Биографии Характеристики Анализ

Проверка гипотезы о равенстве среднего определенному значению. Проверка гипотезы о равенстве среднего заданному значению а

8.1. Понятие зависимых и независимых выборок.

Выбор критерия для проверки гипотезы

в первую очередь определяется тем, являются ли рассматриваемые выборки зависимыми или независимыми. Введем соответствующие определения.

Опр. Выборки называются независимыми , если процедура отбора единиц в первую выборку никак не связана с процедурой отбора единиц во вторую выборку.

Примером двух независимых выборок могут служить обсуждавшиеся выше выборки мужчин и женщин, работающих на одном предприятии (в одной отрасли и т.д.).

Заметим, что независимость двух выборок отнюдь не означает отсутствие требования определенного рода сходства этих выборок (их однородности). Так, изучая уровень дохода мужчин и женщин, мы вряд ли допустим такую ситуацию, когда мужчины отбираются из среды московских бизнесменов, а женщины – из аборигенов Австралии. Женщины тоже должны быть москвичками и, более того – «бизнесвуменшами». Но здесь мы говорим не о зависимости выборок, а о требовании однородности изучаемой совокупности объектов, которое должно удовлетворяться и при сборе, и при анализе социологических данных.

Опр. Выборки называются зависимыми, или парными, если каждая единица одной выборки «привязывается» к определенной единице второй выборки.

Последнее определение, вероятно, станет более ясным, если мы приведем пример зависимых выборок.

Предположим, что мы хотим выяснить, является ли социальный статус отца в среднем ниже социального статуса сына (полагаем, что мы можем измерить эту сложную и неоднозначно понимаемую социальную характеристику человека). Представляется очевидным, что в такой ситуации целессобразно отбрать пары респондентов (отец, сын) и считать, что каждый элемент первой выборки (один из отцов) «привязан» к определенному элементу второй выборки (своему сыну). Эти две выборки и будут называться зависимыми.

8.2. Проверка гипотезы для независимых выборок

Для независимых выборок выбор критерия зависит от того, знаем ли мы генеральные дисперсии s 1 2 и s 2 2 рассматриваемого признака для изучаемых выборок. Будем считать эту проблему решенной, полагая, что выборочные дисперсии совпадают с генеральными. В таком случае в качестве критерия выступает величина:

Прежде, чем переходить к обсуждению той ситуации, когда генеральные дисперсии (или хотя бы одна из них) нам неизвестны, заметим следующее.

Логика использования критерия (8.1) похожа на ту, которая была описана нами при рассмотрении критерия “Хи-квадрат” (7.2). Имеется лишь одно принципиальное отличие. Говоря о смысле критерия (7.2), мы рассматривали бесконечное количество выборок объема n, «черпающихся» из нашей генеральной совокупности. Здесь же, анализируя смысл критерия (8.1), мы переходим к рассмотрению бесконечного количества пар выборок объемом n 1 и n 2 . Для каждой пары и рассчитывается статистика вида (8.1). Совокупности получаемых значений таких статистик, в соответствии с нашими обозначениями, отвечает нормальное распределение (как мы условились, буква z используется для обозначения такого критерия, которому отвечает именно нормальное распределение).

Итак, если генеральные дисперсии нам неизвестны, то мы вынуждены вместо них пользоваться их выборочными оценками s 1 2 и s 2 2 . Однако при этом нормальное распределение должно замениться на распределение Стьюдента – z должно замениться на t (как это имело место в аналогичной ситуации при построения доверительного интервала для математического ожидания). Однако при достаточно больших объемах выборок (n 1 , n 2 ³ 30) , как мы уже знаем, распределение Стьюдента практически совпадает с нормальным. Другими словами, при больших выборках мы можем продолжать пользоваться критерием:

Сложнее обстоит дело с такой ситуацией, когда и дисперсии неизвестны, и объем хотя бы одной выборки мал. Тогда вступает в силу еще один фактор. Вид критерия зависит от того, можем ли мы считать неизвестные нам дисперсии рассматриваемого признака в двух анализируемых выборках равными. Для выяснения этого надо проверить гипотезу:

H 0: s 1 2 = s 2 2 . (8.3)

Для проверки этой гипотезы используется критерий

О специфике использования этого критерия пойдет речь ниже, а сейчас продолжим обсуждать алгоритм выбора критерия, использующего для проверки гипотез о равенстве математических ожиданий.

Если гипотеза (8.3) отвергается, то интересующий нас критерий приобретает вид:

(8.5)

(т.е. отличается от критерия (8.2), использовавшегося при больших выборках, тем, что соответствующая статистика имеет не нормальное распределение, а распределение Стьюдента). Если гипотез (8.3) принимается, то вид используемого критерия меняется:

(8.6)

Подведем итог того, как выбирается критерий для проверки гипотезы о равенстве генеральных математических ожиданий на основе анализа двух независимых выборок.

известны

неизвестны

размер выборок большой

H 0: s 1 = s 2 отвергается

Принимается

8.3. Проверка гипотезы для зависимых выборок

Перейдем к рассмотрению зависимых выборок. Пусть последовательности чисел

X 1 , X 2 , … , X n ;

Y 1 , Y 2 , … , Y n –

это значения рассматриваемой случайной для элементов двух зависимых выборок. Введем обозначение:

D i = X i - Y i , i = 1, ... , n.

Для зависимых выборок критерий, позволяющий проверять гипотезу

выглядит следующим образом:

Заметим, что только что приведенное выражение для s D есть не что иное, как новое выражение для известной формулы, выражающей среднее квадратическое отклонение. В данном случае речь идет о среднем квадратическом отклонении величин D i . Подобная формула часто используется на практике как более простой (по сравнению с «лобовым» подсчетом суммы квадратов отклонений значений рассматриваемой величины от соответствующего среднего арифметического) способ расчета дисперсии.

Если сравнить приведенные формулы с теми, которые мы использовали при обсуждении принципов построения доверительного интервала, нетрудно заметить, что проверка гипотезы о равенстве средних для случая зависимых выборок по существу является проверкой равенства нулю математического ожидания величин D i . Величина

есть среднее квадратическое отклонение для D i . Поэтому значение только что описанного критерия t n -1 по существу равно величине D i , выраженной в долях среднего квадратического отклонения. Как мы говорили выше (при обсуждении способов построения доверительных интервалов), по такому показателю можно судить о вероятности рассматриваемого значения D i . Отличие состоит в том, что выше шла речь о простом среднем арифметическом, распределенном нормально, а здесь – о средних разностей, такие средние имеют распределение Стьюдента. Но рассуждения о взаимосвязи вероятности отклонения выборочного среднего арифметического от нуля (при математическом ожидании, равном нулю) с тем, сколько единиц s это отклонение составляет, остаются в силе.

Сравнение средних двух совокупностей имеет важное практическое значение. На практике часто встречаются случай, когда средний результат одной серии экспериментов отличается от среднего результата другой серии. При этом возникает вопрос, можно ли объяснять обнаруженное расхождение средних неизбежными случайными ошибками эксперимента или оно вызвано некоторыми закономерностями. В промышленности задача сравнения средних часто возникает при выборочном контроле качества изделий, изготовленных на разных установках или при различных технологических режимах, в финансовом анализе - при сопоставлении уровня доходности различных активов и т.д.

Сформулируем задачу. Пусть имеются две совокупности, характеризуемые генеральными средними и и известными дисперсиями и. Необходимо проверить гипотезу о равенстве генеральных средних, т.е. : =. Для проверки гипотезы из этих совокупностей взяты две независимые выборки объемов и, по которым найдены средние арифметические и и выборочные дисперсии и.При достаточном больших объемов выборки, выборочные средние и имеют приближенно нормальный закон распределения, соответственно и.В случае справедливости гипотезы разность - имеет нормальный закон распределения с математическим ожиданием и дисперсией.

Поэтому при выполнении гипотезы статистика

имеет стандартное нормальное распределение N (0; 1).

Проверка гипотез о числовых значениях параметров

Гипотезы о числовых значениях встречаются в различных задачах. Пусть - значения некоторого параметра изделий, производящихся станком автоматической линии, и пусть - заданное номинальное значение этого параметра. Каждое отдельное значение может, естественно, как-то отклоняться от заданного номинала. Очевидно, для того, чтобы проверить правильность настройки этого станка, надо убедиться в том, что среднее значение параметра у производимых на нем изделий будет соответствовать номиналу, т.е. проверить гипотезу против альтернативной, или, или

При произвольной настройке станка может возникнуть необходимость проверки гипотезы о том, что точность изготовления изделий по данному параметру, задаваемая дисперсий, равна заданной величине, т.е. или, например, того, что доля бракованных изделий, производимых станком, равна заданной величине р 0 , т.е. и т.д.

Аналогичные задачи могу возникнуть, например, в финансовом анализе, когда по данным выборки надо установить, можно ли считать доходность актива определенного вида или портфеля ценных бумаг, либо ее риск равным заданному числу; или по результатам выборочной аудиторской проверки однотипных документов нужно убедиться, можно ли считать процент допущенных ошибок равным номиналу, и т.п.

В общем случае гипотезы подобного типа имеют вид, где - некоторый параметр исследуемого распределения, а - область его конкретных значений, состоящая в частном случае из одного значения.

5 ноября 2012 г.5 ноября 2012 г.5 ноября 2012 г.5 ноября 2012 г. Лекция 6. Сравнение двух выборок 6-1. Гипотеза о равенстве средних. Парные выборки 6-2.Доверительный интервал для разности средних. Парные выборки 6-3. Гипотеза о равенстве дисперсий 6-4. Гипотеза о равенстве долей 6-5. Доверительный интервал для разности долей


2 Иванов О.В., 2005 В этой лекции… В предыдущей лекции мы проверяли гипотезу о равенстве средних двух генеральных совокупностей и построили доверительный интервал для разности средних для случая независимых выборок. Теперь мы рассмотрим критерий проверки гипотезы о равенстве средних и построим доверительный интервал для разности средних в случае парных (зависимых) выборок. Затем в секции 6-3 будет проверяться гипотеза о равенстве дисперсий, в секции 6-4 – гипотеза о равенстве долей. В заключение мы построим доверительный интервал для разности долей.


5 ноября 2012 г.5 ноября 2012 г.5 ноября 2012 г.5 ноября 2012 г Гипотеза о равенстве средних. Парные выборки Постановка проблемы Гипотезы и статистика Последовательность действий Пример


4 Иванов О.В., 2005 Парные выборки. Описание проблемы Что мы имеем 1. Две простые случайные выборки, полученные из двух генеральных совокупностей. Выборки являются парными (зависимыми). 2. Обе выборки имеют объем n 30. Если нет, то обе выборки взяты из нормально распределенных генеральных совокупностей. Что мы хотим Проверить гипотезу о разности средних двух генеральных совокупностей:


5 Иванов О.В., 2005 Статистика для парных выборок Для проверки гипотезы используется статистика: где - разность между двумя значениями в одной паре - генеральное среднее для парных разностей - выборочное среднее для парных разностей - стандартное отклонение разностей для выборки - число пар


6 Иванов О.В., 2005 Пример. Тренинг студентов Группа из 15 студентов прошла тест до тренинга и после. Результаты теста в таблице. Проверим гипотезу для парных выборок на отсутствие влияния тренинга на подготовку студентов на уровне значимости 0,05. Решение. Подсчитаем разности и их квадраты. СтудентДоПосле Σ= 21 Σ= 145


7 Иванов О.В., 2005 Решение Шаг 1. Основная и альтернативная гипотезы: Шаг 2. Задан уровень значимости =0,05. Шаг 3. По таблице для df = 15 – 1=14 находим критическое значение t = 2,145 и записываем критическую область: t > 2,145. 2,145."> 2,145."> 2,145." title="7 Иванов О.В., 2005 Решение Шаг 1. Основная и альтернативная гипотезы: Шаг 2. Задан уровень значимости =0,05. Шаг 3. По таблице для df = 15 – 1=14 находим критическое значение t = 2,145 и записываем критическую область: t > 2,145."> title="7 Иванов О.В., 2005 Решение Шаг 1. Основная и альтернативная гипотезы: Шаг 2. Задан уровень значимости =0,05. Шаг 3. По таблице для df = 15 – 1=14 находим критическое значение t = 2,145 и записываем критическую область: t > 2,145.">




9 Иванов О.В., 2005 Решение Статистика принимает значение: Шаг 5. Сравним полученное значение с критической областью. 1,889


5 ноября 2012 г.5 ноября 2012 г.5 ноября 2012 г.5 ноября 2012 г Доверительный интервал для разности средних. Парные выборки Постановка задачи Метод построения доверительного интервала Пример


11 Иванов О.В., 2005 Описание проблемы Что мы имеем Имеем две случайные парные (зависимые) выборки объема n из двух генеральных совокупностей. Генеральные совокупности имеют нормальный закон распределения с параметрами 1, 1 и 2, 2 либо объемы обеих выборок 30. Что мы хотим Оценить среднее значение парных разностей для двух генеральных совокупностей. Для этого построить доверительный интервал для среднего в виде:






5 ноября 2012 г.5 ноября 2012 г.5 ноября 2012 г.5 ноября 2012 г Гипотеза о равенстве дисперсий Постановка проблемы Гипотезы и статистика Последовательность действий Пример


15 Иванов О.В., 2005 В ходе исследования… Исследователю может понадобиться проверить предположение, о равенстве дисперсий двух изучаемых генеральных совокупностей. В случае, когда эти генеральные совокупности имеют нормальное распределение, для этого существует F-критерий, называемый также критерием Фишера. В отличие от Стьюдента, Фишер не работал на пивном заводе.


16 Иванов О.В., 2005 Описание проблемы Что мы имеем 1. Две простые случайные выборки, полученные из двух нормально распределенных генеральных совокупностей. 2. Выборки являются независимыми. Это значит, что между субъектами выборок нет связи. Что мы хотим Проверить гипотезу о равенстве дисперсий генеральных совокупностей:














23 Иванов О.В., 2005 Пример Исследователь-медик хочет проверить, есть ли различие между частотой биения сердца курящих и некурящих пациентов (кол-во ударов в минуту). Результаты двух случайно отобранных групп приведены ниже. Используя α = 0,05, выясните, прав ли медик. КурящиеНе курящие


24 Иванов О.В., 2005 Решение Шаг 1. Основная и альтернативная гипотезы: Шаг 2. Задан уровень значимости =0,05. Шаг 3. По таблице для количества степеней свободы числителя 25 и знаменателя 17 находим критическое значение f = 2,19 и критическую область: f > 2,19. Шаг 4. По выборке вычисляем значение статистики: 2,19. Шаг 4. По выборке вычисляем значение статистики:">




5 ноября 2012 г.5 ноября 2012 г.5 ноября 2012 г.5 ноября 2012 г Гипотеза о равенстве долей Постановка проблемы Гипотезы и статистика Последовательность действий Пример


27 Иванов О.В., 2005 Вопрос Из 100 случайно отобранных студентов социологического факультета 43 посещают спецкурсы. Из 200 случайно отобранных студентов-экономистов 90 посещают спецкурсы. Отличается ли доля студентов, посещающих спецкурсы, на социологическом и экономическом факультетах? Похоже, что существенно не отличается. Как это проверить? Доля посещающих спецкурсы – доля признака. 43 – количество «успехов». 43/100 – доля успехов. Терминология такая же, как в схеме Бернулли.


28 Иванов О.В., 2005 Описание проблемы Что мы имеем 1. Две простые случайные выборки, полученные из двух нормально распределенных генеральных совокупностей. Выборки являются независимыми. 2. Для выборок выполнено np 5 и nq 5. Это означает, что, по крайней мере, 5 элементов выборки имеют изучаемое значение признака, и, по крайней мере, 5 не имеют. Что мы хотим Проверить гипотезу о равенстве долей признака в двух генеральных совокупностях:






31 Иванов О.В., 2005 Пример. Спецкурсы двух факультетов Из 100 случайно отобранных студентов социологического факультета 43 посещают спецкурсы. Из 200 студентов-экономистов 90 человек посещают спецкурсы. На уровне значимости = 0,05, проверьте гипотезу о том, что нет различия между долей посещающих спецкурсы на двух этих факультетах. 33 Иванов О.В., 2005 Решение Шаг 1. Основная и альтернативная гипотезы: Шаг 2. Задан уровень значимости =0,05. Шаг 3. По таблице нормального распределения находим критические значения z = – 1,96 и z = 1,96 строим критическую область: z 1,96. Шаг 4. По выборке вычисляем значение статистики.


34 Иванов О.В., 2005 Решение Шаг 5. Сравним полученное значение с критической областью. Полученное значение статистики не попало в критическую область. Шаг 6. Формулируем вывод. Нет оснований отвергнуть основную гипотезу. Доля посещающих спецкурсы не отличается статистически значимо.


5 ноября 2012 г.5 ноября 2012 г.5 ноября 2012 г.5 ноября 2012 г Доверительный интервал для разности долей Постановка задачи Метод построения доверительного интервала Пример





Проверка однородности двух выборок производится с помощью критерия Стьюдента (или t – критерия). Рассмотрим постановку задачи проверки однородности двух выборок. Пусть произведено две выборки объемом и . Необходимо проверить нулевую гипотезу о том, что генеральные средние двух выборок равны. То есть, и . n 1

Прежде чем рассматривать методику решения задачи рассмотрим некоторые теоретические положения, используемые для решения задачи. Известный математик У.С. Госсет (ряд своих работ публиковал под псевдонимом Стьюдент) доказал, что статистика t (6.4) подчиняется определенному закону распределения, который в последствии был назван законом распределения Стьюдента (второе название закона – ”t – распределение”).

Среднее значение случайной величины X ;

Математическое ожидание случайной величины X ;

Среднеквадратичного отклонения среднего выборки объема n .

Оценка среднеквадратичного отклонения среднего рассчитывается по формуле (6.5):

Среднеквадратичного отклонения случайной величины X .

Распределение Стьюдента имеет один параметр – количество степеней свободы .

Теперь вернемся к исходной постановке задачи с двумя выборками и рассмотрим случайную величину равную разности средних двух выборок (6.6):

(6.6)

При условии выполнения гипотезы о равенстве генеральных средних справедливо (6.7):

(6.7)

Перепишем соотношение (6.4) применительно нашему случаю:

Оценка среднеквадратичного отклонения может быть выражена через оценку среднеквадратичного отклонения объединенной совокупности (6.9):

(6.9)

Оценка дисперсии объединенной совокупности может быть выражена через оценки дисперсии, рассчитанные по двум выборкам и :

(6.10)

С учетом формулы (6.10) соотношение (6.9) можно переписать в виде (6.11). Соотношение (6.9) является основной расчетной формулой задачи сравнения средних:

При подстановке значения в формулу (6.8) будем иметь выборочное значение t -критерия . По таблицам распределения Стьюдента при количестве степеней свободы и заданном уровне значимости можно определить . Теперь, если , то гипотеза о равенстве двух средних отвергается.

Рассмотрим пример выполнения расчетов для проверки гипотезы равенства двух средних в EXCEL. Сформируем таблицу данных (рис. 6.22). Данные сгенерируем с помощью программы генерации случайных чисел пакета ”Анализ данных”:

X1 выборка из нормального распределения с параметрами объемом ;

X2 выборка из нормального распределения с параметрами объемом ;

X3 выборка из нормального распределения с параметрами объемом ;

X4 выборка из нормального распределения с параметрами объемом .


Проверим гипотезу равенства двух средних (X1-X2), (X1-X3), (X1-X4). В начале рассчитаем параметры выборок признаков X1-X4 (рис. 6.23). Затем рассчитаем значение t - критерия. Расчеты выполнит с помощью формул (6.6) – (6.9) в EXCEL. Результаты расчетов сведем в таблицу (рис. 6.24).

Рис. 6.22. Таблица данных

Рис. 6.23. Параметры выборок признаков X1-X4

Рис. 6.24. Сводная таблица расчета значений t – критерия для пар признаков (X1-X2), (X1-X3), (X1-X4)

По результатам, приведенным в таблице на рис. 6.24 можно сделать заключение, что для пары признаков (X1-X2) гипотеза равенства средних двух признаков отвергается, а для пар признаков (X1-X3), (X1-X4) гипотезу можно считать справедливой.

Такие же результаты можно получить с помощью программы “Двухвыборочный t -тест с одинаковыми дисперсиями” пакета Анализ данных. Интерфейс программы приведен на рис. 6.25.

Рис. 6.25. Параметры программы “Двухвыборочный t - тест с одинаковыми дисперсиями”

Результаты расчетов проверки гипотез равенства двух средних пар признаков (X1-X2), (X1-X3), (X1-X4), полученные с помощью программы приведены на рис. 6.26-6.28.

Рис. 6.26. Расчет значения t – критерия для пары признаков (X1-X2)

Рис. 6.27. Расчет значения t – критерия для пары признаков (X1-X3)

Рис. 6.28. Расчет значения t – критерия для пары признаков (X1-X4)

Двухвыборочный t -тест с одинаковыми дисперсиями иначе называется t -тестом с независимыми выборками. Большое распространение так же получил t -тестом с зависимыми выборками. Ситуация, когда необходимо применять этот критерий возникает тогда, когда одна и та же случайная величина подвергается измерению дважды. Количество наблюдений в обоих случаях одинаково. Введем обозначения для двух последовательных измерений некоторого свойства одних и тех же объектови , , а разность двух последовательных измерений обозначим :

В этом случае формула для выборочного значения критерия приобретает вид:

, (6.13)

(6.15)

В этом случае количество степеней свободы . Проверку гипотезы можно выполнить с помощью программы “Парный двухвыборочный t -тест” пакета анализа данных (рис. 6.29).

Рис. 6.29. Параметры программы “Парный двухвыборочный t -тест”

6.5. Дисперсионный анализ –классификация по одному признаку (F - критерий)

В дисперсионном анализе проверяется гипотеза, которая является обобщением гипотезы равенства двух средних на случай, когда проверяется гипотеза равенства одновременно нескольких средних. В дисперсионном анализе исследуется степень влияния одного или нескольких факторных признаков на результативный признак. Идея дисперсионного анализа принадлежит Р. Фишеру. Он использовал его для обработки результатов агрономических опытов. Дисперсионный анализ применяется для установления существенности влияния качественных факторов на исследуемую величину. Английское сокращенное название дисперсионного анализа – ANOVA (analysis variation).

Общая форма представления данных с классификацией по одному признаку представлена в таблице 6.1.

Таблица 6.1. Форма представления данных с классификацией по одному признаку

Рассмотрим две независимые выборки x 1, x 2 , ….. , x n и y 1 , y 2 , … , y n , извлеченные из нормальных генеральных совокупностей с одинаковыми дисперсиями , причем объемы выборок соответственно n и m, а средние μ x , μ y и дисперсия σ 2 неизвестны. Требуется проверить основную гипотезу Н 0: μ x =μ y при конкурирующей Н 1: μ x μ y .

Как известно, выборочные средние и будут обладать свойствами: ~N(μ x , σ 2 /n), ~N(μ y , σ 2 /m).

Их разность - нормальная величина со средним и дисперсией , так что

~ (23).

Допустим на время, что основная гипотеза Н 0 верна: μ x –μ y =0. Тогда и, деля величину на ее стандартное отклонение, получим стандартную нормальную сл. Величину ~N(0,1).

Раньше отмечалось, что сл. величина распределена по закону с (n-1)-ой степенью свободы, a - по закону с (m-1) степенью свободы. С учетом независимости этих двух сумм, получаем, что их общая сумма распределена по закону с n+m-2 степенями свободы.

Вспоминая п.7, видим, что дробь подчиняется t-распределенню (Стьюдента) с ν=m+n-2 степенями свободы: Z=t. Этот факт имеет место только тогда, когда истинна гипотеза Н 0 .

Заменяя ξ и Q их выражениями, получим развернутую форнулу для Z:

(24)

Сл.величина Z, называемая статистикой критерия, позволяет принять решение при такой последовательности действий:

1. Устанавливается область D=[-t β,ν , +t β,ν ], содержащая β=1–α площади под кривой t ν –распределения (табл.10).

2. Вычисляется по формуле (24) опытное значение Z on статистики Z, для чего вместо X 1 и Y 1 подставляются значения x 1 и y 1 конкретных выборок, а также их выборочные средние и .

3. Если Z on D, то гипотеза Н 0 считается не противоречащей опытным данным и принимается.

Если Z on D, то принимается гипотеза Н 1 .

Если гипотеза Н 0 верна, то Z подчиняется известному t ν –распределению с нулевым средним и с высокой вероятностью β=1–α попадает в D-область принятия гипотезы Н 0 . Когда наблюдаемое, опытное значение Z on попадает в D. Мы рассматриваем это как свидетельство в пользу гипотезы Н 0 .

Когда жe Z 0 n лежит за пределами D (как говорят, лежит в критической области К), что естественно, если верна гипотеза Н 1 , но маловероятно, если верна Н 0 , то нам остается отклонить гипотезу Н 0 , приняв H 1 .

Пример 31.

Сравниваются две марки бензина: А и В. На 11 автомашинах одинаковой мощности по кольцевому шассе испытан по разу Бензин марки А и В. Одна машина в пути вышла из строя н для нее данные по бензину В отсутствуют.

Расход бензина в пересчете на 100 км пути

Таблица 12

i
X i 10,51 11,86 10,5 9,1 9,21 10,74 10,75 10,3 11,3 11,8 10,9 n=11
У i 13,22 13,0 11,5 10,4 11,8 11,6 10,64 12,3 11,1 11,6 - m=10

Дисперсия расхода бензина марок А и В неизвестна и предполагается одинаковой. Можно ли при уровне значимости α=0,05 принять гипотезу о том, что истинные средние расходы μ А и μ В этих видов бензина одинаковы?

Решение. Проверку гипотезы Н 0: μ А -μ В =0 при конкурирующей. Н 1:μ 1 μ 2 делаем по пунктам:

1. Находим выборочные средние и сумму квадратов откло­нений Q.

;

;

2. Вычисляем опытное значение статистики Z

3. Находим из таблицы 10 t-распределения предел t β,ν , для числа степеней свободы ν=m+n–2=19 и β=1–α=0.95. В таблице 10 есть t 0.95.20 =2,09 и t 0.95.15 =2,13, но нет t 0.95.19 . Находим интерполяцией t 0.95.19 =2,09+ =2,10.

4. Проверяем, в какой из двух областей D или К лежит число Z on . Zon=-2,7 D=[-2,10; -2,10].

Поскольку наблюденное значение Z on лежит в критической области, К=R\D, то отбрасываем. Н 0 и приникаем гипотезу Н 1 . В этом случае про и говорят, что их разность значима. Если бы при всех условиях этого примера изменилось бы лишь Q, скажем, Q вдвое возросло, то изменился бы и наш вывод. Увеличение Q вдвое привело бы к уменьшению в раза величины Z on и тогда число Zon попало бы в допустимую область D, так что гипотеза H 0 выдержала бы проверку и была принята. В этом случае расхождение между и объяснялось бы естественным разбросом данных, а не тем, что μ А μ В.

Теория проверки гипотез весьма обширна, гипотезы могут быть о виде закона распределения, об однородности выборок, о независимости сл.величины и т.д.

КРИТЕРИЙ c 2 (ПИРСОНА)

Самый распространенный на практике критерий проверки простой гипотезы. Применяется, когда закон распределения неизвестен. Рассмотрим случайную величину X, над которой проведено n независимых испытаний. Получена реализация x 1 , x 2 ,...,x n . Необходимо проверить гипотезу о законе распределения этой случайной величины.

Рассмотрим случай простой гипотезы. Простая гипотеза проверяет согласование выборки с генеральной совокупностью, имеющей нормальное распределение (известное). По выборкам строим вариационный ряд x (1) , x (2) , ..., x (n) . Интервал разбиваем на подинтервалы. Пусть этих интервалов r. Тогда найдем вероятность попадания X в результате испытания в интервал Di, i=1 ,..., r в случае истинности проверяемой гипотезы.

Критерий проверяет не истинность плотности вероятности, а истинность чисел

С каждым интервалом Di свяжем случайное событие A i - попадание в этот интервал (попадание в результате испытания над X ее результата реализации в Di). Введем случайные величины. m i - количество испытаний из n проведенных, в которых произошло событие A i . m i распределены по биномиальному закону и в случае истинности гипотезы

Dm i =np i (1-p i)

Критерий c 2 имеет вид

p 1 +p 2 +...+p r =1

m 1 +m 2 +...+m r =n

Если проверяемая гипотеза верна, то m i представляет частоту появления события, имеющего в каждом из n проведенных испытаний вероятность p i , следовательно, мы можем рассматривать m i как случайную величину, подчиняющуюся биномиальному закону с центром в точке np i . Когда n велико, то можно считать, что частота распределена асимптотически нормально с теми же параметрами. При правильности гипотезы следует ожидать, что будут асимптотически нормально распределены

связанные между собой соотношением

В качестве меры расхождения данных выборки m 1 +m 2 +...+m r с теоретическими np 1 +np 2 +...+np r рассмотрим величину

c 2 - сумма квадратов асимптотически нормальных величин, связанных линейной зависимостью. Мы ранее встречались уже с аналогичным случаем и знаем, что наличие линейной связи привело к уменьшению на единицу числа степеней свободы.

Если проверяемая гипотеза верна, то критерий c 2 имеет распределение, стремящееся при n®¥ к распределению c 2 с r-1 степенями свободы.

Допустим, что гипотеза неверна. Тогда существует тенденция к увеличению слагаемых в сумме, т.е. если гипотеза неверна, то эта сумма будет попадать в некую область больших значений c 2 . В качестве критической области возьмем область положительных значений критерия


В случае неизвестных параметров распределения каждый параметр уменьшает на единицу количество степеней свободы для критерия Пирсона