Биографии Характеристики Анализ

Синхротронное излучение. Синхротронное излучение: понятие, основы, принцип и устройства для изучения, применение

100 р бонус за первый заказ

Выберите тип работы Дипломная работа Курсовая работа Реферат Магистерская диссертация Отчёт по практике Статья Доклад Рецензия Контрольная работа Монография Решение задач Бизнес-план Ответы на вопросы Творческая работа Эссе Чертёж Сочинения Перевод Презентации Набор текста Другое Повышение уникальности текста Кандидатская диссертация Лабораторная работа Помощь on-line

Узнать цену

Область применения: 1) мощный эталонный источник вшироком диапазоне спектра (ВУФ, Рентгеновский); 2) лазеры в микронном и выше диапазоне; 3) применение в физике, химии, биологии и т. д.

Большой интерес представляет синхротронное излучение космических объектов, в частности, нетепловой радиофон Галактики, нетепловое радио- и оптическое излучение дискретных источников (сверхновых звезд, пульсаров, квазаров, радиогалактик). Синхротронная природа этих излучений подтверждается особенностями их спектра и поляризации. Согласно современным представлениям, релятивистские электроны, входящие в состав космических лучей, дают синхротронное излучение в космических магнитных полях в радио-оптическом, а возможно, и в рентгеновском диапазонах. Измерение спектральной интенсивности и поляризации космического синхротронного излучения позволяют получить информацию о концентрации и энергетическом спектре релятивистских электронов, величине и направлении магнитных полей в удаленных частях Вселенной.

Синхротронное излучение (СИ) в последнее время стало важнейшим инструментом исследования свойств вещества. Во всем мире создаются центры по использованию синхротронного излучения, строятся дорогостоящие источники. В 1999 году в Москве, в Российском научном центре «Курчатовский институт» начал функционировать источник синхротронного излучения? накопитель электронов на 2,5 ГэВ (и это дополнительно к шести уже действующим в России источникам - синхротронам и накопителям в Москве, Новосибирске и Томске). Синхротронное излучение используется сегодня практически во всех областях современной науки, где изучается взаимодействие электромагнитного излучения с веществом.

Применения синхротронного излучения. Основными областями спектра, в которых наиболее эффективно применяется СИ, являются вакуумная ультрафиолетовая, мягкая рентгеновская и рентгеновская области. Именно в этих областях СИ имеет наибольшее преимущество перед другими источниками. Исследование в области ВУФ и мягкого рентгена дают очень важную информацию для понимания электронной структуры твердого тела. Существенный прогресс в этой области стал возможен благодаря, с одной стороны, применению СИ, с другой? теоретическим расчетам зонной структуры. Теоретический расчет дает дисперсию энергии от волнового вектора и приведенную плотность состояний в зависимости от энергии.

Использование СИ для исследования спектров твердых тел позволило расширить спектральную область измерений и систематически исследовать переходы из внутренних состояний остова, являющихся плоскими в пространстве квазиимпульса. Исследование таких переходов позволяет получить дополнительную информацию о структуре зоны проводимости.

С поглощением в рентгеновской области связан успешно развиваемый метод измерения протяженной тонкой структуры рентгеновского поглощения ЕХАFS. Метод ЕХАFS основан на измерении с высоким разрешением тонкой структуры в коэффициенте поглощения при энергиях на сотни электрон-вольт выше К-края поглощения исследуемого атома. Модуляция поглощения вызвана интерференцией электронной волны, излученной возбужденным атомом, и волн, отраженных соседними атомами. Метод позволяет определить взаимное расположение атомов в твердом теле с точностью до 10–10 см. Этот метод применяется и для исследования поверхности.

Разработана модификация метода, в которой для получения информации о структуре ЕХАFS используются спектры возбуждения люминесценции. Этот вариант метода, развитый итальянским физиком А. Бьянкони, позволяет исследовать структуру кристаллов и биологических объектов, обладающих люминесценцией. Необходимость применения СИ для исследования люминесценции вызвана тем, что в качестве оснований люминофоров применяются, как правило, широкозонные кристаллы. Характерный для этих кристаллов электронный спектр лежит в вакуумной ультрафиолетовой области (5–50 эВ). Именно в этой области? области фундаментального поглощения? проявляются межзонные переходы валентных электронов, экситоны и плазмоны. Для понимания механизма возбуждения люминофоров особенно важны и более высоко энергетические возбуждения люминесценции кристаллофосфоров при энергиях, во много раз превышающих ширину запрещенной зоны. В этом случае возбуждаются уже переходы электронов из внутренних оболочек образующих кристалл атомов. Понимание процессов возникновения и миграции этих высокоэнергетических возбуждений к центру свечения является фундаментальной задачей люминесценции кристаллофосфоров. При этом важную роль играют механизмы размножения элементарных возбуждений. При поглощении фотонов с энергией, большей двух или более ширин запрещенной зоны, в результате распада созданных непосредственно в момент поглощения высокоэнергетических электронных возбуждений каждый фотон генерирует в кристалле более одного электронного возбуждения меньшей энергии. Положение границы начала процесса размножения электронно-дырочных пар связано с отношением эффективных масс электрона и дырки и меняется для разных кристаллов от 2Еg до 4Еg.

Высокая яркость источников СИ позволяет проводить спектроскопические исследования с экстремально высоким спектральным разрешением при более коротких экспозициях. Использование поляризационных свойств СИ позволяет исследовать пространственную анизотропию объектов. Исследование поглощения и флюоресценции газов и паров несет информацию о строении внутренних оболочек атомов. Исследование молекулярных спектров с помощью СИ позволяет получить информацию о процессах фотоионизации и фотодиссоциации в молекулярных системах. При этом удается зарегистрировать спектры поглощения молекул с предельным разрешением.

Наряду с многочисленными применениями СИ в научных исследованиях есть ряд работ, имеющих важное прикладное значение, в частности, применение СИ в микролитографии. В последнее время американская фирма IВМ провела ряд исследований, показавших большие преимущества применения СИ в микролитографии для получения элементов микросхем. Стоимость специализированных источников СИ (накопителей электронов) довольно высокая: накопитель на 700 МэВ стоит порядка 20 млн долларов, однако качественное улучшение параметров микросхем и резкое повышение производительности в значительной мере окупают затраты на такой источник. Разрабатываются и другие применения СИ, имеющие прикладное значение. Мощность СИ можно использовать для фотосинтеза углеводородов, окисей азота и др. СИ можно использовать для исследования радиационного воздействия на материалы и приборы вне атмосферы, что очень важно для космического материаловедения. Рентгеновское монохроматизированное СИ может найти применение в рентгенодиагностике, что позволит на порядки снизить радиационную нагрузку на человека при рентгеновском обследовании. Возможно применение СИ в радиационной технологии и радиационно-химических процессах. В последнее время наблюдается бурное развитие работ по применению СИ и в науке, и в технике.

Конец формы

Медицина

Из наиболее многообещающих применений СИ в современной медицине следкет назвать прежде всего ангиографию - оперативную рентгеноскопию состояния кровеносных сосудов пациента. Рентгенодиагностика с применением синхротронного излучения и новых эффективных детекторов, например, запоминающих экранов, позволяет существенно снизить радиационные нагрузки на пациента. Другое, не менее важное применение - анализ элементного состава медицинских препаратов, т.е. неразрушающий контроль и сертификация медикаментов а уровне чувствительности к малым (вредным в том числе) примесям, недоступным для других методов. На снимке - коронарная артерия человека с бляшкой и тромбами.

Микромеханика

Яркий (интенсивный) пучок СИ можно использовать в качестве "микрорезца" для размерной обработки материалов и изготовления различных деталей, механизмов и увтройств микроскопических размеров. Это так называемый LIGA - процесс, активно развиваемый сегодня. Типичный размер изделий, изготавливаемых по этой технологии, порядка нескольких микрометров, что и определяет первую из возможных областей применения: медицина, механические устройства, поддерживающие жизнедеятельность организма (насосы в кровеносной системе, например!). Подобная техника, находящаяся сегодня на стадиии лабораторных разработок, получит интенсивное развитие в ближайшее десятилетие.

Микроэлектроника

Технология рентгеновской литографии на основе СИ - нанесение на поверхность кристалов проводящих покрытий заданной конфигураци - позволяет на один-два порядка уменьшить размеры нынешних элементов электронных схем. Это дает возможность резко увеличить быстродействие вычислительной техники. В недалеком будущем будут исчерпаны воозможности современных субмикронных технологий и произойдет переход на нанометровый уровень ("нанотехнологии"). Сегодня подобные разработки ведутся на источниках СИ передовыми электронными фирмами мира (IBM и другие).

Материаловедение

Методы рентгеноструктурного и элементного анализа на основе СИ находят сегодня широкое применение в разработке новых материалов. Уровень чувствительности и быстродействия анализа на основе СИ позволяет вывести разработку новых материалов но уровень, недостижимый для традиционых методов. СИ также используется при разработке новых эфективных люминесцентных детекторов, в частности, сцинтиляторов. Для получения полимерных материалов с заданными свойствами необходимо эффективно влиять на процессы их формирования. Процессы эти идут очень быстро, и, чтобы управлять ими, нужно непрерывно получать подорбную информацию. СИ позволяет исследовать кинетику структурных превращений при полтмеризации, информацию о структуре можно получить за доли секунды.

Экология

Высокочувствительные методы элементного (рентгенофлуоресцентного) анализа на основе СИ, развитые сегодня, позволяют выйти на качественно новый уровень контроля состояния окружающей среды. При этом решается проблема точного измерения концентрациималых примесей элементов "всей таблицы Менделеева". С помощью СИ удается регистрировать концентрацию элементов на уровне 10-8 атомов примеси на атом. Эти методы позволяют осуществить, в частности, анализ состава аэрозолей, осадков и примесей воды для экологического мониторинга.

Яркий, коллимированный и стабильный пучок синхротронного изхлучения, который при необходимости можно настроить на любую длину волны, позволил создать рентгеновскую микротомографию. С его помощью можно получать микроскопические изображения поперечных срезов небольших образцов. Достигаемое при этом разрешение составляет чуть больше 1 мкм (миллионная доля метра) - это в 1000 раз лучше, чем для обычных томографов. На снимке: изображение оболочки бактерии с отложениями железа, ширина поля изображения около 5 мкм.

Биология

Современные яркие источники СИ дают возможость резко продвинуться на нескольких направлениях в биологии. Одним из первых таких направлений стал рентгеноструктурный анализ белков, а пионерские работы были выполнены группой исследователей из ИАЭ (РНЦ "Курчатовский институт") и ИТЭБ РАН (Пущино) на накопителе ВЭПП-3 в ИЯФ СО РАН еще в 70-х годах. Сегодня эти методы в значительной мере определяют развитие генетики, генной инженерии, биотехнологий. Кроме применений СИ в этой области, синхротронное излучение предполагается исползовать для широкого круга исследований: изучение таких объектов, как мышечные волокна, включая динамику структурных перестроек живых объектов ("рентгеновское кино") кристаллография белка и исследованиея структуры органических молекул; динамика белков, структура активных центров белков и различных биокатализаторов, микрохирургия и фототерапия. На снимке: молекулярная структура нуклеосомы

В России есть база для проведения подобных исследований и разработок?

Раньше моим институтским коллегам приходилось проводить эксперименты на западных ускорителях, а сейчас мы активно начинаем исследования на недавно введенном в эксплуатацию и первом на постсоветском пространстве специализированном источнике синхротронного излучения в Курчатовском научном центре. Почти все исследовательское оборудование было изготовлено в КБ нашего института. Это техника высокого уровня, полностью совместимая с западными стандартами. Теперь мы надеемся оживить и второй центр в Зеленограде, строительство которого было заморожено в конце восьмидесятых.

Нанотехнологии - это та междисциплинарная область, где у России есть серьезные конкурентные возможности. Только американцы и мы имеем столь разветвленную науку, основанную на широкой междисциплинарной базе, это заметно даже на фоне Европы. И в этом смысле выборка, база междисциплинарная, у нас уникальная. Мы сейчас можем найти любого специалиста, к примеру, по молекулярной биологии или химическому синтезу. Это относится к области синтеза новых типов молекул и их комплексов, а также к их структурной диагностике и практическому использованию. У нас есть оригинальные разработки по молекулярной эпитаксии и биоорганическим слоям. Есть и институты, и люди, имена которых у всех на слуху. Короче говоря, для того чтобы с выгодой поучаствовать в "новом синтезе", у нас есть все предпосылки.

Синхротронное излучение

Анимация

Описание

Синхротронное (магнитотормозное) излучение - это излучение электромагнитных волн заряженными частицами, движущимися с релятивистскими скоростями в однородном магнитном поле. Синхротронное излучение обусловлено ускорением, связанным с искривлением траекторий частиц в магнитном поле. Аналогичное излучение нерелятивистских частиц, движущихся по круговым или спиральным траекториям, называется циклотронным излучением; оно происходит на основной гиромагнитной частоте и ее первых гармониках. С увеличением скорости частицы роль высоких гармоник возрастает; при приближении к релятивистскому пределу излучение в области наиболее интенсивных высоких гармоник обладает практически непрерывным спектром и сосредоточено в направлении мгновенной скорости в узком конусе с углом раствора:

где m и e - масса и энергия частицы.

Полная мощность излучения частицы с энергией равна:

где е - заряд частицы;

Напряженность составляющей магнитного поля, перпендикулярной скорости частицы.

Сильная зависимость излучаемой мощности от массы частицы делает синхротронное излучение существенным для легких частиц - электронов и позитронов. Спектральное (по частоте n ) распределение излучаемой мощности определяется выражением:

,

где ;

К 5/3 (h ) - цилиндрическая функция второго рода мнимого аргумента.

График функции , т.е. обезразмеренного спектрального распределения, представлен на рис. 1.

Обезразмеренное спектральное распределение синхротронного излучения

Рис. 1

x - безразмерная частота, нормированная на синхротронную.

Характерная частота, на которую приходится максимум в спектре излучения частицы, равна (в Гц):

Излучение отдельной частицы в общем случае эллиптически поляризовано с большой осью эллипса поляризации, расположенной перпендикулярно видимой проекции магнитного поля. Степень эллиптичности и направление вращения вектора напряженности электрического поля зависят от направления наблюдения по отношению к конусу, описываемому вектором скорости частицы вокруг направления магнитного поля. Для направлений наблюдения, лежащих на этом конусе, поляризация линейная.

Временные характеристики

Время инициации (log to от -9 до -6);

Время существования (log tc от -9 до 6);

Время деградации (log td от -9 до -6);

Время оптимального проявления (log tk от -1 до 5).

Диаграмма:

Технические реализации эффекта

Техническая реализация эффекта

Эффект реализуется в мощных ускорителях заряженных частиц - синхротронах и циклотронах.

Применение эффекта

Впервые синхротронное излучение наблюдалось в циклических ускорителях электронов (в синхротроне , поэтому и получило название "Синхротронный излучатель"). Потери энергии на синхротронном излучателе, а также связанные с синхротронным излучением квантовые эффекты в движении частиц необходимо учитывать при конструировании циклических ускорителей электронов высокой энергии. Синхротронный излучатель циклических ускорителей электронов используется для получения интенсивных пучков поляризованного электромагнитного излучения в ультрофиолетовой области спектра и в области "мягкого" рентгеновского излучения; пучки рентгеновского синхротронного излучения применяется, в частности, в рентгеновском структурном анализе.

Большой интерес представляет синхротронное излучение космических объектов, в частности, нетепловой радиофон Галактики, нетепловое радио- и оптическое излучение дискретных источников (сверхновых звезд, пульсаров, квазаров, радиогалактик ). Синхротронная природа этих излучений подтверждается особенностями их спектра и поляризации. Согласно современным представлениям, релятивистские электроны, входящие в состав космических лучей, дают синхротронное излучение в космических магнитных полях в радио-оптическом, а возможно, и в рентгеновском диапазонах. Измерение спектральной интенсивности и поляризации космического синхротронного излучения позволяют получить информацию о концентрации и энергетическом спектре релятивистских электронов, величине и направлении магнитных полей в удаленных частях Вселенной.

Пример. Синхротрон электронный.

Синхротрон электронный - кольцевой резонансный ускоритель электронов (позитронов) на энергии от нескольких МэВ до десятков ГэВ, в котором частота ускоряющего электрического поля не меняется, ведущее магнитное поле увеличивается во времени и равновесная орбита не меняется в процессе ускорительного цикла. Обычно электроны уже при инжекции являются ультрарелятивистскими; если же ускорение начинается с энергий Ј 5 - 7 МэВ, то в начале ускорительного цикла применяется бетатронный режим ускорения (см. Бетатрон).

Траектории ускоряемых в синхротроне электронов (позитронов) заполняют кольцевую область в вакуумной камере ускорителя. Обращаясь в ней, частицы многократно возвращаются к одним и тем же ускоряющим промежуткам, на которые подано переменное напряжение с частотой, в целое число раз q (q і 1) превосходящее частоту обращения частиц по так называемой равновесной орбите. Число q называют кратностью ускорения. При каждом прохождении через промежуток фаза идеальной (равновесной) частицы остается неизменной, но фаза реальных частиц немного изменяется, колеблясь около равновесного (синхронного) значения. При ускорении пучок частиц разбивается на сгустки - банчи, заполняющие некоторую область около синхронных значений фазы. Максимальное число сгустков на орбите равно q .

Траектория частиц в электронном синхротроне изгибается с помощью дипольных магнитов, создающих ведущее (поворотное) магнитное поле. Для фокусировки частиц в современных электронных синхротронах обычно используются поля с большим градиентом магнитной индукции (жесткая, или сильная фокусировка). Изгибающие и фокусирующие функции магнитного поля могут совмещаться (магниты с совмещенными функциями) или разделяться (магнитная система с разделенными функциями). В последнем случае поворотные магниты (изгибающие траекторию частиц) создают однородные поля. Магнитная индукция в поворотных магнитах (и ее производная в магнитных линзах) в течении ускорительного цикла непрерывно возрастает (чаще всего во много раз) в соответствии с ростом импульса ускоряемых частиц.

На криволинейных участках траектории пучки электронов (позитронов) испускают синхротронное излучение, мгновенная мощность которого в расчете на один электрон определяется формулой:

где е - заряд частиц;

g - ее лоренц - фактор (отношение полной энергии частицы к ее энергии покоя);

R(s) - радиус кривизны траектории на участке с координатой s.

Мощность, рассеиваемая за оборот, пропорциональна . При больших энергиях частиц потери на излучение могут составлять несколько МэВ на оборот. Чтобы уменьшить потери, приходится увеличивать размеры электронного синхротрона, что сопряжено с увеличением стоимости их строительства. Размеры реальных электронных синхротронов (иногда до км) определяются разумным компромиссом между эксплуатационными (гл. образом электроэнергии) и капитальными затратами. Потери на излучение приходится компенсировать, поэтому процесс ускорения электронов выгодно вести быстро, за сравнительно небольшое число оборотов (быстроциклические электронные синхротроны). Пиковая мощность ускоряющей высокочастотной системы электронного синхротрона на энергии в десятки ГэВ может достигать ~1 МВт.

Литература

1. Физика. Большой энциклопедический словарь.- М.: Большая Российская энциклопедия, 1999.

2. Новый политехнический словарь.- М.: Большая Российская энциклопедия, 2000.

Ключевые слова

  • синхронное излучение
  • заряженные частицы
  • релятивистский закон движения
  • однородное магнитное поле
  • излучение электромагнитных волн

Разделы естественных наук:

Основные свойства синхротронного излучения.

Синхротронное излучение (СИ) испускается заряженными частицами (электронами, протонами, позитронами), движущимися с релятивистскими скоростями по искривленным траекториям. Генерация СИ обусловлена наличием у частицы центростремительного ускорения. Предсказанное в конце прошлого века и открытое почти 50 лет назад (1945г.) СИ рассматривалось вначале как “помеха” в работе циклических ускорителей - синхротронов. Только в последние 10¼15 лет СИ привлекло внимание исследователей исключительным богатством своих специфических свойств и возможностью их применения.

Структура накопителя электронов.

ПМ - поворотные магниты; В - магнитное поле; Р - вектор поляризации фотонов, излучаемых в плоскости орбиты электронов; Щ - щель канала вывода, ограничивающая ширину пучка СИ по горизонтали.

СИ обладает следующими уникальными свойствами:

СИ - излучение с исключительно высокой коллимацией пучка. Пучок СИ испускается электроном по касательной к траектории и имеет угловую расходимость y»g -1 , где g - релятивистский фактор (отношение энергии электронов Е в накопителе к энергии покоя электрона Е 0 =0.511МэВ); для типичных значений Е»1ГэВ имеем g»10 3 и y»1мра¶.

СИ обладает широким, непрерывным, легко перестраиваемым спектром, перекрывающим практически весь рентгеновский диапазон и область ультрафиолетового излучения (0.1¼100нм). Для описания спектральных свойств СИ вводится понятие критической длины волны l с. Это длина волны, которая делит энергетический спектр СИ на две равные части (суммарная энергия излучаемых фотонов с длинами волн меньше l с равна суммарной энергии фотонов с длинами волн больше l с).

СИ обладает очень высокой интенсивностью. Интенсивность СИ в наиболее важном для исследований и технологии рентгеновском диапазоне более чем на пять порядков превышает интенсивность рентгеновских трубок.

СИ обладает естественной поляризацией: строго линейной на оси пучка (вектор электрического поля лежит в плоскости орбиты электронов) и строго циркулярной на его периферии. Поляризация СИ играет важную роль во многих прецизионных методах исследования материалов и структур микроэлектроники.

Перечисленные выше уникальные свойства синхротронного излучения позволяют поднять на новый качественный уровень субмикронную микротехнологию и аналитические методы диагностики субмикронных функциональных структур.

Контраст в системах экспонирования с применением синхротронного излучения.

Рентгенолитография с применением синхротронного излучения - это многофакторный технологический процесс, в котором важную роль играют параметры многих компонен­тов литографической системы: источника излучения, канала вывода, рентгеношаблона, рентгенорезиста.

Главный фактор, определяющий потенциальные возможности того или иного литографического метода в микротехнологии СБИС - разрешение или минимальный размер надежно воспроизводимого в резисте элемента рентгеношаблона. В рентгенолитографии разрешение определяется, с одной стороны, волновой природой рентгеновского излучения (дифракционные искажения), с другой стороны, нелокальным характером формирования реального скрытого изображения (генерация фото- и оже- электронов рентгеновскими фотонами и вторичное экспонирование резиста этими электронами). Кроме того, реальное технологическое разрешение очень сильно зависит от процесса проявления полученного скрытого изображения.

Для оценки эффективности работы рентгенолитографической системы экспонирования в той или иной области спектра нужно учитывать не только спектральную эффективность рентгенорезиста, но и рентгеновскую прозрачность, то есть оптические характеристики литографического канала вывода СИ. Поэтому в системах экспонирования с применением рентгеновского излучения (например, в рентгенолитографических системах экспонирования) одним из важных параметров является контраст получаемого рентгеновского изображения (например контраст скрытого изображения в рентгенорезисте).

Схема рентгенографической системы экспонирования в пучках СИ.

1-вакуумное окно; 2-мембрана рентгеношаблона; 3-маска; 4-резист; 5-рабочая пластина.

Излучение ч-ц, движущихся в перем. электрич. и магн. полях, наз. ондуляторным излучением. С. и. обусловлено ускорением, связанным с искривлением траекторий ч-ц в магн. поле. Аналогичное излучение нерелятив. ч-ц, движущихся по круговым или спиральным траекториям, наз. циклотронным излучением; оно происходит на осн. гиромагнитной частоте и ее первых гармониках. С увеличением скорости ч-цы роль высоких гармоник возрастает; при приближении к релятив. пределу излучение в области наиб. интенсивных высоких гармоник обладает практически непрерывным спектром и сосредоточено в направлении мгновенной скорости в узком конусе с углом раствора y=mс2/?, где m и? - и энергия ч-цы.

где е - ч-цы, Н^ - составляющая магн. поля, перпендикулярная скорости ч-цы. Сильная зависимость излучаемой мощности от массы ч-цы делает С. и. наиб. существенным для лёгких ч-ц-эл-нов и позитронов. Спектральное (по частоте n) излучаемой мощности определяется выражением:

K5/3(h) - цилиндрич. ф-ция второго рода мнимого аргумента. График ф-ции

представлен на рис. Характерная частота, на к-рую приходится максимум в спектре излучения ч-цы, равна (в Гц):

n»0,29 nc=l,8 1018H^?2эpr=4,6 10-6РH^?2эв.

Излучение отд. ч-цы в общем случае эллиптически поляризовано с большой осью эллипса поляризации, расположенной перпендикулярно видимой проекции магн. поля. Степень эллиптичности и направление вращения вектора напряжённости электрич. поля зависят от направления наблюдения по отношению к конусу, описываемому вектором скорости ч-цы вокруг направления магн. поля. Для направлений наблюдения, лежащих на этом конусе, линейная.

Впервые С. и. наблюдалось в циклич. ускорителях эл-нов (в синхротроне, поэтому и получило назв. «С. и.»). Потери энергии на С. п., а также связанные с С. и. квант. эффекты в движении ч-ц необходимо учитывать при конструировании циклич. ускорителей эл-нов высокой энергии. С. и циклич. ускорителей эл-нов используется для получения интенсивных пучков поляризованного эл.-магн. излучения в УФ области спектра и в области «мягкого» рентг. излучения; пучки рентг. С. и. применяются, в частности, в рентгеновском структурном анализе.

Большой интерес представляет С. и. косм. объектов, в частности нетепловой радиофон Галактики, нетепловое радио- и оптич. излучение дискретных источников (сверхновых звёзд, пульсаров, квазаров, радиогалактик). Синхротронная природа этих излучений подтверждается особенностями их спектра и поляризации. Согласно совр. представлениям, релятив. эл-ны, входящие в состав космических лучей, дают С. и. в косм. магн. полях в радио-, оптическом, а возможно, и в рентгеновском диапазонах. Измерения . интенсивности и поляризации косм. С. и. позволяют получить информацию о концентрации и энергетич. спектре релятив. эл-нов, величине и направлении магн. полей в удалённых частях Вселенной.

Физический энциклопедический словарь. - М.: Советская энциклопедия . . 1983 .

СИНХРОТРОННОЕ ИЗЛУЧЕНИЕ

- магнитотормозное излучение, испускаемоерелятивистскими заряж. частицами в однородном магн. поле. Излучение частиц, ондуляторным излучением. С. и. обусловлено ускорением частиц, появляющемся при искривлении ихтраекторий в магн. поле. Аналогичное излучение нерелятивистских частиц, где т - масса покоя, -энергия частицы.

Полная мощность излучения частицы с энергией равна где е - заряд частицы,- составляющая магн. поля, перпендикулярная её скорости. Т. ч)распределениеизлучаемой мощности определяется выражением

где , а -цилиндрич. ф-ция второго рода мнимого аргумента. Характерная частота, нак-рую приходится максимум в спектре излучения частицы:

Излучение отд. частицы в общем случае эллиптически поляризовано, причёмбольшая ось эллипса поляризации расположена перпендикулярно видимой проекциимагн. поля. Степень эллиптичности и направление вращения вектора напряжённостиэлектрич. поля зависят от направления наблюдения по отношению к конусу, поляризация излучения линейная.

Впервые С. и. предсказано А. Шоттом (A. Schott, 1912) и наблюдалосьв циклич. ускорителях электронов (в синхротроне, поэтому и получило назв. рентгеновском структурном анализе, рентг. спектроскопии и др.

Большей интерес представляет С. и. космич. объектов, в частности нетепловойрадиофон Галактики, нетепловое радио- и оптич. излучение дискретных источников(сверхновых звёзд, пульсаров, квазаров, радиогалактик). Синхротронная природаэтих излучений подтверждается особенностями их спектра и поляризации. Релятивистскиеэлектроны, входящие в состав космич. лучей, в космич. магн. полях даютсинхротронную составляющую космич. излучения в радио-, оптическом и рентг. Лит.: Соколов А. А., Тернов И. М., Релятивистский , М.,1974; Кулипанов Г. Н., С к р и н с к и й А. Н., Использование синхротронногоизлучения: состояние и перспективы, «УФН», 1977, т. 122, в. 3; Синхротронноеизлучение. Свойства и применения, пер. с англ., М., 1981. С. И. Cыроватский.

Физическая энциклопедия. В 5-ти томах. - М.: Советская энциклопедия . Главный редактор А. М. Прохоров . 1988 .


Смотреть что такое "СИНХРОТРОННОЕ ИЗЛУЧЕНИЕ" в других словарях:

    СИНХРОТРОННОЕ ИЗЛУЧЕНИЕ, в физике ПОТОК ЭЛЕКТРОМАГНИТНОГО ИЗЛУЧЕНИЯ, вырабатываемый высокоэнергетическими ЭЛЕКТРОНАМИ, постоянно увеличивающими скорость при движении в МАГНИТНОМ ПОЛЕ. Синхротронное излучение может принимать вид рентгеновских… … Научно-технический энциклопедический словарь

    - (магнитотормозное излучение) излучение электромагнитных волн заряженными частицами, движущимися с релятивистскими скоростями в магнитном поле, искривляющем их траектории. Впервые наблюдалось в синхротроне (отсюда название) … Большой Энциклопедический словарь

    синхротронное излучение - Нрк. светящийся электрон Оптическое излучение, возникающее при движении релятивистских электронов по криволинейной траектории. Примечание Термин может применяться для обозначения как процессов излучения, так и результатов излучения. [Сборник… … Справочник технического переводчика

    Электромагнитное излучение Синхротронное … Википедия

    Термин синхротронное излучение Термин на английском synchrotron radiation Синонимы магнитотормозное излучение Аббревиатуры СИ Связанные термины EXAFS, XAFS Определение тормозное излучение, испускаемое релятивистскими заряженными частицами в… … Энциклопедический словарь нанотехнологий

    Магнитотормозное излучение, излучение электромагнитных волн заряженными частицами, движущимися с релятивистскими скоростями в магнитном поле. Излучение обусловлено ускорением, связанным с искривлением траекторий частиц в магнитном поле.… … Большая советская энциклопедия

    - (магнитотормозное излучение), электромагн. излучение, испускаемое заряженными частицами, движущимися в однородном магн. поле по искривленным траекториям с релятивистскими скоростями. С. и. впервые наблюдалось в синхротроне (отсюда назв.). Осн.… … Химическая энциклопедия

    Излучение электромагнитных волн заряженных частицами, движущимися с релятивистскими скоростями в магнитном поле, искривляющем их траектории. Впервые наблюдалось в синхротроне (отсюда название). * * * СИНХРОТРОННОЕ ИЗЛУЧЕНИЕ СИНХРОТРОННОЕ… … Энциклопедический словарь

    Электромагнитное излучение, испускаемое электрически заряженной частицей, движущейся в магнитном поле со скоростью, близкой к скорости света. Название связано с тем, что такое излучение впервые наблюдалось в синхротронных ядерных ускорителях.… … Астрономический словарь

    синхротронное излучение - sinchrotroninis spinduliavimas statusas T sritis chemija apibrėžtis Elektringųjų dalelių, kertančių magnetinį lauką greičiu, beveik lygiu šviesos greičiui, sukeltas elektromagnetinis spinduliavimas. atitikmenys: angl. acceleration radiation;… … Chemijos terminų aiškinamasis žodynas

Книги

  • Синхротронное излучение. Методы исследования структуры веществ , Фетисов Геннадий Владимирович. Что такое синхротронное излучение (СИ), как оно получается и какими уникальными свойствами обладает? Что нового по сравнению с рентгеновскими лучами из рентгеновских трубок могут дать…

Испускаемое релятивистскими заряж. частицами в однородном магн. поле. Излучение частиц, движущихся в переменных электрич. и магн. полях, наз. ондуляторным излучением . С. и. обусловлено ускорением частиц, появляющемся при искривлении их траекторий в магн. поле. Аналогичное излучение нерелятивистских частиц, движущихся по круговым или спиральным траекториям, наз. излучением; оно происходит на осн. гиромагн. частоте и её первых гармониках. С увеличением скорости частицы роль высоких гармоник возрастает; при приближении к релятивистскому пределу излучение в области наиб. интенсивных высоких гармоник обладает практически непрерывным спектром и сосредоточено в направлении мгновенной скорости частицы в узком конусе с углом раствора , где т - масса покоя,- энергия частицы.

Полная мощность излучения частицы с энергией равна где е - частицы, - составляющая магн. поля, перпендикулярная её скорости. Т.к. излучаемая мощность сильно зависит от массы частицы, С. и. наиб. существенно для лёгких частиц - электронов и позитронов. Спектральное (по частоте ч )распределение излучаемой мощности определяется выражением

где , а - цилиндрич. ф-ция второго рода мнимого аргумента. Характерная частота, на к-рую приходится максимум в спектре излучения частицы:

Излучение отд. частицы в общем случае эллиптически поляризовано, причём большая ось эллипса расположена перпендикулярно видимой проекции магн. поля. Степень эллиптичности и направление вращения вектора напряжённости электрич. поля зависят от направления наблюдения по отношению к конусу, описываемому вектором скорости частицы вокруг направления магн. поля. Для направлений наблюдения, лежащих на этом конусе, поляризация излучения линейная.

Впервые С. и. предсказано А. Шоттом (A. Schott, 1912) и наблюдалось в циклич. ускорителях электронов (в синхротроне, поэтому и получило назв. С. и.). Потери энергии на С. и., а также связанные с С. и. квантовые эффекты в движении частиц необходимо учитывать при конструировании циклич. ускорителей электронов высокой энергии. С. и. циклич. ускорителей электронов используется для получения интенсивных пучков поляризов. эл--магн. излучения в УФ-области спектра и в области «мягкого» рентг. излучения; пучки рентг. С. и. применяются в рентгеновском структурном анализе , рентг. спектроскопии и др.

Большей интерес представляет С. и. космич. объектов, в частности нетепловой радиофон Галактики, нетепловое радио- и оптич. излучение дискретных источников (сверхновых звёзд, пульсаров, квазаров, радиогалактик). Синхротронная природа этих излучений подтверждается особенностями их спектра и поляризации. Релятивистские электроны, входящие в состав космич. лучей, в космич. магн. полях дают синхротронную составляющую космич. излучения в радио-, оптическом и рентг. диапазонах. Измерения спектральной интенсивности и поляризации космич. С. и. позволяют получить информацию о концентрации и энергетич. спектре релятивисгских электронов, величине и направлении магн. полей в удалённых частях Вселенной.