Биографии Характеристики Анализ

Количество вещества постоянная авогадро молярная масса. Атомная единица массы

Моль – количество вещества, которое содержит столько же структурных элементов, сколько атомов содержится в 12 г 12 С, причем структурными элементами обычно являются атомы, молекулы, ионы и др. Масса 1 моль вещества, выраженная в граммах, численно равна его мол. массе. Так, 1 моль натрия имеет массу 22,9898 г и содержит 6,02·10 23 атомов; 1 моль фторида кальция CaF 2 имеет массу (40,08 + 2·18,998) = 78,076 г и содержит 6,02·10 23 молекул, как и 1 моль тетрахлорида углерода CCl 4 , масса которого равна (12,011 + 4·35,453) = 153,823 г и т.п.

Закон Авогадро.

На заре развития атомной теории (1811) А.Авогадро выдвинул гипотезу, согласно которой при одинаковых температуре и давлении в равных объемах идеальных газов содержится одинаковое число молекул. Позже было показано, что эта гипотеза есть необходимое следствие кинетической теории, и сейчас она известна как закон Авогадро. Его можно сформулировать так: один моль любого газа при одинаковых температуре и давлении занимает один и тот же объем, при стандартных температуре и давлении (0° С, 1,01Ч10 5 Па) равный 22,41383 л. Эта величина известна как молярный объем газа.

Сам Авогадро не делал оценок числа молекул в заданном объеме, но понимал, что это очень большая величина. Первую попытку найти число молекул, занимающих данный объем, предпринял в 1865 Й.Лошмидт; было установлено, что в 1 см 3 идеального газа при нормальных (стандартных) условиях содержится 2,68675Ч10 19 молекул. По имени этого ученого указанная величина была названа числом (или постоянной) Лошмидта. С тех пор было разработано большое число независимых методов определения числа Авогадро. Превосходное совпадение полученных значений является убедительным свидетельством реального существования молекул.

Метод Лошмидта

представляет только исторический интерес. Он основан на предположении, что сжиженный газ состоит из плотноупакованных сферических молекул. Измеряя объем жидкости, которая образовалась из данного объема газа, и зная приблизительно объем молекул газа (этот объем можно было представить исходя из некоторых свойств газа, например вязкости), Лошмидт получил оценку числа Авогадро ~10 22 .

Определение, основанное на измерении заряда электрона.

Единица количества электричества, известная как число Фарадея F , – это заряд, переносимый одним молем электронов, т.е. F = Ne , где е – заряд электрона, N – число электронов в 1 моль электронов (т.е. число Авогадро). Число Фарадея можно определить, измеряя количество электричества, необходимое для растворения или осаждения 1 моль серебра. Тщательные измерения, выполненные Национальным бюро стандартов США, дали значение F = 96490,0 Кл, а заряд электрона, измеренный разными методами (в частности, в опытах Р.Милликена), равен 1,602Ч10 –19 Кл. Отсюда можно найти N . Этот метод определения числа Авогадро, по-видимому, является одним из самых точных.

Эксперименты Перрена.

Исходя из кинетической теории, было получено включающее число Авогадро выражение, описывающее уменьшение плотности газа (например, воздуха) с высотой столба этого газа. Если бы удалось подсчитать число молекул в 1 см 3 газа на двух разных высотах, то, воспользовавшись указанным выражением, мы могли бы найти N . К сожалению, сделать это невозможно, поскольку молекулы невидимы. Однако в 1910 Ж.Перрен показал, что упомянутое выражение справедливо и для суспензий коллоидных частиц, которые видны в микроскопе. Подсчет числа частиц, находящихся на разной высоте в столбе суспензии, дал число Авогадро 6,82Ч10 23 . Из другой серии экспериментов, в которых измерялось среднеквадратичное смещение коллоидных частиц в результате их броуновского движения, Перрен получил значение N = 6,86Ч10 23 . В дальнейшем другие исследователи повторили некоторые из экспериментов Перрена и получили значения, хорошо согласующиеся с ныне принятыми. Следует отметить, что эксперименты Перрена стали поворотным моментом в отношении ученых к атомной теории вещества – ранее некоторые ученые рассматривали ее как гипотезу. В.Оствальд, выдающийся химик того времени, так выразил это изменение во взглядах: «Соответствие броуновского движения требованиям кинетической гипотезы... заставило даже наиболее пессимистично настроенных ученых говорить об экспериментальном доказательстве атомной теории».

Расчеты с использованием числа Авогадро.

С помощью числа Авогадро были получены точные значения массы атомов и молекул многих веществ: натрия, 3,819Ч10 –23 г (22,9898 г/6,02Ч10 23), тетрахлорида углерода, 25,54Ч10 –23 г и т.д. Можно также показать, что в 1 г натрия должно содержаться примерно 3Ч10 22 атомов этого элемента.
См. также

Закон Авогадро

На заре развития атомной теории () А. Авогадро выдвинул гипотезу, согласно которой при одинаковых температуре и давлении в равных объёмах идеальных газов содержится одинаковое число молекул. Позже было показано, что эта гипотеза есть необходимое следствие кинетической теории, и сейчас она известна как закон Авогадро. Его можно сформулировать так: один моль любого газа при одинаковых температуре и давлении занимает один и тот же объем, при нормальных условиях равный 22,41383 . Эта величина известна как молярный объем газа .

Сам Авогадро не делал оценок числа молекул в заданном объёме, но понимал, что это очень большая величина. Первую попытку найти число молекул, занимающих данный объем, предпринял в году Й. Лошмидт . Из вычислений Лошмидта следовало, что для воздуха количество молекул на единицу объёма составляет 1,81·10 18 см −3 , что примерно в 15 раз меньше истинного значения. Через 8 лет Максвелл привёл гораздо более близкую к истине оценку «около 19 миллионов миллионов миллионов» молекул на кубический сантиметр, или 1,9·10 19 см −3 . В действительности в 1 см³ идеального газа при нормальных условиях содержится 2,68675·10 19 молекул . Эта величина была названа числом (или постоянной) Лошмидта . С тех пор было разработано большое число независимых методов определения числа Авогадро. Превосходное совпадение полученных значений является убедительным свидетельством реального количества молекул.

Измерение константы

Официально принятое на сегодня значение числа Авогадро было измерено в 2010 году . Для этого использовались две сферы, сделанные из кремния-28 . Сферы были получены в Институте кристаллографии имени Лейбница и отполированы в австралийском Центре высокоточной оптики настолько гладко, что высоты выступов на их поверхности не превышали 98 нм . Для их производства был использован высокочистый кремний-28, выделенный в нижегородском Институте химии высокочистых веществ РАН из высокообогащённого по кремнию-28 тетрафторида кремния, полученного в Центральном конструкторском бюро машиностроения в Санкт-Петербурге.

Располагая такими практически идеальными объектами, можно с высокой точностью подсчитать число атомов кремния в шаре и тем самым определить число Авогадро. Согласно полученным результатам, оно равно 6,02214084(18)×10 23 моль −1 .

Связь между константами

  • Через произведение постоянной Больцмана Универсальная газовая постоянная , R =kN A .
  • Через произведение элементарного электрического заряда на число Авогадро выражается постоянная Фарадея , F =eN A .

См. также

Примечания

Литература

  • Число Авогадро // Большая советская энциклопедия

Wikimedia Foundation . 2010 .

Смотреть что такое "Число Авогадро" в других словарях:

    - (постоянная Авогадро, обозначение L), постоянная, равная 6,022231023, соответствует числу атомов или молекул, содержащихся в одном МОЛЕ вещества … Научно-технический энциклопедический словарь

    число Авогадро - Avogadro konstanta statusas T sritis chemija apibrėžtis Dalelių (atomų, molekulių, jonų) skaičius viename medžiagos molyje, lygus (6,02204 ± 0,000031)·10²³ mol⁻¹. santrumpa(os) Santrumpą žr. priede. priedas(ai) Grafinis formatas atitikmenys:… … Chemijos terminų aiškinamasis žodynas

    число Авогадро - Avogadro konstanta statusas T sritis fizika atitikmenys: angl. Avogadro’s constant; Avogadro’s number vok. Avogadro Konstante, f; Avogadrosche Konstante, f rus. постоянная Авогадро, f; число Авогадро, n pranc. constante d’Avogadro, f; nombre… … Fizikos terminų žodynas

    Авогадро постоянная (число Авогадро) - число частиц (атомов, молекул, ионов) в 1 моле вещества (моль это количество вещества, в котором содержится столько же частиц, сколько атомов содержится точно в 12 граммах изотопа углерода 12), обозначаемое символом N = 6,023 1023. Одна из… … Начала современного естествознания

    - (число Авогадро), число структурных элементов (атомов, молекул, ионов или др. ч ц) в ед. кол ва в ва (в одном моле). Названа в честь А. Авогадро, обозна чается NA. А. п. одна из фундаментальных физических констант, существенная для определения мн … Физическая энциклопедия

    - (число Авогадро; обозначается NА), число молекул или атомов в 1 моле вещества, NА = 6,022045(31) х 1023моль 1; назв. по имени А. Авогадро … Естествознание. Энциклопедический словарь

    - (число Авогадро), число частиц (атомов, молекул, ионов) в 1 моле в ва. Обозначается NA и равна (6,022045 … Химическая энциклопедия

    Na = (6,022045±0,000031)*10 23 число молекул в моле любого вещества или число атомов в моле простого вещества. Одна из фундаментальных постоянных, с помощью которой можно определить такие величины, как, например, массу атома или молекулы (см.… … Энциклопедия Кольера

Из школьного курса химии нам известно, что если взять один моль какого-нибудь вещества, то в нем будет 6.02214084(18).10^23 атомов или других структурных элементов (молекул, ионов и т.д.). Для удобства число Авогадро принято записывать в таком виде: 6.02 . 10^23.

Однако почему постоянная Авогадро (на украинском языке «стала Авогадро») равна именно такому значению? Ответ на этот вопрос в учебниках отсутствует, а историки от химии предлагают самые разные версии. Такое впечатление, что число Авогадро имеет некий тайный смысл. Ведь есть же магические числа, куда некоторые относят число «пи», числа фибоначчи, семерку (на востоке восьмерку), 13 и т.д. Будем бороться с информационным вакуумом. О том, кто такой Амедео Авогадро, и почему в честь этого ученого помимо сформулированного им закона, найденной константы был также назван кратер на Луне, мы говорить не будет. Об этом и без того написано множество статей.

Если быть точным, не занимался подсчетами молекул или атомов в каком-то определенном объеме. Первым, кто попытался выяснить, сколько молекул газа

содержится в заданном объеме при одинаковом давлении и температуре, был Йозеф Лошмидт, а было это в 1865 году. В результате своих экспериментов Лошмидт пришел к выводу, что в одном кубическом сантиметре любого газа в обычных условиях находится 2.68675 . 10^19 молекул.

Впоследствии было изобретено независимых способов того, как можно определить число Авогадро и поскольку результаты в большей части совпадали, то это лишний раз говорило в пользу действительного существования молекул. На данный момент число методов перевалило за 60, но в последние годы ученые стараются еще больше повысить точность оценки, чтобы ввести новое определение термина «килограмм». Пока что килограмм сопоставляется с выбранным материальным эталоном без какого-либо фундаментального определения.

Однако вернемся к нашему вопросу - почему данная константа равна 6.022 . 10^23?

В химии, в 1973 г., для удобства в расчетах было предложено ввести такое понятие как «количество вещества». Основной единицей для измерения количества стал моль. Согласно рекомендациям IUPAC, количество любого вещества пропорционально числу его конкретных элементарных частиц. Коэффициент пропорциональности не зависит от типа вещества, а число Авогадро является его обратной величиной.

Для наглядности возьмем какой-нибудь пример. Как известно из определения атомной единицы массы, 1 а.е.м. соответствует одной двенадцатой от массы одного атома углерода 12С и составляет 1.66053878.10^(−24) грамма. Если умножить 1 а.е.м. на константу Авогадро, то получится 1.000 г/моль. Теперь возьмем какой-нибудь скажем, бериллий. Согласно таблице масса одного атома бериллия составляет 9.01 а.е.м. Посчитаем чему равен один моль атомов этого элемента:

6.02 х 10^23 моль-1 * 1.66053878х10^(−24) грамм * 9.01 = 9,01 грамм/моль.

Таким образом, получается, что численно совпадает с атомной.

Постоянная Авогадро была специально выбрана так, чтобы молярная масса соответствовала атомной либо безразмерной величине - относительной молекулярной Можно сказать, что число Авогадро обязано своему появлению, с одной стороны, атомной единице массы, а с другой - общепринятой единице для сравнения массы - грамму.

Доктор физико-математических наук Евгений Мейлихов

Введение (в сокращении) к книге: Мейлихов Е. З. Число Авогадро. Как увидеть атом. - Долгопрудный: ИД «Интеллект», 2017.

Итальянский учёный Амедео Авогадро - современник А. С. Пушкина - был первым, кто понял, что количество атомов (молекул) в одном грамм-атоме (моле) вещества одинаково для всех веществ. Знание же этого числа открывает путь к оценке размеров атомов (молекул). При жизни Авогадро его гипотеза не получила должного признания.

Истории числа Авогадро посвящена новая книга Евгения Залмановича Мейлихова, профессора МФТИ, главного научного сотрудника НИЦ «Курчатовский институт».

Если бы в результате какой-либо мировой катастрофы все накопленные знания оказались бы уничтоженными и к грядущим поколениям живых существ пришла бы только одна фраза, то какое утверждение, составленное из наименьшего количества слов, принесло бы наибольшую информацию? Я считаю, что это - атомная гипотеза: …все тела состоят из атомов - маленьких телец, находящихся в беспрерывном движении.
Р. Фейнман. Фейнмановские лекции по физике

Число Авогадро (константа Авогадро, постоянная Авогадро) определяется как количество атомов в 12 граммах чистого изотопа углерода-12 (12 C). Обозначается оно обычно как N A , реже L. Значение числа Авогадро, рекомендованное CODATA (рабочая группа по фундаментальным постоянным) в 2015 году: N A = 6,02214082(11)·10 23 моль -1 . Моль - это количество вещества, которое содержит N A структурных элементов (то есть столько же элементов, сколько атомов содержится в 12 г 12 C), причем структурными элементами обычно являются атомы, молекулы, ионы и др. По определению атомная единицы массы (а.е.м.) равна 1/12 массы атома 12 C. Один моль (грамм-моль) вещества имеет массу (молярную массу), которая, будучи выраженной в граммах, численно равна молекулярной массе этого вещества (выраженной в атомных единицах массы). Например: 1 моль натрия имеет массу 22,9898 г и содержит (примерно) 6,02 · 10 23 атомов, 1 моль фторида кальция CaF 2 имеет массу (40,08 + 2·18,998) = 78,076 г и содержит (примерно) 6,02·10 23 молекул.

В конце 2011 года на XXIV Генеральной конференции по мерам и весам единогласно принято предложение определить моль в будущей версии Международной системы единиц (СИ) таким образом, чтобы избежать его привязки к определению грамма. Предполагается, что в 2018 году моль будет определён непосредственно числом Авогадро, которому будет приписано точное (без погрешности) значение, базирующееся на результатах измерений, рекомендованных CODATA. Пока же число Авогадро является не принимаемой по определению, а измеряемой величиной.

Эта константа названа в честь известного итальянского химика Амедео Авогадро (1776-1856), который хотя сам этого числа и не знал, но понимал, что это очень большая величина. На заре развития атомной теории Авогадро выдвинул гипотезу (1811 год), согласно которой при одинаковых температуре и давлении в равных объёмах идеальных газов содержится одинаковое число молекул. Позже было показано, что эта гипотеза есть следствие кинетической теории газов, и сейчас она известна как закон Авогадро. Его можно сформулировать так: один моль любого газа при одинаковых температуре и давлении занимает один и тот же объём, при нормальных условиях равный 22,41383 л (нормальным условиям соответствуют давление P 0 = 1 атм и температура T 0 = 273,15 К). Эта величина известна как молярный объём газа.

Первую попытку найти число молекул, занимающих данный объём, предпринял в 1865 году Й. Лошмидт. Из его вычислений следовало, что количество молекул в единице объёма воздуха равно 1,8·10 18 см -3 , что, как оказалось, примерно в 15 раз меньше правильного значения. Через восемь лет Дж. Максвелл привёл гораздо более близкую к истине оценку - 1,9·10 19 см -3 . Наконец в 1908 году Перрен даёт уже приемлемую оценку: N A = 6,8·10 23 моль -1 числа Авогадро, найденную из экспериментов по броуновскому движению.

С тех пор было разработано большое число независимых методов определения числа Авогадро, и более точные измерения показали, что в действительности в 1 см 3 идеального газа при нормальных условиях содержится (примерно) 2,69·10 19 молекул. Эта величина называется числом (или постоянной) Лошмидта. Ей соответствует число Авогадро N A ≈ 6,02·10 23 .

Число Авогадро - одна из важных физических постоянных, сыгравших большую роль в развитии естественных наук. Но является ли она «универсальной (фундаментальной) физической постоянной»? Сам этот термин не определён и обычно ассоциируется с более или менее подробной таблицей числовых значений физических констант, которые следует использовать при решении задач. В связи с этим фундаментальными физическими постоянными зачастую считаются те величины, которые не являются константами природы и обязаны своим существованием всего лишь выбранной системе единиц (таковы, например, магнитная и электрическая постоянные вакуума) или условным международным соглашениям (такова, например, атомная единица массы). В число фундаментальных констант часто включают многие производные величины (например, газовую постоянную R, классический радиус электрона r e = e 2 /m e c 2 и т. п.) или, как в случае с молярным объёмом, значение некоторого физического параметра, относящегося к специфическим экспериментальным условиям, которые выбраны лишь из соображений удобства (давление 1 атм и температура 273,15 К). С этой точки зрения число Авогадро есть истинно фундаментальная константа.

Истории и развитию методов определения этого числа и посвящена настоящая книга. Эпопея длилась около 200 лет и на разных этапах была связана с многообразными физическими моделями и теориями, многие из которых не потеряли актуальности и по сей день. К этой истории приложили руку самые светлые научные умы - достаточно назвать А. Авогадро, Й. Лошмидта, Дж. Максвелла, Ж. Перрена, А. Эйнштейна, М. Смолуховского. Список можно было бы и продолжить...

Автор должен признаться, что идея книги принадлежит не ему, а Льву Фёдоровичу Соловейчику - его однокашнику по Московскому физико-техническому институту, человеку, который занимался прикладными исследованиями и разработками, но в душе остался физиком-романтиком. Это человек, который (один из немногих) продолжает «и в наш жестокий век» бороться за настоящее «высшее» физическое образование в России, ценит и в меру сил пропагандирует красоту и изящество физических идей. Известно, что из сюжета, который А. С. Пушкин подарил Н. В. Гоголю, возникла гениальная комедия. Конечно, здесь не тот случай, но, может быть, и эта книга покажется кому-то полезной.

Эта книга - не «научно-популярный» труд, хотя и может показаться таковым с первого взгляда. В ней на некотором историческом фоне обсуждается серьёзная физика, используется серьёзная математика и обсуждаются довольно сложные научные модели. Фактически книга состоит из двух (не всегда резко разграниченных) частей, рассчитанных на разных читателей - одним она может показаться интересной с историко-химической точки зрения, а другие, возможно, сосредоточатся на физико-математической стороне проблемы. Автор же имел в виду любознательного читателя - студента физического или химического факультета, не чуждого математики и увлечённого историей науки. Есть ли такие студенты? Точного ответа на этот вопрос автор не знает, но, исходя из собственного опыта, надеется, что есть.

Информация о книгах Издательского дома «Интеллект» - на сайте www.id-intellect.ru

Физическая величина, равная количеству структурных элементов (которыми являются молекулы, атомы и т.п.) на один моль вещества, называется числом Авогадро. Официально принятое на сегодняшний день его значение составляет NA = 6,02214084(18)×1023 моль−1, оно было утверждено в 2010 году. В 2011 были опубликованы результаты новых исследований, они считаются более точными, но на данный момент официально не утверждены.

Закон Авогадро имеет огромное значение в развитии химии, он позволил вычислять вес тел, которые могут менять состояние, становясь газообразными или парообразными. Именно на основе закона Авогадро начала свое развитие атомно-молекулярная теория, следующая из кинетической теории газов.

Более того, с помощью закона Авогадро разработан способ получения молекулярной массы растворенных веществ. Для этого законы идеальных газов были распространены и на разбавленные растворы, взяв за основу мысль, что растворенное вещество распределится по объему растворителя, как газ распределяется в сосуде. Также закон Авогадро дал возможность определить истинные атомные массы целого ряда химических элементов.

Практическое использование числа Авогадро

Константа используется при расчетах химических формул и в процессе составления уравнений химических реакций. С помощью нее определяют относительные молекулярные массы газов и число молекул в одном моле любого вещества.

Через число Авогадро вычисляется универсальная газовая постоянная, она получается путем умножения этой константы на постоянную Больцмана. Кроме того, умножив число Авогадро и элементарный электрический заряд, можно получить постоянную Фарадея.

Использование следствий закона Авогадро

Первое следствие закона гласит: «Один моль газа (любого) при равных условиях будет занимать один объем». Таким образом, в нормальных условиях объем одного моля любого газа равен 22,4 литра (эта величина называется молярным объемом газа), а используя уравнение Менделеева-Клапейрона можно определить объем газа при любом давлении и температуре.

Второе следствие закона: «Молярная масса первого газа равна произведению молярной массы второго газа на относительную плотность первого газа ко второму». Иными словами, при одинаковых условиях, зная отношение плотности двух газов, можно определить их молярные массы.

Во времена Авогадро его гипотеза была недоказуема теоретически, однако позволяла легко устанавливать экспериментальным путем состав молекул газа и определять их массу. Со временем под его эксперименты была подведена теоретическая база, и теперь число Авогадро находит применение