Биографии Характеристики Анализ

Двойное лучепреломление света возникает. Явление двойного лучепреломления

Для получения поляризованного света пользуются также явлением двойного лучепреломления.

«Из Исландии, острова, находящегося в Северном море, на широте 66°, - писал Гюйгенс в 1678 г.,- был привезен камень (исландский шпат), весьма замечательный по своей форме и другим качествам, но более всего по своим странным преломляющим свойствам».

Если кусок исландского шпата положить на какую-либо надпись, то сквозь него мы увидим надпись сдвоенной (рис. 133).

Рис. 133. Двойное лучепреломление.

Раздваивание изображения происходит вследствие того, что каждому падающему на поверхность кристалла лучу соответствуют два преломленных луча. На рис. 134 изображен случай, когда падающий луч перпендикулярен к поверхности кристалла; тогда луч о, называемый обыкновенным, проходит сквозь кристалл непреломленным, а луч называемый необыкновенным, идет по ломаной, изображенной на рис. 134.

Рис. 134. Ход лучей при двойном лучепреломлении.

Названия лучей понятны: обыкновенный луч ведет себя так, как мы этого могли ожидать на основании известных законов преломления. Необыкновенный же луч как бы нарушает эти законы: он падает по нормали к поверхности, но испытывает преломление. Оба луча выходят из кристалла плоскополяризованными, причем они поляризованы во взаимно-перпендикулярных плоскостях. В этом легко убедиться весьма простым опытом. Возьмем какой-либо анализатор (например, стопу) и посмотрим сквозь него на раздвоенную картину, даваемую кристаллом. При определенном положении стопы мы увидим только одно из изображений, второе будет погашено. При повороте стопы вокруг луча зрения на 90°

это второе изображение появится, но зато исчезнет первое. Таким образом, мы действительно убеждаемся в том, что оба изображения поляризованы и именно так, как это было только что указано.

Любопытно, что в 1808 г. Малюс совершенно случайно произвел сходный опыт и открыл поляризацию света при отражении от стекла. Посмотрев сквозь кусок исландского шпата на отражение заходящего солнца в окнах Люксембургского дворца в Париже, он с удивлением обнаружил, что два изображения, возникших в результате двойного преломления, имели различную яркость. Вращая кристалл, Малюс увидел, что изображения поочередно то делались ярче, то затухали. Малюс сначала решил, что здесь сказываются колебания солнечного света в атмосфере, но с наступлением ночи повторил опыт со светом свечи, отраженным от поверхности воды, а затем стекла. В обоих случаях, однако, эффект подтвердился. Малюсу принадлежит сам термин «поляризация» света.

Перейдем теперь к более детальному разбору явления двойного лучепреломления. Если мы будем изменять угол падения луча на поверхность кристалла, то при этом обнаружится новое замечательное свойство необыкновенного луча. Оказывается, что его показатель преломления не постоянен, а зависит от угла падения. Поскольку от угла падения зависит и направление преломленного луча в кристалле, можно сформулировать указанное свойство еще так: показатель преломления необыкновенного луча зависит от его направления в кристалле. Переходя, наконец, от показателя преломления к скорости распространения, можно сказать, что скорость необыкновенного луча в кристалле зависит от направления его распространения.

В этой окончательной формулировке оптические свойства кристалла совпадают с его остальными свойствами: диэлектрическая постоянная, теплопроводность и упругость кристалла также неодинаковы по разным направлениям. Соответствие между анизотропией оптических и электрических свойств кристалла становится вполне понятным, если вспомнить, что скорость света обратно пропорциональна корню квадратному из диэлектрической постоянной среды (§ 2). Поэтому, строго говоря, скорость распространения световой волны зависит не от направления распространения, а от направления электрического поля световой волны. Если даже по одному направлению в кристалле распространяются две поляризованные во взаимно-перпендикулярных плоскостях световые волны, то их скорости будут различны (за исключением некоторых специальных случаев). Примером двух таких волн являются необыкновенный и обыкновенный лучи.

Если от точки, лежащей на поверхности исландского шпата, провести внутри кристалла радиусы-векторы, величина которых пропорциональна скорости света по соответствующим направлениям, то концы их будут лежать на поверхности эллипсоида вращения. Это

эквивалентно тому, что волновая поверхность световых колебаний, распространяющихся от точки, имеет эллипсоидальную форму в отличие от сферической при распространении в аморфном теле. Все время речь, конечно, идет о необыкновенном луче. Обыкновенные же лучи, очевидно, образуют сферическую волновую поверхность. Таким образом, в кристалле мы имеем два типа волновых поверхностей: эллипсоиды и сферы. Эти эллипсоиды и сферы соприкасаются в точках, лежащих на прямых, называемых оптическими осями кристалла.

Ясно, что свет распространяется по направлению оптической оси со скоростью, совершенно не зависящей от состояния поляризации. В исландском шпате имеется только одно направление оптической оси - одноосный кристалл.

Пользуясь простым графическим методом, основанным на принципе Гюйгенса, построим преломленную волну как обыкновенного, так и необыкновенного лучей (§ 25). Одна волна явится касательной к ряду элементарных сфер, другая будет касательной к ряду эллипсоидов (рис. 135). Мы видим, что образуется угол между этими двумя плоскими волнами, что соответствует образованию угла между преломленными лучами, т. е. двойному лучепреломлению.

Рис. 135. Построение Гюйгенса в кристалле.

В отличие от изотропной среды в кристалле луч (необыкновенный) уже не является нормалью к волновой поверхности. На рис. 135 о обозначает обыкновенный луч, необыкновенный и нормаль.

Однако есть и в кристалле исландского шпата такое направление, по которому и обыкновенный, и необыкновенный лучи идут с одинаковой скоростью, не разделяясь. Это направление носит название оптической оси кристалла. Очевидно, что на оптической оси лежат точки соприкосновения эллипсоида со сферой. В плоскости, перпендикулярной к оптической оси, лежат направления, по которым разность скоростей между обыкновенным и необыкновенным лучами максимальна. Обыкновенный и необыкновенный лучи идут при этом по одному направлению, но необыкновенный луч обгоняет обыкновенный.

Всякая плоскость, проходящая через оптическую ось, называется главным сечением или главной плоскостью кристалла.

Кроме исландского шпата к числу одноосных кристаллов принадлежат, например, кварц и турмалин. Есть кристаллы, в которых явления преломления подчиняются еще более

сложным законам. В частности, для них существуют два направления, по которым оба луча идут с одинаковой скоростью, поэтому такие кристаллы называются двуосными (например, гипс). В двуосных кристаллах оба луча необыкновенные, т. е. скорости распространения обоих лучей зависят от направления.

Турмалин обладает замечательной способностью поглощать один из лучей, получающихся при двойном лучепреломлении, благодаря чему кристалл турмалина служит как поляризатор, дающий сразу один поляризованный луч.

Еще в 1850 г. Герапат обнаружил, что искусственно изготовленные кристаллики сульфата иодистого хинина обладают такими же свойствами, как турмалин.

Рис. 136. Применение поляроидов.

Однако отдельные кристаллики были слишком малы и быстро портились на воздухе. Лишь в самые последние годы научились изготовлять в промышленных масштабах цел лулоидную пленку, в которую введено большое количество совершенно одинаково ориентированных кристалликов сульфата иодистого хинина. Эта пленка называется поляроидом.

Поляриод полностью поляризует свет, не только проходящий по нормали к его поверхности, но сохраняет свои свойства для лучей, образующих с нормалью углы до 30°. Таким образом, поляроид может поляризовать довольно широкий конус световых лучей.

Поляроид нашел себе широкое применение в самых разнообразных областях. Укажем на наиболее любопытное применение поляроида в автомобильном деле.

Пластинки из поляроида укрепляются на переднем стекле автомобиля (рис. 136) и на автомобильных фарах. Пластинка поляроида на переднем стекле является анализатором, пластинки на фарах - поляризаторами. Плоскости поляризации пластинок составляют угол 45° с горизонтом и параллельны друг другу. Шофер, смотрящий на дорогу сквозь поляроид, видит отраженный свет своих фар,

т. е. видит освещенную ими дорогу, так как соответствующие плоскости поляризации параллельны, но не видит света от фар встречного автомобиля, снабженного также пластинками из поляроида. В последнем случае, как нетрудно убедиться из рис. 136, плоскости поляризации будут взаимно-перпендикулярны. Тем самым шофер защищен от слепящего действия фар встречного автомобиля.

Из поляроида изготовляются очки, сквозь которые делаются незаметными блики света, отраженного от блестящих поверхностей. Объясняется это тем, что обычно блики частично или полностью поляризованы. Поляроидные очки весьма целесообразно применять в музеях и картинных галереях (поверхность картин, нарисованных масляными красками, часто дает блики, мешающие рассмотреть картины и искажающие оттенки красок).

Одним из наиболее распространенных поляризаторов является так называемая призма Николя, или просто николь.

Рис. 137. Разрез призмы Николя.

Призма Николя представляет собой кристалл исландского шпата, распиленный по диагонали и склеенный канадским бальзамом (рис. 137). В призме Николя один из лучей, возникающих в результате двойного лучепреломления, устраняется весьма остроумным способом. Обыкновенный луч, преломляющийся сильнее, падает на границу с канадским бальзамом под углом падения, большим, чем необыкновенный луч. Поскольку показатель преломления канадского бальзама меньше, чем исландского шпата, происходит полное внутреннее отражение и луч попадает на боковую грань. Боковая грань покрыта черной краской и поглощает падающий на нее луч. Из призмы выходит, таким образом, только один плоскополяризованный луч (необыкновенный). Плоскость поляризации этого луча носит название главной плоскости николя.

Два николя, расположенных друг за другом, с взаимно-перпендикулярными главными плоскостями, очевидно, совершенно не пропустят света. Если же главные плоскости будут параллельны, то сквозь николи пройдет максимальное количество света. Возникает вопрос, какое количество света пропустит такая комбинация николей при каком-либо промежуточном положении, когда угол а между главными плоскостями больше нуля, но меньше 90°.

Поскольку каждый поляризатор, как мы уже говорили, можно сравнить со щелью, пропускающей лишь колебания, лежащие в ее плоскости, ход вычисления интенсивности света, прошедшего через два николя, ясен. Для этой цели изобразим главные плоскости николей в виде прямых I u II (рис. 138). Тогда выходящие из первого николя колебания совпадают с и если мы их разложим на две компоненты (одну, совпадающую с и вторую, к ней

перпендикулярную), то первая компонента пройдет полностью, а вторая, очевидно, будет задержана николем. Величина амплитуды, слагающей колебания по направлению II, как видно из чертежа, равна где А - амплитуда колебаний, вышедших из первого николя. Эта компонента, как мы только что сказали, пройдет полностью; следовательно, это и будет амплитуда прошедшего через два николя колебания.

Рис. 138. К расчету энергии, прошедшей сквозь два николя.

Энергия световой волны, как и всякого колебания, пропорциональна квадрату амплитуды; следовательно, окончательно для световой энергии, прошедшей сквозь два николя, мы имеем следующую формулу - закон Малюса:

причем меняется от до при изменении а от О до Таким образом, вращая один из николей, мы можем ослаблять проходящий свет в любое число раз и получать свет любой интенсивности.

Закон Малюса, очевидно, применим для любого поляризатора и анализатора. В частности, тому же закону подчиняется интенсивность света, отраженного последовательно от двух стеклянных зеркал.

Если призма Николя служит для получения одного поляризованного луча, то призма Волластона дает два луча, поляризованных во взаимно-перпендикулярных плоскостях и расположенных симметрично по отношению к падающему лучу. Устройство призмы Волластона чрезвычайно остроумно и особенно отчетливо показывает, как скорость распространения лучей в кристалле зависит от направления их плоскости поляризации.

Рис. 139. Призма Волластона.

Призма Волластона состоит из двух кусков исландского шпата, вырезанных параллельно оптической оси и склеенных так, что оптическая ось одного куска перпендикулярна к оптической оси другого куска. На рис. 139 оптическая ось правого куска параллельна плоскости чертежа, а оптическая ось левого куска перпендикулярна к ней.

Пучок света, падающий нормально на верхнюю границу, разделится на два луча: обыкновенный с плоскостью поляризации, параллельной оптической оси, и необыкновенный, поляризованный в перпендикулярном направлении. Оба луча идут по одному направлению, но с разными скоростями, определяемыми показателями преломления Дойдя до границы раздела со вторым куском, оба

луча меняются ролями. Плоскость поляризации обыкновенного (в первом куске) луча уже становится перпендикулярной к оптической оси (второго куска), следовательно, этот луч во втором куске будет распространяться как необыкновенный. Наоборот, необыкновенный в первом куске луч будет во втором куске уже обыкновенным, так как его плоскость поляризации параллельна оптической оси этого куска. Таким образом, один луч (обыкновенный в первом куске) переходит из среды с показателем преломления в среду с показателем преломления другой (необыкновенный в первом куске) - из среды в среду с У исландского шпата больше Следовательно, первый луч переходит из более плотной среды в менее плотную, второй - наоборот. В результате один луч преломится на границе влево, а другой настолько же вправо, и из призмы симметрично войдут два поляризованных луча.

исландского шпата в 1669 году. Если луч света падает перпендикулярно к поверхности кристалла, то на этой поверхности он расщепляется на два луча. Первый луч продолжает распространяться прямо, и называется обыкновенным (o - ordinary), второй же отклоняется в сторону, и называется необыкновенным (e - extraordinary).

Энциклопедичный YouTube

    1 / 3

    двойное лучепреломление

    эффект фарадея

    Поляризованный свет и звёздный магнетизм

    Субтитры

Описание

Направление колебания вектора электрического поля необыкновенного луча лежит в плоскости главного сечения (плоскости, проходящей через луч и оптическую ось кристалла). Оптическая ось кристалла - направление в оптически анизотропном кристалле, по которому луч света распространяется, не испытывая двойного лучепреломления.

Нарушение закона преломления света необыкновенным лучом связано с тем, что скорость распространения света (а значит и показатель преломления) волн с такой поляризацией , как у необыкновенного луча, зависит от направления. Для обыкновенной волны скорость распространения одинакова во всех направлениях.

Можно подобрать условия, при которых обыкновенный и необыкновенный лучи распространяются по одной траектории, но с разными скоростями. Тогда наблюдается эффект изменения поляризации. Например, линейно поляризованный свет, падающий на пластинку можно представить в виде двух составляющих (обыкновенной и необыкновенной волн), двигающихся с разными скоростями. Из-за разности скоростей этих двух составляющих, на выходе из кристалла между ними будет некоторая разность фаз, и в зависимости от этой разности свет на выходе будет иметь разные поляризации. Если толщина пластинки такова, что на выходе из неё один луч на четверть волны (четверть периода) отстаёт от другого, то поляризация превратится в круговую (такая пластинка называется четвертьволновой), если один луч от другого отстанет на полволны, то свет останется линейно поляризованным, но плоскость поляризации повернётся на некоторый угол, значение которого зависит от угла между плоскостью поляризации падающего луча и плоскостью главного сечения (такая пластинка называется полуволновой).

Природа явления

Качественно явление можно объяснить следующим образом. Из уравнений Максвелла для материальной среды следует, что фазовая скорость света в среде обратно пропорциональна величине диэлектрической проницаемости ε среды. В некоторых кристаллах диэлектрическая проницаемость - тензорная величина - зависит от направления электрического вектора, то есть от состояния поляризации волны, поэтому и фазовая скорость волны будет зависеть от её поляризации.

Согласно классической теории света, возникновение эффекта связано с тем, что переменное электромагнитное поле света заставляет колебаться электроны вещества, и эти колебания влияют на распространение света в среде, а в некоторых веществах заставить электроны колебаться проще в некоторых определённых направлениях.

Искусственное двойное лучепреломление. Помимо кристаллов двойное лучепреломление наблюдается и в изотропных средах, помещённых в электрическое поле (эффект Керра), в магнитное поле (эффект Коттона - Мутона , эффект Фарадея), под действием механических напряжений (фотоупругость). Под действием этих факторов изначально изотропная среда меняет свои свойства и становится анизотропной. В этих случаях оптическая ось среды совпадает с направлением электрического поля, магнитного поля, направлением приложения силы.

Положительные и отрицательные кристаллы

  • Отрицательные кристаллы - одноосные кристаллы, в которых скорость распространения обыкновенного луча света меньше, чем скорость распространения необыкновенного луча. В кристаллографии отрицательными кристаллами называют также жидкие включения в кристаллах, имеющие ту же форму, что и сам кристалл.
  • Положительные кристаллы - одноосные кристаллы, в которых скорость распространения обыкновенного луча света больше, чем скорость распространения необыкновенного луча.

При прохождении света через некоторые кристаллы световой луч разделяется на два луча. Это явление получило название двойного лучепреломления. Двойное лучепреломление – раздвоение светового луча при прохождении через оптически анизотропную среду, обусловленное зависимостью показателя преломления (а, следовательно, и скорости волны) от её поляризации и ориентации волнового вектора относительно кристаллографических осей. Если на кристалл исландского шпата направить узкий пучок света, то из кристалла выйдут два пространственно разделенные луча параллельные друг другу и падающему лучу – обыкновенный (о) и необыкновенный (е). Обыкновенный луч удовлетворяет обычному закону преломления и лежит в одной плоскости с падающим лучом и нормалью к границе раздела в точке падения. Для необыкновенного луча отношение зависит от угла падения. Кроме того, необыкновенный луч не лежит, как правило, в одной плоскости с падающим лучом и нормалью к поверхности раздела. Эксперимент показывает, что вышедшие из кристалла лучи плоскополяризованы во взаимно перпендикулярных направлениях. Явление двойного лучепреломления наблюдается для всех прозрачных кристаллов, кроме кристаллов кубической системы. У одноосных кристаллов имеется направление, вдоль которого свет распространяется, не разделяясь на два луча. Это направление называется оптической осью кристалла. Любая плоскость, проходящая через оптическую ось, называется главным сечением или главной плоскостью кристалла. Плоскость, проходящая через луч и пересекающую его оптическую ось, называется главной плоскостью (главным сечением) одноосного кристалла для этого луча. Плоскость колебаний обыкновенного луча перпендикулярна к главному сечению кристалла. Колебания вектора в необыкновенном луче происходят в главной плоскости кристалла. Кроме одноосных, существуют двуосные кристаллы, у которых имеются два направления, вдоль которых свет не разделяется на два луча. В двуосных кристаллах оба луча являются необыкновенными.

Двойное лучепреломление объясняется анизотропией кристаллов. В кристаллах некубической системы диэлектрическая проницаемость зависит от направления. Вектор обыкновенного луча всегда перпендикулярен оптической оси кристалла (перпендикулярен главному сечению). Поэтому при любом направлении распространения обыкновенного луча скорость световой волны будет одна и та же, показатель преломления кристалла для обыкновенного луча не зависит от направления луча в кристалле и равен Вектор необыкновенного луча колеблется в главной плоскости кристалла, он может составлять с оптичесой осью любые углы от 0 до Поэтому скорость распространения света вдоль необыкновенного луча и показатель преломления кристалла для необыкновенного луча зависят от направления этого луча по отношению к оптической оси. При распространении света вдоль оптической оси оба луча совпадают, скорость света не зависит от направления колебаний вектора (в обоих лучах вектор перпендикулярен к оптической оси), показатель преломления необыкновенного луча совпадает с показателем преломления обыкновенного луча: При распространении света в любом другом направлении его скорость и показатель преломления вдоль необыкновенного луча отличаются от соответствующих значений для обыкновенного луча. Наибольшее отличие наблюдается в направлении, перпендикулярном к оптической оси. В этом направлении где – скорость необыкновенного луча в этом направлении. За показатель преломления необыкновенного луча принимают значение для направления распространения, перпендикулярного к оптической оси кристалла. Различают положительные и отрицательные одноосные кристаллы. У положительных кристаллов > ( < ), у отрицательных – < ( > ).


В некоторых кристаллах один из лучей поглощается сильнее другого. Это явление называется дихроизмом .

Используя принцип Гюйгенса, можно графически построить волновые поверхности обыкновенного и необыкновенного лучей. На рисунке представлены волновые поверхности лучей с центром в точке 2 для момента, когда волновой фронт падающей волны достигает точки1 . Вдоль оптической оси оба луча распространяются с одинаковой скоростью. Волновая поверхность для обыкновенного луча, исходящего из точки 2 , сфера (в сечении плоскостью – окружность), для необыкновенного – эллипсоид (в сечении плоскостью – эллипс). Огибающие всех вторичных волн, центры которых находятся между точками 1 и 2 , представляют собой плоскости. Фронт обыкновенной волны – касательная из точки 1 к окружности; фронт необыкновенной волны – касательная из точки 1 к эллипсу. Для обыкновенного луча направление распространения энергии световой волны совпадает с нормалью к волновой поверхности; обыкновенный луч перпендикулярен к волновой поверхности. Для необыкновенного луча направление распространения энергии не совпадает с нормалью к волновой поверхности; необыкновенный луч проходит через точку касания волнового фронта с эллипсом.

Двойное лучепреломление

Для получения поляризованного света пользуются также явлением двойного лучепреломления.

«Из Исландии, острова, находящегося в Северном море, на широте 66°, - писал Гюйгенс в 1678 г.,- был привезен камень (исландский шпат), весьма замечательный по своей форме и другим качествам, но более всего по своим странным преломляющим свойствам».

Если кусок исландского шпата положить на какую-либо надпись, то сквозь него мы увидим надпись сдвоенной (рис. 133).

Рис. 133. Двойное лучепреломление.

Раздваивание изображения происходит вследствие того, что каждому падающему на поверхность кристалла лучу соответствуют два преломленных луча. На рис. 134 изображен случай, когда падающий луч перпендикулярен к поверхности кристалла; тогда луч о, называемый обыкновенным, проходит сквозь кристалл непреломленным, а луч O называемый необыкновенным, идет по ломаной, изображенной на рис. 134.

Рис. 134. Ход лучей при двойном лучепреломлении.

Названия лучей понятны: обыкновенный луч ведет себя так, как мы этого могли ожидать на основании известных законов преломления. Необыкновенный же луч как бы нарушает эти законы: он падает по нормали к поверхности, но испытывает преломление. Оба луча выходят из кристалла плоскополяризованными, причем они поляризованы во взаимно-перпендикулярных плоскостях. В этом легко убедиться весьма простым опытом. Возьмем какой-либо анализатор (например, стопу) и посмотрим сквозь него на раздвоенную картину, даваемую кристаллом. При определенном положении стопы мы увидим только одно из изображений, второе будет погашено. При повороте стопы вокруг луча зрения на 90° это второе изображение появится, но зато исчезнет первое. Таким образом, мы действительно убеждаемся в том, что оба изображения поляризованы и именно так, как это было только что указано.

Любопытно, что в 1808 г. Малюс совершенно случайно произвел сходный опыт и открыл поляризацию света при отражении от стекла. Посмотрев сквозь кусок исландского шпата на отражение заходящего солнца в окнах Люксембургского дворца в Париже, он с удивлением обнаружил, что два изображения, возникших в результате двойного преломления, имели различную яркость. Вращая кристалл, Малюс увидел, что изображения поочередно то делались ярче, то затухали. Малюс сначала решил, что здесь сказываются колебания солнечного света в атмосфере, но с наступлением ночи повторил опыт со светом свечи, отраженным от поверхности воды, а затем стекла. В обоих случаях, однако, эффект подтвердился. Малюсу принадлежит сам термин «поляризация» света.

Перейдем теперь к более детальному разбору явления двойного лучепреломления. Если мы будем изменять угол падения луча на поверхность кристалла, то при этом обнаружится новое замечательное свойство необыкновенного луча. Оказывается, что его показатель преломления не постоянен, а зависит от угла падения. Поскольку от угла падения зависит и направление преломленного луча в кристалле, можно сформулировать указанное свойство еще так: показатель преломления необыкновенного луча зависит от его направления в кристалле. Переходя, наконец, от показателя преломления к скорости распространения, можно сказать, что скорость необыкновенного луча в кристалле зависит от направления его распространения.

В этой окончательной формулировке оптические свойства кристалла совпадают с его остальными свойствами: диэлектрическая постоянная, теплопроводность и упругость кристалла также неодинаковы по разным направлениям. Соответствие между анизотропией оптических и электрических свойств кристалла становится вполне понятным, если вспомнить, что скорость света обратно пропорциональна корню квадратному из диэлектрической постоянной среды. Поэтому, строго говоря, скорость распространения световой волны зависит не от направления распространения, а от направления электрического поля световой волны. Если даже по одному направлению в кристалле распространяются две поляризованные во взаимно-перпендикулярных плоскостях световые волны, то их скорости будут различны (за исключением некоторых специальных случаев). Примером двух таких волн являются необыкновенный и обыкновенный лучи.

Если от точки, лежащей на поверхности исландского шпата, провести внутри кристалла радиусы-векторы, величина которых пропорциональна скорости света по соответствующим направлениям, то концы их будут лежать на поверхности эллипсоида вращения. Это эквивалентно тому, что волновая поверхность световых колебаний, распространяющихся от точки, имеет эллипсоидальную форму в отличие от сферической при распространении в аморфном теле. Все время речь, конечно, идет о необыкновенном луче. Обыкновенные же лучи, очевидно, образуют сферическую волновую поверхность. Таким образом, в кристалле мы имеем два типа волновых поверхностей: эллипсоиды и сферы. Эти эллипсоиды и сферы соприкасаются в точках, лежащих на прямых, называемых оптическими осями кристалла.

Ясно, что свет распространяется по направлению оптической оси со скоростью, совершенно не зависящей от состояния поляризации. В исландском шпате имеется только одно направление оптической оси - одноосный кристалл.

Пользуясь простым графическим методом, основанным на принципе Гюйгенса, построим преломленную волну как обыкновенного, так и необыкновенного лучей. Одна волна явится касательной к ряду элементарных сфер, другая будет касательной к ряду эллипсоидов. Мы видим, что образуется угол между этими двумя плоскими волнами, что соответствует образованию угла между преломленными лучами, т. е. двойному лучепреломлению.

Рис. 5. Построение Гюйгенса в кристалле.

В отличие от изотропной среды в кристалле луч (необыкновенный) уже не является нормалью к волновой поверхности. На рис. 5 о обозначает обыкновенный луч, e - необыкновенный и n - нормаль.

Однако есть и в кристалле исландского шпата такое направление, по которому и обыкновенный, и необыкновенный лучи идут с одинаковой скоростью, не разделяясь. Это направление носит название оптической оси кристалла. Очевидно, что на оптической оси лежат точки соприкосновения эллипсоида со сферой. В плоскости, перпендикулярной к оптической оси, лежат направления, по которым разность скоростей между обыкновенным и необыкновенным лучами максимальна. Обыкновенный и необыкновенный лучи идут при этом по одному направлению, но необыкновенный луч обгоняет обыкновенный.

Всякая плоскость, проходящая через оптическую ось, называется главным сечением или главной плоскостью кристалла.

Кроме исландского шпата к числу одноосных кристаллов принадлежат, например, кварц и турмалин. Есть кристаллы, в которых явления преломления подчиняются еще более сложным законам. В частности, для них существуют два направления, по которым оба луча идут с одинаковой скоростью, поэтому такие кристаллы называются двуосными (например, гипс). В двуосных кристаллах оба луча необыкновенные, т. е. скорости распространения обоих лучей зависят от направления.

Турмалин обладает замечательной способностью поглощать один из лучей, получающихся при двойном лучепреломлении, благодаря чему кристалл турмалина служит как поляризатор, дающий сразу один поляризованный луч.

Еще в 1850 г. Герапат обнаружил, что искусственно изготовленные кристаллики сульфата йодистого хинина обладают такими же свойствами, как турмалин.

Рис. 6. Применение поляроидов.

Однако отдельные кристаллики были слишком малы и быстро портились на воздухе. Лишь в самые последние годы научились изготовлять в промышленных масштабах целлулоидную пленку, в которую введено большое количество совершенно одинаково ориентированных кристалликов сульфата йодистого хинина. Эта пленка называется поляроидом.

Поляроид полностью поляризует свет, не только проходящий по нормали к его поверхности, но сохраняет свои свойства для лучей, образующих с нормалью углы до 30°. Таким образом, поляроид может поляризовать довольно широкий конус световых лучей.

Поляроид нашел себе широкое применение в самых разнообразных областях. Укажем на наиболее любопытное применение поляроида в автомобильном деле.

Пластинки из поляроида укрепляются на переднем стекле автомобиля (рис. 6) и на автомобильных фарах. Пластинка поляроида на переднем стекле является анализатором, пластинки на фарах - поляризаторами. Плоскости поляризации пластинок составляют угол 45° с горизонтом и параллельны друг другу. Шофер, смотрящий на дорогу сквозь поляроид, видит отраженный свет своих фар, т. е. видит освещенную ими дорогу, так как соответствующие плоскости поляризации параллельны, но не видит света от фар встречного автомобиля, снабженного также пластинками из поляроида. В последнем случае, как нетрудно убедиться из рис. 6, плоскости поляризации будут взаимно-перпендикулярны. Тем самым шофер защищен от слепящего действия фар встречного автомобиля.

Из поляроида изготовляются очки, сквозь которые делаются незаметными блики света, отраженного от блестящих поверхностей. Объясняется это тем, что обычно блики частично или полностью поляризованы. Поляроидные очки весьма целесообразно применять в музеях и картинных галереях (поверхность картин, нарисованных масляными красками, часто дает блики, мешающие рассмотреть картины и искажающие оттенки красок).

Одним из наиболее распространенных поляризаторов является так называемая призма Николя, или просто николь.

Рис. 7. Разрез призмы Николя.

Призма Николя представляет собой кристалл исландского шпата, распиленный по диагонали и склеенный канадским бальзамом (рис. 7). В призме Николя один из лучей, возникающих в результате двойного лучепреломления, устраняется весьма остроумным способом. Обыкновенный луч, преломляющийся сильнее, падает на границу с канадским бальзамом под углом падения, большим, чем необыкновенный луч. Поскольку показатель преломления канадского бальзама меньше, чем исландского шпата, происходит полное внутреннее отражение и луч попадает на боковую грань. Боковая грань покрыта черной краской и поглощает падающий на нее луч. Из призмы выходит, таким образом, только один плоскополяризованный луч (необыкновенный). Плоскость поляризации этого луча носит название главной плоскости николя.

Два николя, расположенных друг за другом, с взаимно-перпендикулярными главными плоскостями, очевидно, совершенно не пропустят света. Если же главные плоскости будут параллельны, то сквозь николи пройдет максимальное количество света. Возникает вопрос, какое количество света пропустит такая комбинация николей при каком-либо промежуточном положении, когда угол а между главными плоскостями больше нуля, но меньше 90°.

Поскольку каждый поляризатор, как мы уже говорили, можно сравнить со щелью, пропускающей лишь колебания, лежащие в ее плоскости, ход вычисления интенсивности света, прошедшего через два николя, ясен. Для этой цели изобразим главные плоскости николей в виде прямых I u II (рис. 138). Тогда выходящие из первого николя колебания совпадают с I и если мы их разложим на две компоненты (одну, совпадающую с II и вторую, к ней перпендикулярную), то первая компонента пройдет полностью, а вторая, очевидно, будет задержана николем. Величина амплитуды, слагающей колебания по направлению II, как видно из чертежа, равна A где А - амплитуда колебаний, вышедших из первого николя. Эта компонента, как мы только что сказали, пройдет полностью; следовательно, это и будет амплитуда прошедшего через два николя колебания.

Рис. 8. К расчету энергии, прошедшей сквозь два николя.

Энергия световой волны, как и всякого колебания, пропорциональна квадрату амплитуды; следовательно, окончательно для световой энергии, прошедшей сквозь два николя, мы имеем следующую формулу - закон Малюса:

причем I меняется от до 0 при изменении α от 0 до . Таким образом, вращая один из николей, мы можем ослаблять проходящий свет в любое число раз и получать свет любой интенсивности.

Закон Малюса, очевидно, применим для любого поляризатора и анализатора. В частности, тому же закону подчиняется интенсивность света, отраженного последовательно от двух стеклянных зеркал.

Если призма Николя служит для получения одного поляризованного луча, то призма Волластона дает два луча, поляризованных во взаимно-перпендикулярных плоскостях и расположенных симметрично по отношению к падающему лучу. Устройство призмы Волластона чрезвычайно остроумно и особенно отчетливо показывает, как скорость распространения лучей в кристалле зависит от направления их плоскости поляризации.

Рис. 9. Призма Волластона.

Призма Волластона состоит из двух кусков исландского шпата, вырезанных параллельно оптической оси и склеенных так, что оптическая ось одного куска перпендикулярна к оптической оси другого куска. На рис. 9 оптическая ось правого куска параллельна плоскости чертежа, а оптическая ось левого куска перпендикулярна к ней.

Пучок света, падающий нормально на верхнюю границу, разделится на два луча: обыкновенный с плоскостью поляризации, параллельной оптической оси, и необыкновенный, поляризованный в перпендикулярном направлении. Оба луча идут по одному направлению, но с разными скоростями, определяемыми показателями преломления и . Дойдя до границы раздела со вторым куском, оба луча меняются ролями. Плоскость поляризации обыкновенного (в первом куске) луча уже становится перпендикулярной к оптической оси (второго куска), следовательно, этот луч во втором куске будет распространяться как необыкновенный. Наоборот, необыкновенный в первом куске луч будет во втором куске уже обыкновенным, так как его плоскость поляризации параллельна оптической оси этого куска. Таким образом, один луч (обыкновенный в первом куске) переходит из среды с показателем преломления в среду с показателем преломления другой (необыкновенный в первом куске) - из среды в среду с . У исландского шпата больше . Следовательно, первый луч переходит из более плотной среды в менее плотную, второй - наоборот. В результате один луч преломится на границе влево, а другой настолько же вправо, и из призмы симметрично войдут два поляризованных луча.

ДВОЙНОЕ ЛУЧЕПРЕЛОМЛЕНИЕ

ДВОЙНОЕ ЛУЧЕПРЕЛОМЛЕНИЕ

Раздвоение световых лучей при прохождении через анизотропную среду (напр., кристалл), обусловленное зависимостью преломления показателя этой среды от направления электрич. вектора световой (см. КРИСТАЛЛООПТИКА , ОПТИЧЕСКАЯ АНИЗОТРОПИЯ). При падении световой волны на анизотропную среду в ней возникают две волны с взаимно перпендикулярными плоскостями поляризации (см. ПОЛЯРИЗАЦИЯ СВЕТА). В одноосных кристаллах одна из волн имеет плоскость поляривации, перпендикулярную гл. сечению, т. е. плоскости, проходящей через направление луча света и оптическую ось кристалла (обыкновенный луч), а другая - плоскость, параллельную главному сечению (необыкновенный луч). Скорость распространения обыкновенной волны и, следовательно, для неё n0 не зависят от направления её распространения, а распространения и показатель преломления nе необыкновенной волны - зависят. Для необыкновенного луча обычные законы преломления изменяются; в частности, он может не лежать в плоскости падения. При распространении вдоль оптич. оси n0=nе и Д. л. отсутствует. Одноосные наз. положительными или отрицательными в зависимости от знака разности nе - n0. Макс. абс. величина этой разности служит числовой хар-кой Д. л. В двуосных кристаллах показатели преломления обоих лучей, возникающих при Д. л., зависят от направления распространения. Д. л. двуосных кристаллов можно характеризовать тремя главными показателями преломления.

Д. л. может наблюдаться не только в естественно-анизотропной среде, но и в среде с искусственно вызванной анизотропией, напр. при наложении внеш. поля - электрического (см. КЕРРА ЭФФЕКТ), магнитного (см. КОТТОНА - МУТОНА ЭФФЕКТ), поля упругих сил (см. ПОЛЯРИЗАЦИОННО-ОПТИЧЕСКИЙ МЕТОД ИССЛЕДОВАНИЯ НАПРЯЖЕНИЙ, ФОТОУПРУГОСТЬ).

Явление, аналогичное Д. л., наблюдается и в др. диапазонах эл.-магн. волн, напр. в диапазоне СВЧ в плазме, находящейся в магн. (а следовательно, анизотропной); (см. В ИОНОСФЕРЕ).

Физический энциклопедический словарь. - М.: Советская энциклопедия . . 1983 .

ДВОЙНОЕ ЛУЧЕПРЕЛОМЛЕНИЕ

Раздвоение светового луча при прохождении через анизотропную среду, обусловленное зависимостью показателя преломления (а следовательно, и скорости волны) от её поляризации и ориентации волнового вектора относительно кристаллографич. осей, т. е. от направления распространения (см. Кристаллооптика, Оптическая анизотропия). При падении световой волны на анизотропной среды в последней возникают две преломлённые волны, имеющие разную поляризацию и идущие в разных направлениях с разл. скоростями. Отношение амплитуд этих волн зависит от поляризации падающей волны. Различают линейное и эллиптическое Д. л. в зависимости от свойств и симметрии кристаллов.

В прозрачных немагн. кристаллах без дисперсии пространственной происходит линейное Д. л. - возникают две линейно поляризов. волны, векторы индукции к-рых D 1 и D 2 взаимно ортогональны и соответственно ортогональны векторам магн. поля H 1 и H 2 . Д. л. в кристаллах можно описать, приведя диэлектрической проницаемости . к главным осям и задав значения: - "главные показатели преломления"; величину Д. л. обычно описывают макс. разностью этих показателей преломления. При прохождении света через границу двух анизотропных сред происходит более сложное преобразование двух падающих волн в две преломлённые.

В прозрачных магн. кристаллах без пространств. дисперсии также имеет место линейное Д. л., однако векторы индукций (электрической D и магнитной В )в двух волнах не ортогональны ( ).

Д. л. в этом случае является следствием того, что электрич. и магн. проницаемости описываются разл. тензорами; в гипотетич. среде, где ( -скаляр), Д. л. отсутствовало бы (но скорости волн зависели бы от направления).

В прозрачных немагн. кристаллах с пространств. дисперсией первого порядка - гиротропией - падающая волна распадается на две волны (идущие по разным направлениям с разными скоростями), поляризованные эллиптически, причём соответственные оси эллипсов D 1 и D 2 ортогональны, а направления обхода этих эллипсов противоположны - происходит эллиптическое Д. л. В нек-рой области частот возможно появление даже большего числа волн - 3 или 4.

В кристаллах, обладающих поглощением, картина Д. л. более сложна. Как известно, волны в поглощающих средах неоднородны; векторы E, D и H, В в общем случае поляризованы эллиптически, причём эллипсы различны и ориентированы по-разному. Поэтому в общем случае имеет место эллиптическое Д. л.; эллипсы векторов двух волн D 1 и D 2 подобны, ортогональны и имеют одно направление обхода, но разные размеры вследствие анизотропии поглощения (см. Дихроизм). То же имеет место для векторов B 1 и B 2 , но эллипсы их отличаются от первых формой и ориентацией (ориентации совпадают лишь при круговой поляризации).

В зависимости от свойств симметрии анизотропной среды в ней имеется несколько избранных направлений, в к-рых Д. л. отсутствует; эти направления наз. оптич. осями. Могут быть оси изотропные, вдоль к-рых волны любой поляризации распространяются с одинаковой скоростью, и оси круговые, вдоль к-рых без Д. л. может распространяться лишь волна определ. знака круговой поляризации. Прозрачные кристаллы низших сингоний обычно имеют две изотропные оси, при симметрии выше 222 D 2 (см. Симметрия кристаллов )они сливаются в одну. При наличии поглощения кристаллы низших сингоний имеют одну изотропную ось (в частном случае ромбич. сингоний - две) и (или) несколько круговых.

Д. л. может наблюдаться не только в естественно-анизотропной среде, но и в среде с искусств. анизотропией, вызванной асимметричными деформациями, внутр. натяжениями (см. Фотоупругость), приложением акустич. поля (см. Акустооптика), приложением электрических (см. Керра эффект )или магнитных (см. Коттона - Мутона эффект )полей, анизотропным нагревом. В жидкостях возможно создание Д. л. в потоке, если жидкости или растворённого вещества обладают несферич. формой и анизотропной поляризуемостью.

Явление, аналогичное Д. л, наблюдается и в др. диапазонах эл.-магн. волн, напр. в диапазоне СВЧ в плазме, находящейся в магн. поле (а следовательно, анизотропной); см. Волны в плазме.

Лит.: Федоров Ф. И., Оптика анизотропных сред. Минск, 1958, Кизель В. А., Отражение света, M , 1973, гл. 1, 2; Федоров Ф. И., Филиппов В. В., Отражение и прозрачными кристаллами, Минск. 1976; Дорожкин Л. M. и др., Измерение показателей преломления монокристаллов методом равных отклонений, "Краткие сообщения по физике", 1977, № 3, с. 8; Stаmnеs J., Shеrman G., Reflection and refraction of an arbitrary wave at a plane interface separating two uniaxial crystals, "J. Opt. Soc. Amer.", 1977, v. 67, p. 683; Halevi P., Mendoza-Hernfindez A., Temporal and spatial behavior of the Poynting vector in dissepative media refraction from vacuum into a medium, "J. Opt. Soc. Amer.", 1981, v. 71, p. 1238.

В. А. Кизель.

Физическая энциклопедия. В 5-ти томах. - М.: Советская энциклопедия . Главный редактор А. М. Прохоров . 1988 .


Смотреть что такое "ДВОЙНОЕ ЛУЧЕПРЕЛОМЛЕНИЕ" в других словарях:

    Двойное лучепреломление - (схема): MN направление оптической оси; о обыкновенный луч; е необыкновенный луч. ДВОЙНОЕ ЛУЧЕПРЕЛОМЛЕНИЕ, раздвоение светового луча при прохождении через анизотропную среду. Открыто в 1670 датским физиком Э. Бартолином на кристалле исландского… … Иллюстрированный энциклопедический словарь

    ДВОЙНОЕ ЛУЧЕПРЕЛОМЛЕНИЕ, раздвоение светового луча при прохождении через анизотропную среду. Открыто в 1670 датским физиком Э. Бартолином на кристалле исландского шпата (CaCO3). В некоторых кристаллах, например турмалине, каждый из раздвоенных… … Современная энциклопедия

    Раздвоение световых лучей при прохождении через анизотропную среду (см. Анизотропия), происходящее вследствие зависимости показателя преломления среды от направления напряженности электрического поля световой волны. Световая волна в анизотропном… … Большой Энциклопедический словарь

    двойное лучепреломление - Раздвоение световых лучей при преломлении на границе с анизотропной средой. [Сборник рекомендуемых терминов. Выпуск 79. Физическая оптика. Академия наук СССР. Комитет научно технической терминологии. 1970 г.] Тематики физическая оптика Обобщающие … Справочник технического переводчика

    Оптические свойства галита и кальцита … Википедия

    Раздвоение лучей света при прохождении через оптически анизотропную среду (напр., большинство кристаллов), происходящее вследствие зависимости показателя преломления от направления электрич. вектора Е световой волны. В одноосном кристалле (см.… … Большой энциклопедический политехнический словарь

    Расщепление пучка света в анизотропной среде (например, в кристалле) на два слагающих, распространяющихся с разными скоростями и поляризованных в двух взаимно перпендикулярных плоскостях. Д. л. впервые обнаружено и описано профессором… … Большая советская энциклопедия

    Раздвоение световых лучей при прохождении через анизотропную среду (см. Анизотропия), происходящее вследствие зависимости показателя преломления среды от поляризации и ориентации волнового вектора относительно кристаллографических осей, то есть… … Энциклопедический словарь

    двойное лучепреломление - Birefringence Двойное лучепреломление Оптическое явление, обусловленное наличием у кристалла различных показателей преломления для двух взаимноперпендикулярных ориентаций плоскости поляризации света. В общем случае, в двулучепреломляющих… … Толковый англо-русский словарь по нанотехнологии. - М.

    двойное лучепреломление - dvejopas spindulių lūžimas statusas T sritis Standartizacija ir metrologija apibrėžtis Anizotropinėje terpėje sklindančio šviesos spindulio skaidymasis į du spindulius. atitikmenys: angl. birefringence; double refraction vok.… … Penkiakalbis aiškinamasis metrologijos terminų žodynas