние корни. Для этого подставьте найденные корни в оригинальное уравнение.

Рассмотрите еще один .
2х+vх-3=0
Конечно же, это уравнение можно решить по той же , что и предыдущее. Перенести составные уравнения , не имеющие квадратного корня, в правую часть и далее использовать метод возведения в квадрат. решить полученное рациональное уравнение и корни. Но и другой , более изящный. Введите новую переменную; vх=y. Соответственно, вы получите уравнение вида 2y2+y-3=0. То есть обычное квадратное уравнение. Найдите его корни; y1=1 и y2=-3/2. Далее решите два уравнения vх=1; vх=-3/2. Второе уравнение корней не имеет, из первого находим, что х=1. Не забудьте, о необходимости проверки корней.

Решать тождества достаточно просто. Для этого требуется совершать тождественные преобразования, пока поставленная цель не будет достигнута. Таким образом, при помощи простейших арифметических действий поставленная задача будет решена.

Вам понадобится

  • - бумага;
  • - ручка.

Инструкция

Простейший таких преобразований – алгебраические сокращенного умножения (такие как квадрат суммы (разности), разность квадратов, сумма (разность) , куб суммы (разности)). Кроме того существует множество и тригонометрических формул, которые по своей сути теми же тождествами.

Действительно, квадрат суммы двух слагаемых равен квадрату первого плюс удвоенное произведение первого на второе и плюс квадрат второго, то есть (a+b)^2= (a+b)(a+b)=a^2+ab +ba+b^2=a^2+2ab+b^2.

Упростите обеих

Общие принципы решения

Повторите по учебнику по математическому анализу или высшей математике, что собой представляет определённый интеграл. Как известно, решение определенного интеграла есть функция, производная которой даст подынтегральное выражение. Данная функция называется первообразной. По данному принципу и строится основных интегралов.
Определите по виду подынтегральной функции, какой из табличных интегралов подходит в данном случае. Не всегда удается это определить сразу же. Зачастую, табличный вид становится заметен только после нескольких преобразований по упрощению подынтегральной функции.

Метод замены переменных

Если подынтегральной функцией является тригонометрическая функция, в аргументе которой некоторый многочлен, то попробуйте использовать метод замены переменных. Для того чтобы это сделать, замените многочлен, стоящий в аргументе подынтегральной функции, на некоторую новую переменную. По соотношению между новой и старой переменной определите новые пределы интегрирования. Дифференцированием данного выражения найдите новый дифференциал в . Таким образом, вы получите новый вид прежнего интеграла, близкий или даже соответствующий какому-либо табличному.

Решение интегралов второго рода

Если интеграл является интегралом второго рода, векторный вид подынтегральной функции, то вам будет необходимо пользоваться правилами перехода от данных интегралов к скалярным. Одним из таких правил является соотношение Остроградского-Гаусса. Данный закон позволяет перейти от потока ротора некоторой векторной функции к тройному интегралу по дивергенции данного векторного поля.

Подстановка пределов интегрирования

После нахождения первообразной необходимо подставить пределы интегрирования. Сначала подставьте значение верхнего предела в выражение для первообразной. Вы получите некоторое число. Далее вычтите из полученного числа другое число, полученное нижнего предела в первообразную. Если один из пределов интегрирования является бесконечностью, то при подстановке ее в первообразную функцию необходимо перейти к пределу и найти, к чему стремится выражение.
Если интеграл является двумерным или трехмерным, то вам придется изображать геометрически пределы интегрирования, чтобы понимать, как рассчитывать интеграл. Ведь в случае, скажем, трехмерного интеграла пределами интегрирования могут быть целые плоскости, ограничивающие интегрируемый объем.

log a r b r =log a b или log a b = log a r b r

Значение логарифма не изменится, если основание логарифма и число под знаком логарифма возвести в одну и ту же степень.

Под знаком логарифма могут находиться только положительные числа, причем, основание логарифма не равно единице.

Примеры.

1) Сравнить log 3 9 и log 9 81.

log 3 9=2, так как 3 2 =9;

log 9 81=2, так как 9 2 =81.

Значит, log 3 9=log 9 81.

Заметим, что основание второго логарифма равно квадрату основания первого логарифма: 9=3 2 , а число под знаком второго логарифма равно квадрату числа под знаком первого логарифма: 81=9 2 . Получается, что и число и основание первого логарифма log 3 9 были возведены во вторую степень, и значение логарифма от этого не изменилось:

Далее, так как извлечение корня n -й степени из числа а есть возведение числа а в степень ( 1 / n ), то из log 9 81 можно получить log 3 9 извлечением квадратного корня из числа и из основания логарифма:

2) Проверить равенство: log 4 25=log 0,5 0,2.

Рассмотрим первый логарифм. Извлечем квадратный корень из основания 4 и из числа 25 ; получаем: log 4 25=log 2 5.

Рассмотрим второй логарифм. Основание логарифма: 0,5= 1 / 2 . Число под знаком этого логарифма: 0,2= 1 / 5 . Возведем каждое из этих чисел в минус первую степень:

0,5 -1 =(1 / 2) -1 =2;

0,2 -1 =(1 / 5) -1 =5.

Таким образом, log 0,5 0,2=log 2 5. Вывод: данное равенство верно.

Решить уравнение:

log 4 x 4 +log 16 81=log 2 (5x+2). Приведем логарифмы слева к основанию 2 .

log 2 x 2 +log 2 3=log 2 (5x+2). Извлекли квадратный корень из числа и из основания первого логарифма. Извлекли корень четвертой степени из числа и основания второго логарифма.

log 2 (3x 2)=log 2 (5x+2). Преобразовали сумму логарифмов в логарифм произведения.

3x 2 =5x+2. Получили после потенцирования.

3x 2 -5x-2=0. Решаем квадратное уравнение по общей формуле для полного квадратного уравнения:

a=3, b=-5, c=-2.

D=b 2 -4ac=(-5) 2 -4∙3∙(-2)=25+24=49=7 2 >0; 2 действительных корня.

Проверка.

x=2.

log 4 2 4 +log 16 81=log 2 (5∙2+2);

log 2 2 2 +log 2 3=log 2 12;

log 2 (4∙3)=log 2 12;

log 2 12=log 2 12;


log a n b
=(1/ n )∙ log a b

Логарифм числаb по основанию a n равен произведению дроби 1/ n на логарифм числа b по основанию a .

Найти: 1) 21log 8 3+40log 25 2; 2) 30log 32 3∙log 125 2 , если известно, что log 2 3=b , log 5 2=c.

Решение.

Решить уравнения:

1) log 2 x+log 4 x+log 16 x=5,25.

Решение.

Приведем данные логарифмы к основанию 2. Применим формулу: log a n b =(1/ n )∙ log a b

log 2 x+(½) log 2 x+(¼) log 2 x=5,25;

log 2 x+0,5log 2 x+0,25log 2 x=5,25. Приводим подобные слагаемые:

(1+0,5+0,25)·log 2 x=5,25;

1,75·log 2 x=5,25 |:1,75

log 2 x=3. По определению логарифма:

2) 0,5log 4 (x-2)+log 16 (x-3)=0,25.

Решение. Логарифм по основанию 16 приведем к основанию 4.

0,5log 4 (x-2)+0,5log 4 (x-3)=0,25 |:0,5

log 4 (x-2)+log 4 (x-3)=0,5. Преобразуем сумму логарифмов в логарифм произведения.

log 4 ((x-2)(x-3))=0,5;

log 4 (x 2 -2x-3x+6)=0,5;

log 4 (x 2 -5x+6)=0,5. По определению логарифма:

x 2 -5x+4=0. По теореме Виета:

x 1 =1; x 2 =4. Первое значение х не подойдет, так как при х=1 логарифмы данного равенства не существуют, ведь под знаком логарифма могут находиться только положительные числа.

Проверим данное уравнение при х=4.

Проверка.

0,5log 4 (4-2)+log 16 (4-3)=0,25

0,5log 4 2+log 16 1=0,25

0,5∙0,5+0=0,25

log a b=log c b/log c a

Логарифм числа b по основанию а равен логарифму числа b по новому основанию с , деленному на логарифм старого основания а по новому основанию с .

Примеры:

1) log 2 3=lg3/lg2;

2) log 8 7=ln7/ln8.

Вычислить:

1) log 5 7 , если известно, что lg7 ≈0,8451; lg5 ≈0,6990.

c b / log c a .

log 5 7=lg7/lg5≈0,8451:0,6990≈1,2090.

Ответ: log 5 7 ≈1,209 0≈1,209 .

2) log 5 7 , если известно, что ln7 ≈1,9459; ln5 ≈1,6094.

Решение. Применяем формулу: log a b =log c b / log c a .

log 5 7=ln7/ln5≈1,9459:1,6094≈1,2091.

Ответ: log 5 7 ≈1,209 1≈1,209 .

Найдите х:

1) log 3 x=log 3 4+log 5 6/log 5 3+log 7 8/log 7 3.

Используем формулу: log c b / log c a =log a b. Получаем:

log 3 x=log 3 4+log 3 6+log 3 8;

log 3 x=log 3 (4∙6∙8);

log 3 x=log 3 192;

x=192 .

2) log 7 x=lg143-log 6 11/log 6 10-log 5 13/log 5 10 .

Используем формулу: log c b / log c a =log a b . Получаем:

log 7 x=lg143-lg11-lg13;

log 7 x=lg143- (lg11+lg13);

log 7 x=lg143-lg (11∙13);

log 7 x=lg143-lg143;

x=1.

Страница 1 из 1 1

Что такое логарифм?

Внимание!
К этой теме имеются дополнительные
материалы в Особом разделе 555.
Для тех, кто сильно "не очень..."
И для тех, кто "очень даже...")

Что такое логарифм? Как решать логарифмы? Эти вопросы многих выпускников вводят в ступор. Традиционно тема логарифмов считается сложной, непонятной и страшной. Особенно - уравнения с логарифмами.

Это абсолютно не так. Абсолютно! Не верите? Хорошо. Сейчас, за какие-то 10 - 20 минут вы:

1. Поймете, что такое логарифм .

2. Научитесь решать целый класс показательных уравнений. Даже если ничего о них не слышали.

3. Научитесь вычислять простые логарифмы.

Причём для этого вам нужно будет знать только таблицу умножения, да как возводится число в степень...

Чувствую, сомневаетесь вы... Ну ладно, засекайте время! Поехали!

Для начала решите в уме вот такое уравнение:

Если Вам нравится этот сайт...

Кстати, у меня есть ещё парочка интересных сайтов для Вас.)

Можно потренироваться в решении примеров и узнать свой уровень. Тестирование с мгновенной проверкой. Учимся - с интересом!)

можно познакомиться с функциями и производными.

На уравнениях такого вида многие ученики «зависают». При этом сами задачи отнюдь не являются сложными — достаточно просто выполнить грамотную замену переменной, для чего следует научиться выделять устойчивые выражения.

В дополнение к этому уроку вас ждет довольно объемная самостоятельная работа, состоящая из двух вариантов по 6 задач в каждом.

Метод группировки

Сегодня мы разберем два логарифмических уравнения, одно из которых не решается «напролом» и требует специальных преобразований, а второе... впрочем, не буду рассказывать все сразу. Смотрите видео, скачивайте самостоятельную работу — и учитесь решать сложные задачи.

Итак, группировка и вынесение общих множителей за скобку. Дополнительно я расскажу вам, какие подводные камни несет область определения логарифмов, и как небольшие замечания по области определений могут существенно менять как корни, так и все решение.

Начнем из группировки. Нам нужно решить следующее логарифмическое уравнение:

log 2 x · log 2 (x − 3) + 1 = log 2 (x 2 − 3x )

В первую очередь отметим, что x 2 − 3x можно разложить на множители:

log 2 x (x − 3)

Затем вспоминаем замечательную формулу:

log a fg = log a f + log a g

Сразу же небольшое замечание: данная формула прекрасно работает, когда а, f и g — обычные числа. Но когда вместо них стоят функции, данные выражения перестают быть равноправными. Представьте себе такую гипотетическую ситуацию:

f < 0; g < 0

В этом случае произведение fg будет положительным, следовательно, log a (fg ) будет существовать, а вот log a f и log a g отдельно существовать не будут, и выполнить такое преобразование мы не сможем.

Игнорирование данного факта приведет к сужению области определения и, как следствие, к потере корней. Поэтому прежде чем выполнять такое преобразование, нужно обязательно заранее убедиться, что функции f и g положительные.

В нашем случае все просто. Поскольку в исходном уравнении есть функция log 2 x , то x > 0 (ведь переменная x стоит в аргументе). Также имеется log 2 (x − 3), поэтому x − 3 > 0.

Следовательно, в функции log 2 x (x − 3) каждый множитель будет больше нуля. Поэтому можно смело раскладывать произведение на сумму:

log 2 x log 2 (x − 3) + 1 = log 2 x + log 2 (x − 3)

log 2 x log 2 (x − 3) + 1 − log 2 x − log 2 (x − 3) = 0

На первый взгляд может показаться, что легче не стало. Напротив: количество слагаемых лишь увеличились! Чтобы понять, как действовать дальше, введем новые переменные:

log 2 x = а

log 2 (x − 3) = b

a · b + 1 − a − b = 0

А теперь сгруппируем третье слагаемое с первым:

(a · b − a ) + (1 − b ) = 0

a (1 · b − 1) + (1 − b ) = 0

Заметим, что и в первой, и во второй скобке стоит b − 1 (во втором случае придется вынести «минус» за скобку). Разложим нашу конструкцию на множители:

a (1 · b − 1) − (b − 1) = 0

(b − 1)(а · 1 − 1) = 0

А теперь вспоминаем наше замечательно правило: произведение равно нулю, когда хотя бы один из множителей равен нулю:

b − 1 = 0 ⇒ b = 1;

a − 1 = 0 ⇒ a = 1.

Вспоминаем, что такое b и а. Получим два простейших логарифмических уравнения, в которых останется лишь избавиться от знаков logи приравнять аргументы:

log 2 x = 1 ⇒ log 2 x = log 2 2 ⇒ x 1 =2;

log 2 (x − 3) = 1 ⇒ log 2 (x − 3) = log 2 2 ⇒ x 2 = 5

Мы получили два корня, но это не решение исходного логарифмического уравнения, а лишь кандидаты в ответ. Теперь проверим область определения. Для первого аргумента:

x > 0

Оба корня удовлетворяют первому требованию. Переходим ко второму аргументу:

x − 3 > 0 ⇒ x > 3

А вот здесь уже x = 2 нас не удовлетворяет, зато x = 5 вполне нас устраивает. Следовательно, единственным ответом будет x = 5.

Переходим ко второму логарифмическому равнению. На первый взгляд, оно существенно проще. Однако в процессе его решения мы рассмотрим тонкие моменты, связанные с областью определения, незнание которых существенно усложняет жизнь начинающим ученикам.

log 0,7 (x 2 − 6x + 2) = log 0,7 (7 − 2x )

Перед нами каноническая форма логарифмического уравнения. Ничего преобразовывать не нужно — даже основания одинаковые. Поэтому просто приравниваем аргументы:

x 2 − 6x + 2 = 7 − 2x

x 2 − 6x + 2 − 7 + 2x = 0

x 2 − 4x − 5 = 0

Перед нами приведенное квадратное уравнение, оно легко решается по формулам Виета:

(x − 5) (x + 1) = 0;

x − 5 = 0 ⇒ x = 5;

x + 1 = 0 ⇒ x = −1.

Но эти корни еще не являются окончательными ответами. Нужно найти область определения, поскольку в исходном уравнении присутствуют два логарифма, т.е. учет области определения строго обязателен.

Итак, выпишем область определения. С одной стороны, аргумент первого логарифма должен быть больше нуля:

x 2 − 6x + 2 > 0

С другой — второй аргумент тоже должен быть больше нуля:

7 − 2x > 0

Эти требования должны выполняться одновременно. И вот тут начинается самое интересное. Безусловно, мы можем решить каждое из этих неравенств, затем пересечь их и найти область определения всего уравнения. Но зачем так усложнять себе жизнь?

Давайте заметим одну тонкость. Избавляясь от знаков log, мы приравниваем аргументы. Отсюда следует, что требования x 2 − 6x + 2 > 0 и 7 − 2x > 0 равносильны. Как следствие, любое из двух неравенств можно вычеркнуть. Давайте вычеркнем самое сложное, а себе оставим обычное линейное неравенство:

−2x > −7

x < 3,5

Поскольку мы делили обе части на отрицательное число, знак неравенства поменялся.

Итак, мы нашли ОДЗ без всяких квадратных неравенств, дискриминантов и пересечений. Теперь осталось просто выбрать корни, которые лежат на данном интервале. Очевидно, что нас устроит лишь x = −1, потому что x = 5 > 3,5.

Можно записать ответ: x = 1 является единственным решением исходного логарифмического уравнения.

Выводы из данного логарифмического уравнения следующие:

  1. Не бойтесь раскладывать логарифмы на множители, а потом множители раскладывать на сумму логарифмов. Однако помните, что разбивая произведение на сумму двух логарифмов, вы тем самым сужаете область определения. Поэтому прежде чем выполнять такое преобразование, обязательно проверьте, каковы требования области определения. Чаще всего никаких проблем не возникает, однако лишний раз перестраховаться не помешает.
  2. Избавляясь от канонической формы, старайтесь оптимизировать вычисления. В частности, если от нас требуется, чтобы f > 0 и g > 0, но в самом уравнении f = g , то смело вычеркиваем одно из неравенств, оставляя себе лишь самое простое. Область определения и ответы при этом никак не пострадают, а вот объем вычислений существенно сократится.

Вот, собственно, и все, что я хотел рассказать о группировке.:)

Типичные ошибки при решении

Сегодня мы разберем два типичных логарифмических уравнения, на которых спотыкаются многие ученики. На примере этих уравнения мы увидим, какие ошибки чаще всего допускаются в процессе решения и преобразования исходных выражений.

Дробно-рациональные уравнения с логарифмами

Сразу следует отметить, что это довольно коварный тип уравнений, в которых отнюдь не всегда сразу присутствует дробь с логарифмом где-то в знаменателе. Однако в процессе преобразований такая дробь обязательно возникнет.

При этом будьте внимательны: в процессе преобразований изначальная область определения логарифмов может существенно измениться!

Переходим к еще более жестким логарифмическим уравнениям, содержащим дроби и переменные основания. Чтобы за один короткий урок успеть больше, я не буду рассказывать элементарную теорию. Сразу перейдем к задачам:

4 log 25 (x − 1) − log 3 27 + 2 log x − 1 5 = 1

Посмотрев на это уравнение, кто-то спросит: «При чем здесь дробно-рациональное уравнение? Где в этом уравнении дробь?» Давайте не будем спешить и внимательно посмотрим на каждое слагаемое.

Первое слагаемое: 4 log 25 (x − 1). Основанием логарифма является число, но в аргументе стоит функция от переменной x . С этим мы пока ничего сделать не можем. Идем дальше.

Следующее слагаемое: log 3 27. Вспоминаем, что 27 = 3 3 . Следовательно, весь логарифм мы можем переписать следующим образом:

log 3 27 = 3 3 = 3

Итак, второе слагаемое — это просто тройка. Третье слагаемое: 2 log x − 1 5. Тут тоже не все просто: в основании стоит функция, в аргументе — обычное число. Предлагаю перевернуть весь логарифм по следующей формуле:

log a b = 1/log b a

Такое преобразование можно выполнить только если b ≠ 1. Иначе логарифм, который получится в знаменателе второй дроби, просто не будет существовать. В нашем случае b = 5, поэтому все в порядке:

2 log x − 1 5 = 2/log 5 (x − 1)

Перепишем исходное уравнение с учетом полученных преобразований:

4 log 25 (x − 1) − 3 + 2/ log 5 (x − 1) = 1

В знаменателе дроби у нас стоит log 5 (x − 1), а в первом слагаемом мы имеем log 25 (x − 1). Но 25 = 5 2 , поэтому выносим квадрат из основания логарифма по правилу:

Другими словами, степень в основании логарифма становится дробью спереди. А выражение перепишется так:

4 1/2 log 5 (x − 1) − 3 + 2/ log 5 (x − 1) − 1 = 0

У нас получилось длинное уравнение с кучей одинаковых логарифмов. Введем новую переменную:

log 5 (x − 1) = t;

2t − 4 + 2/t = 0;

А вот это уже дробно-рациональное уравнение, которое решается средствами алгебры 8—9 класса. Для начала разделим все на двойку:

t − 2 + 1/t = 0;

(t 2 − 2t + 1)/t = 0

В скобках стоит точный квадрат. Свернем его:

(t − 1) 2 /t = 0

Дробь равна нулю, когда ее числитель равен нулю, а знаменатель отличен от нуля. Никогда не забывайте про этот факт:

(t − 1) 2 = 0

t = 1

t ≠ 0

Вспоминаем, что такое t :

log 5 (x − 1) = 1

log 5 (x − 1) = log 5 5

Избавляемся от знаков log, приравниваем их аргументы, и получаем:

x − 1 = 5 ⇒ x = 6

Все. Задача решена. Но давайте вернемся к исходному уравнению и вспомним, что там присутствовали сразу два логарифма с переменной x . Поэтому нужно выписать область определения. Поскольку x − 1 стоит в аргументе логарифма, это выражение должно быть больше нуля:

x − 1 > 0

С другой стороны, тот же x − 1 присутствует и в основании, поэтому должен отличаться от единицы:

x − 1 ≠ 1

Отсюда заключаем:

x > 1; x ≠ 2

Эти требования должны выполняться одновременно. Значение x = 6 удовлетворяет обоим требованиям, поэтому является x = 6 окончательным решением логарифмического уравнения.

Переходим ко второй задаче:

Вновь не будем спешить и посмотрим на каждое слагаемое:

log 4 (x + 1) — в основании стоит четверка. Обычное число, и его можно не трогать. Но в прошлый раз мы наткнулись на точный квадрат в основании, который пришлось выносить из-под знака логарифма. Давайте сейчас сделаем то же самое:

log 4 (x + 1) = 1/2 log 2 (x + 1)

Фишка в том, что у нас уже есть логарифм с переменной x , хоть и в основании — он является обратным к логарифму, который мы только что нашли:

8 log x + 1 2 = 8 · (1/log 2 (x + 1)) = 8/log 2 (x + 1)

Следующее слагаемое — log 2 8. Это константа, поскольку и аргументе, и в основании стоят обычные числа. Найдем значение:

log 2 8 = log 2 2 3 = 3

То же самое мы можем сделать и с последним логарифмом:

Теперь перепишем исходное уравнение:

1/2 · log 2 (x + 1) + 8/log 2 (x + 1) − 3 − 1 = 0;

log 2 (x + 1)/2 + 8/log 2 (x + 1) − 4 = 0

Приведем все к общему знаменателю:

Перед нами опять дробно-рациональное уравнение. Введем новую переменную:

t = log 2 (x + 1)

Перепишем уравнение с учетом новой переменной:

Будьте внимательны: на этом шаге я поменял слагаемые местами. В числителе дроби стоит квадрат разности:

Как и в прошлый раз, дробь равна нулю, когда ее числитель равен нулю, а знаменатель отличен от нуля:

(t − 4) 2 = 0 ⇒ t = 4;

t ≠ 0

Получили один корень, который удовлетворяет всем требованиям, поэтому возвращаемся к переменной x :

log 2 (x + 1) = 4;

log 2 (x + 1) = log 2 2 4;

x + 1 = 16;

x = 15

Все, мы решили уравнение. Но поскольку в исходном уравнении присутствовало несколько логарифмов, необходимо выписать область определения.

Так, выражение x + 1 стоит в аргументе логарифма. Поэтому x + 1 > 0. С другой стороны, x + 1 присутствует и в основании, т.е. x + 1 ≠ 1. Итого:

0 ≠ x > −1

Удовлетворяет ли найденный корень данным требованиям? Безусловно. Следовательно, x = 15 является решением исходного логарифмического уравнения.

Напоследок хотел бы сказать следующее: если вы смотрите на уравнение и понимаете, что вам предстоит решать что-то сложное и нестандартное, по старайтесь выделить устойчивые конструкции, которые впоследствии будут обозначены другой переменной. Если же какие-то слагаемые вообще не содержат переменную x , их зачастую можно просто вычислить.

Вот и все, о чем я хотел сегодня рассказать. Надеюсь, этот урок поможет вам в решении сложных логарифмических уравнений. Смотрите другие видеоуроки, скачивайте и решайте самостоятельные работы, и до встречи в следующем видео!