Биографии Характеристики Анализ

Линейные однородные дифференциальные уравнения второго порядка. Построение общего решения линейного однородного

Линейное однородное дифференциальное уравнение второго порядка с постоянными коэффициентами имеет общее решение
, гдеилинейно-независимые частные решения этого уравнения.

Общий вид решений однородного дифференциального уравнения второго порядка с постоянными коэффициентами
, зависит от корней характеристического уравнения
.

Корни характеристического

уравнения

Вид общего решения

Корни идействительные и различные

Корни ==

действительные и одинаковые

Корни комплексные
,

Пример

Найти общее решение линейных однородных дифференциальных уравнений второго порядка с постоянными коэффициентами:

1)

Решение:
.

Решив его, найдем корни
,
действительные и различные. Следовательно, общее решение имеет вид:
.

2)

Решение: Составим характеристическое уравнение:
.

Решив его, найдем корни

действительные и одинаковые. Следовательно, общее решение имеет вид:
.

3)

Решение: Составим характеристическое уравнение:
.

Решив его, найдем корни
комплексные. Следовательно, общее решение имеет вид:.

Линейное неоднородное дифференциальное уравнение второго порядка с постоянными коэффициентами имеет вид

Где
. (1)

Общее решение линейного неоднородного дифференциального уравнения второго порядка имеет вид
, где
– частное решение этого уравнения,– общее решение соответствующего однородного уравнения, т.е. уравнения.

Вид частного решения
неоднородного уравнения (1) в зависимости от правой части
:

Правая часть

Частное решение

–многочлен степени

, где – число корней характеристического уравнения, равных нулю.

, где =
является корнем характеристического уравнения.

Где – число, равное числу корней характеристического уравнения, совпадающих с
.

где – число корней характеристического уравнения, совпадающих с
.

Рассмотрим различные виды правых частей линейного неоднородного дифференциального уравнения :

1.
, где– многочлен степени. Тогда частное решение
можно искать в виде
, где

, а– число корней характеристического уравнения, равных нулю.

Пример

Найти общее решение
.

Решение:





.

Б) Так как правая часть уравнения является многочленом первой степени и ни один из корней характеристического уравнения
не равен нулю (
), то частное решение ищем в виде, гдеи– неизвестные коэффициенты. Дифференцируя дважды
и подставляя
,
и
в исходное уравнение, находим.

Приравнивая коэффициенты при одинаковых степенях в обеих частях равенства
,
, находим
,
. Итак, частное решение данного уравнения имеет вид
, а его общее решение.

2. Пусть правая часть имеет вид
, где– многочлен степени. Тогда частное решение
можно искать в виде
, где
– многочлен той же степени, что и
, а– число, показывающее, сколько разявляется корнем характеристического уравнения.

Пример

Найти общее решение
.

Решение:

А) Найдем общее решение соответствующего однородного уравнения
. Для этого запишем характеристическое уравнение
. Найдем корни последнего уравнения
. Следовательно, общее решение однородного уравнения имеет вид
.



характеристического уравнения

, где– неизвестный коэффициент. Дифференцируя дважды
и подставляя
,
и
в исходное уравнение, находим. Откуда
, то есть
или
.

Итак, частное решение данного уравнения имеет вид
, а его общее решение
.

3. Пусть правая часть имеет вид , где
и– данные числа. Тогда частное решение
можно искать в виде, гдеи– неизвестные коэффициенты, а– число, равное числу корней характеристического уравнения, совпадающих с
. Если в выражение функции
входит хотя бы одна из функций
или
, то в
надо всегда вводитьобе функции.

Пример

Найти общее решение .

Решение:

А) Найдем общее решение соответствующего однородного уравнения
. Для этого запишем характеристическое уравнение
. Найдем корни последнего уравнения
. Следовательно, общее решение однородного уравнения имеет вид
.

Б) Так как правая часть уравнения есть функция
, то контрольное число данного уравнения, оно не совпадает с корнями
характеристического уравнения
. Тогда частное решение ищем в виде

Где и– неизвестные коэффициенты. Дифференцируя дважды, получими. Подставляя
,
и
в исходное уравнение, находим

.

Приводя подобные слагаемые, получим

.

Приравниваем коэффициенты при
и
в правой и левой частях уравнения соответственно. Получаем систему
. Решая ее, находим
,
.

Итак, частное решение исходного дифференциального уравнения имеет вид .

Общее решение исходного дифференциального уравнения имеет вид .

Уравнение

где и – непрерывные функция в интервале называется неоднородным линейным дифференциальным уравнение второго порядка, функции и – его коэффицинентами. Если в этом интервале, то уравнение принимает вид:

и называется однородным линейным дифференциальным уравнением второго порядка. Если уравнение (**) имеет те же коэффициенты и , как уравнение (*), то оно называется однородным уравнением, соответствующим неоднородному уравнению (*).

Однородные дифференциальные линейные уравнения второго порядка

Пусть в линейном уравнении

И - постоянные действительные числа.

Частное решение уравнения будем искать в виде функции , где – действительное или комплексное число, подлежащее определению. Дифференцируя по , получаем:

Подставляя в исходное дифуравнение, получаем:

Отсюда, учитывая, что , имеем:

Это уравнение называется характеристическим уравнением однородного линейного дифуравнения. Характеристическое уравнение и дает возможность найти . Это уравнение второй степени, поэтому имеет два корня. Обозначим их через и . Возможны три случая:

1) Корни действительные и разные . В этом случае общее решение уравнения:

Пример 1

2) Корни действительные и равные . В этом случае общее решение уравнения:

Пример 2

Оказались на этой странице, пытаясь решить задачу на экзамене или зачете? Если так и не смогли сдать экзамен - в следующий раз договоритесь заранее на сайте об Онлайн помощи по высшей математике .

Характеристическое уравнение имеет вид:

Решение характеристического уравнения:

Общее решение исходного дифуравнения:

3) Корни комплексные . В этом случае общее решение уравнения:

Пример 3

Характеристическое уравнение имеет вид:

Решение характеристического уравнения:

Общее решение исходного дифуравнения:

Неоднородные дифференциальные линейные уравнения второго порядка

Рассмотрим теперь решение некоторых типов линейного неоднородного уравнения второго порядка с постоянными коэффициентами

где и – постоянные действительные числа, – известная непрерывная функция в интервале . Для нахождения общего решения такого дифференциального уравнения необходимо знать общее решение соответствующего однородного дифференциального уравнения и частное решение . Рассмотрим некоторые случаи:

Частное решение дифференциального уравнения ищем также в форме квадратного трехчлена:

Если 0 – однократный корень характеристического уравнения, то

Если 0 – двухкратный корень характеристического уравнения, то

Аналогично обстоит дело, если – многочлен произвольной степени

Пример 4

Решим соответствующее однородное уравнение.

Характеристическое уравнение:

Общее решение однородного уравнения:

Найдем частное решение неоднородного дифуравнения:

Подставляя найденные производные в исходное дифуравнение, получаем:

Искомое частное решение:

Общее решение исходного дифуравнения:

Частное решение ищем в виде , где – неопределенный коэффициент.

Подставляя и в исходное дифференциальное уравнение, получим тождество, откуда находим коэффициент.

Если – корень характеристического уравнения, то частное решение исходного дифференциального уравнения ищем в виде , когда – однократный корень, и , когда – двукратный корень.

Пример 5

Характеристическое уравнение:

Общее решение соответствующего однородного дифференциального уравнения:

Найдем частное решение соответствующего неоднородного дифференциального уравнения:

Общее решение дифуравнения:

В этом случае частное решение ищем в форме тригонометрического двучлена:

где и – неопределенные коэффициенты

Подставляя и в исходное дифференциальное уравнение, получим тождество, откуда находим коэффициенты.

Эти уравнения определяют коэффициенты и кроме случая, когда (или когда – корни характеристического уравнения). В последнем случае частное решение дифференциального уравнения ищем в виде:

Пример 6

Характеристическое уравнение:

Общее решение соответствующего однородного дифуравнения:

Найдем частное решение неоднородного дифуравнения

Подставляя в исходное дифуравнение, получаем:

Общее решение исходного дифуравнения:

Сходимость числового ряда
Дано определение сходимости ряда и подробно рассматриваются задачи на исследование сходимости числовых рядов - признаки сравнения, признак сходимости Даламбера, признак сходимости Коши и интегральный признак сходимости Коши⁡.

Абсолютная и условная сходимость ряда
На странице рассмотрены знакочередующиеся ряды, их условная и абсолютная сходимость, признак сходимости Лейбница для знакочередующихся рядов - содержится краткая теория по теме и пример решения задачи.

Здесь мы применим метод вариации постоянных Лагранжа для решения линейных неоднородных дифференциальных уравнений второго порядка. Подробное описание этого метода для решения уравнений произвольного порядка изложено на странице
Решение линейных неоднородных дифференциальных уравнений высших порядков методом Лагранжа >>> .

Пример 1

Решить дифференциальное уравнение второго порядка с постоянными коэффициентами методом вариации постоянных Лагранжа:
(1)

Решение

Вначале мы решаем однородное дифференциальное уравнение:
(2)

Это уравнение второго порядка.

Решаем квадратное уравнение :
.
Корни кратные: . Фундаментальная система решений уравнения (2) имеет вид:
(3) .
Отсюда получаем общее решение однородного уравнения (2):
(4) .

Варьируем постоянные C 1 и C 2 . То есть заменим в (4) постоянные и на функции:
.
Ищем решение исходного уравнения (1) в виде:
(5) .

Находим производную :
.
Свяжем функции и уравнением:
(6) .
Тогда
.

Находим вторую производную:
.
Подставляем в исходное уравнение (1):
(1) ;



.
Поскольку и удовлетворяют однородному уравнению (2), то сумма членов в каждом столбце последних трех строк дает нуль и предыдущее уравнение приобретает вид:
(7) .
Здесь .

Вместе с уравнением (6) мы получаем систему уравнений для определения функций и :
(6) :
(7) .

Решение системы уравнений

Решаем систему уравнений (6-7). Выпишем выражения для функций и :
.
Находим их производные :
;
.

Решаем систему уравнений (6-7) методом Крамера. Вычисляем определитель матрицы системы:

.
По формулам Крамера находим:
;
.

Итак, мы нашли производные функций:
;
.
Интегрируем (см. Методы интегрирования корней). Делаем подстановку
; ; ; .

.
.





;
.

Ответ

Пример 2

Решить дифференциальное уравнение методом вариации постоянных Лагранжа:
(8)

Решение

Шаг 1. Решение однородного уравнения

Решаем однородное дифференциальное уравнение:

(9)
Ищем решение в виде . Составляем характеристическое уравнение:

Это уравнение имеет комплексные корни:
.
Фундаментальная система решений, соответствующая этим корням, имеет вид:
(10) .
Общее решение однородного уравнения (9):
(11) .

Шаг 2. Вариация постоянных - замена постоянных функциями

Теперь варьируем постоянные C 1 и C 2 . То есть заменим в (11) постоянные на функции:
.
Ищем решение исходного уравнения (8) в виде:
(12) .

Далее ход решения получается таким же, как в примере 1. Мы приходим к следующей системе уравнений для определения функций и :
(13) :
(14) .
Здесь .

Решение системы уравнений

Решаем эту систему. Выпишем выражения функций и :
.
Из таблицы производных находим:
;
.

Решаем систему уравнений (13-14) методом Крамера. Определитель матрицы системы:

.
По формулам Крамера находим:
;
.

.
Поскольку , то знак модуля под знаком логарифма можно опустить. Умножим числитель и знаменатель на :
.
Тогда
.

Общее решение исходного уравнения:


.

Учреждение образования «Белорусская государственная

сельскохозяйственная академия»

Кафедра высшей математики

Методические указания

по изучению темы «Линейные дифференциальные уравнения второго порядка» студентами бухгалтерского факультета заочной формы получения образования (НИСПО)

Горки, 2013

Линейные дифференциальные уравнения

второго порядка с постоянными коэффициентами

    Линейные однородные дифференциальные уравнения

Линейным дифференциальным уравнением второго порядка с постоянными коэффициентами называется уравнение вида

т.е. уравнение, которое содержит искомую функцию и её производные только в первой степени и не содержит их произведений. В этом уравнении и
- некоторые числа, а функция
задана на некотором интервале
.

Если
на интервале
, то уравнение (1) примет вид

, (2)

и называется линейным однородным . В противном случае уравнение (1) называется линейным неоднородным .

Рассмотрим комплексную функцию

, (3)

где
и
- действительные функции. Если функция (3) является комплексным решением уравнения (2), то и действительная часть
, и мнимая часть
решения
в отдельности являются решениями этого же однородного уравнения. Таким образом, всякое комплексное решение уравнения (2) порождает два действительных решения этого уравнения.

Решения однородного линейного уравнения обладают свойствами:

Если есть решение уравнения (2), то и функция
, гдеС – произвольная постоянная, также будет решением уравнения (2);

Если иесть решения уравнения (2), то и функция
также будет решением уравнения (2);

Если иесть решения уравнения (2), то их линейная комбинация
также будет решением уравнения (2), гдеи
– произвольные постоянные.

Функции
и
называютсялинейно зависимыми на интервале
, если существуют такие числаи
, не равные нулю одновременно, что на этом интервале выполняется равенство

Если равенство (4) имеет место только тогда, когда
и
, то функции
и
называютсялинейно независимыми на интервале
.

Пример 1 . Функции
и
линейно зависимы, так как
на всей числовой прямой. В этом примере
.

Пример 2 . Функции
и
линейно независимы на любом интервале, т. к. равенство
возможно лишь в случае, когда и
, и
.

    Построение общего решения линейного однородного

уравнения

Для того, чтобы найти общее решение уравнения (2), нужно найти два его линейно независимых решения и. Линейная комбинация этих решений
, гдеи
– произвольные постоянные, и даст общее решение линейного однородного уравнения.

Линейно независимые решения уравнения (2) будем искать в виде

, (5)

где – некоторое число. Тогда
,
. Подставим эти выражения в уравнение (2):

или
.

Так как
, то
. Таким образом, функция
будет решением уравнения (2), еслибудет удовлетворять уравнению

. (6)

Уравнение (6) называется характеристическим уравнением для уравнения (2). Это уравнение является алгебраическим квадратным уравнением.

Пусть иесть корни этого уравнения. Они могут быть или действительными и различными, или комплексными, или действительными и равными. Рассмотрим эти случаи.

Пусть корни ихарактеристического уравнения действительные и различны. Тогда решениями уравнения (2) будут функции
и
. Эти решения линейно независимы, так как равенство
может выполняться лишь тогда, когда и
, и
. Поэтому общее решение уравнения (2) имеет вид

,

где и
- произвольные постоянные.

Пример 3
.

Решение . Характеристическим уравнением для данного дифференциального будет
. Решив это квадратное уравнение, найдём его корни
и
. Функции
и
являются решениями дифференциального уравнения. Общее решение этого уравнения имеет вид
.

Комплексным числом называется выражение вида
, гдеи- действительные числа, а
называется мнимой единицей. Если
, то число
называется чисто мнимым. Если же
, то число
отождествляется с действительным числом.

Число называется действительной частью комплексного числа, а- мнимой частью. Если два комплексных числа отличаются друг от друга только знаком мнимой части, то они зазываются сопряжёнными:
,
.

Пример 4 . Решить квадратное уравнение
.

Решение . Дискриминант уравнения
. Тогда. Аналогично,
. Таким образом, данное квадратное уравнение имеет сопряжённые комплексные корни.

Пусть корни характеристического уравнения комплексные, т.е.
,
, где
. Решения уравнения (2) можно записать в виде
,
или
,
. По формулам Эйлера

,
.

Тогда ,. Как известно, если комплексная функция является решением линейного однородного уравнения, то решениями этого уравнения являются и действительная, и мнимая части этой функции. Таким образом, решениями уравнения (2) будут функции
и
. Так как равенство

может выполняться только в том случае, если
и
, то эти решения линейно независимы. Следовательно, общее решение уравнения (2) имеет вид

где и
- произвольные постоянные.

Пример 5 . Найти общее решение дифференциального уравнения
.

Решение . Уравнение
является характеристическим для данного дифференциального. Решим его и получим комплексные корни
,
. Функции
и
являются линейно независимыми решениями дифференциального уравнения. Общее решение этого уравнения имеет вид.

Пусть корни характеристического уравнения действительные и равные, т.е.
. Тогда решениями уравнения (2) являются функции
и
. Эти решения линейно независимы, так как выражениеможет быть тождественно равным нулю только тогда, когда
и
. Следовательно, общее решение уравнения (2) имеет вид
.

Пример 6 . Найти общее решение дифференциального уравнения
.

Решение . Характеристическое уравнение
имеет равные корни
. В этом случае линейно независимыми решениями дифференциального уравнения являются функции
и
. Общее решение имеет вид
.

    Неоднородные линейные дифференциальные уравнения второго порядка с постоянными коэффициентами

и специальной правой частью

Общее решение линейного неоднородного уравнения (1) равно сумме общего решения
соответствующего однородного уравнения и любого частного решения
неоднородного уравнения:
.

В некоторых случаях частное решение неоднородного уравнения можно найти довольно просто по виду правой части
уравнения (1). Рассмотрим случаи, когда это возможно.

т.е. правая часть неоднородного уравнения является многочленом степени m . Если
не является корнем характеристического уравнения, то частное решение неоднородного уравнения следует искать в виде многочлена степениm , т.е.

Коэффициенты
определяются в процессе нахождения частного решения.

Если же
является корнем характеристического уравнения, то частное решение неоднородного уравнения следует искать в виде

Пример 7 . Найти общее решение дифференциального уравнения
.

Решение . Соответствующим однородным уравнением для данного уравнения является
. Его характеристическое уравнение
имеет корни
и
. Общее решение однородного уравнения имеет вид
.

Так как
не является корнем характеристического уравнения, то частное решение неоднородного уравнения будем искать в виде функции
. Найдём производные этой функции
,
и подставим их в данное уравнение:

или . Приравняем коэффициенты прии свободные члены:
Решив данную систему, получим
,
. Тогда частное решение неоднородного уравнения имеет вид
, а общим решением данного неоднородного уравнения будет сумма общего решения соответствующего однородного уравнения и частного решения неоднородного:
.

Пусть неоднородное уравнение имеет вид

Если
не является корнем характеристического уравнения, то частное решение неоднородного уравнения следует искать в виде. Если же
есть корень характеристического уравнения кратностиk (k =1 или k =2), то в этом случае частное решение неоднородного уравнения будет иметь вид .

Пример 8 . Найти общее решение дифференциального уравнения
.

Решение . Характеристическое уравнение для соответствующего однородного уравнения имеет вид
. Его корни
,
. В этом случае общее решение соответствующего однородного уравнения записывается в виде
.

Так как число 3 не является корнем характеристического уравнения, то частное решение неоднородного уравнения следует искать в виде
. Найдём производные первого и второго порядков:,

Подставим в дифференциальное уравнение:
+ +,
+,.

Приравняем коэффициенты при и свободные члены:

Отсюда
,
. Тогда частное решение данного уравнения имеет вид
, а общее решение

.

    Метод Лагранжа вариации произвольных постоянных

Метод вариации произвольных постоянных можно применять к любому неоднородному линейному уравнению с постоянными коэффициентами независимо от вида правой части. Этот метод позволяет всегда найти общее решение неоднородного уравнения, если известно общее решение соответствующего однородного уравнения.

Пусть
и
являются линейно независимыми решениями уравнения (2). Тогда общим решением этого уравнения является
, гдеи
- произвольные постоянные. Суть метода вариации произвольных постоянных состоит в том, что общее решение уравнения (1) ищется в виде

где
и
- новые неизвестные функции, которые необходимо найти. Так как неизвестных функций две, то для их нахождения необходимы два уравнения, содержащие эти функции. Эти два уравнения составляют систему

которая является линейной алгебраической системой уравнений относительно
и
. Решая данную систему, найдём
и
. Интегрируя обе части полученных равенств, найдём

и
.

Подставив эти выражения в (9), получим общее решение неоднородного линейного уравнения (1).

Пример 9 . Найти общее решение дифференциального уравнения
.

Решение. Характеристическим уравнением для однородного уравнения, соответствующего данному дифференциальному уравнению, является
. Корни его комплексные
,
. Так как
и
, то
,
, а общее решение однородного уравнения имеет вид. Тогда общее решение данного неоднородного уравнения будем искать в виде, где
и
- неизвестные функции.

Система уравнений для нахождения этих неизвестных функций имеет вид

Решив эту систему, найдём
,
. Тогда

,
. Подставим полученные выражения в формулу общего решения:

Это и есть общее решение данного дифференциального уравнения, полученное по методу Лагранжа.

Вопросы для самоконтроля знаний

    Какое дифференциальное уравнение называется линейным дифференциальным уравнением второго порядка с постоянными коэффициентами?

    Какое линейное дифференциальное уравнение называется однородным, а какое – неоднородным?

    Какими свойствами обладает линейное однородное уравнение?

    Какое уравнение называется характеристическим для линейного дифференциального уравнения и как оно получается?

    В каком виде записывается общее решение линейного однородного дифференциального уравнения с постоянными коэффициентами в случае разных корней характеристического уравнения?

    В каком виде записывается общее решение линейного однородного дифференциального уравнения с постоянными коэффициентами в случае равных корней характеристического уравнения?

    В каком виде записывается общее решение линейного однородного дифференциального уравнения с постоянными коэффициентами в случае комплексных корней характеристического уравнения?

    Как записывается общее решение линейного неоднородного уравнения?

    В каком виде ищется частное решение линейного неоднородного уравнения, если корни характеристического уравнения различны и не равны нулю, а правая часть уравнения есть многочлен степени m ?

    В каком виде ищется частное решение линейного неоднородного уравнения, если среди корней характеристического уравнения есть один нуль, а правая часть уравнения есть многочлен степени m ?

    В чём суть метода Лагранжа?