Биографии Характеристики Анализ

Сочетание. Методы решения комбинаторных задач

При решении многих практических задач приходится использовать комбинации элементов, выбирать из данной совокупности те, которые имеют определенные свойства, и размещать их в определенном порядке. Такие задачи называются комбинаторными . Раздел математики, посвящённый решению задач выбора и расположения элементов в соответствии с данными условиями, называется комбинаторикой. Термин «комбинаторика» происходит от латинского слова «combina» , что в переводе на русский язык означает – «сочетать», «соединять».

Выбранные группы элементов называют соединениями. Если все элементы соединения разные, то получаем соединения без повторений, которые и рассмотрим ниже.

Большинство комбинаторных задач решается с помощью двух основных правил – правила суммы и правила произведения .

Задача 1.

В магазине «Все для чая» есть 6 разных чашек и 4 разных блюдца. Сколько вариантов чашки и блюдца можно купить?

Решение .

Чашку мы можем выбрать 6-ю способами, а блюдце 4-я способами. Так как нам надо купить пару чашку и блюдце, то это можно сделать 6 · 4 = 24 способами (по правилу произведения).

Ответ: 24.

Для успешного решения комбинаторных задач надо еще и правильно выбрать формулу, по которой искать количество нужных соединений. В этом поможет следующая схема.

Рассмотрим решение нескольких задач на разные виды соединений без повторений.

Задача 2.

Найдите количество трехзначных чисел, которые можно составить из цифр 1, 2, 3, 4, 5, 6, 7, если цифры в числе повторяться не могут.

Решение.

Для выбора формулы выясняем, что для чисел, которые мы будем составлять, порядок учитывается и не все элементы одновременно выбираются. Значит, это соединение – размещение из 7 элементов по 3. Воспользуемся формулой для числа размещений: A 7 3 = 7(7 – 1)(7 – 2) = 7 · 6 · 5 = 210 чисел.

Ответ: 210.

Задача 3.

Сколько существует семизначных телефонных номеров, в которых все цифры разные, а номер не может начинаться с нуля?

Решение.

На первый взгляд эта задача такая же, как и предыдущая, но сложность в том, что надо не учитывать те соединения, которые начинаются с нуля. Значит необходимо из существующих 10-ти цифр составить все семизначные номера телефонов, а потом от полученного числа отнять количество номеров, начинающихся с нуля. Формула будет иметь вид:

A 10 7 – A 9 6 = 10 · 9 · 8 · 7 · 6 · 5 · 4 – 9 · 8 · 7 · 6 · 5 · 4 = 544 320.

Ответ: 544 320.

Задача 4.

Сколькими способами можно расставить на полке 12 книг, из которых 5 книг – это сборники стихотворений, так, чтобы сборники стояли рядом?

Решение.

Сначала примем 5 сборников условно за одну книгу, потому что они должны стоять рядом. Так как в соединении существенным есть порядок, и все элементы используются, значит это перестановки из 8 элементов (7 книг + условная 1 книга). Их количество Р 8 . Далее будем переставлять между собой только сборники стихотворений. Это можно сделать Р 5 способами. Поскольку нам нужно расставить и сборники, и другие книги, то воспользуемся правилом произведения. Следовательно, Р 8 · Р 5 = 8! · 5!. Число способов будет большим, поэтому ответ можно оставить в виде произведения факториалов.

Ответ: 8! · 5!

Задача 5 .

В классе 16 мальчиков и 12 девочек. Для уборки территории возле школы нужно 4 мальчика и 3 девочки. Сколькими способами можно их выбрать со всех учеников класса?

Решение.

Сначала отдельно выберем 4 мальчика из 16 и 3 девочки из 12. Так как порядок размещения не учитывается, то соответственные соединения – сочетания без повторений. Учитывая необходимость одновременного выбора и мальчиков, и девочек, используем правило произведения. В результате число способов будет вычисляться таким образом:

С 16 4 · С 12 3 = (16!/(4! · 12!)) · (12!/(3! · 9!)) = ((13 · 14 · 15 · 16) / (2 · 3 · 4)) ·((10 · 11 · 12) / (2 · 3)) = 400 400.

Ответ: 400 400.

Таким образом, успешное решение комбинаторной задачи зависит от правильного анализа ее условия, определения типа соединений, которые будут составляться, и выбора подходящей формулы для вычисления их количества.

Остались вопросы? Не знаете, как решать комбинаторные задачи?
Чтобы получить помощь репетитора – зарегистрируйтесь .
Первый урок – бесплатно!

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

Задача 1. Восемь студентов обменялись рукопожатиями. Сколько было рукопожатий?

Решение. В рукопожатии участвует «подмножество», состоящее из двух студентов (m=2), тогда как всё множество» студентов составляет 8 человек (n=8). Так как в процессе рукопожатия порядок не важен, выбираем формулу для числа сочетаний:

Задача. Сколькими способами можно составить трехцветный полосатый флаг из пяти различных по цвету отрезков материи?

Решение . Порядок важен, так как перестановка материи внутри трехцветного флга обозначает разные страны. Поэтому выбираем формулу числа размещений без повторений, где множество отрезков материи n = 5, а подмножество цветов m=3:

Задача 2. Сколько словарей надо издать, чтобы можно было выполнять переводы с любого из шести языков на любой из них?

Решение . Множество включает 6 языков n=6. Поскольку перевод есть отношение между двумя языками, то m=2, причем порядок важен, так как, например, словари русско-английский и англо-русский имеют различное применение. Поэтому выбираем размещения без повторений:

Задача 3. Сколько имеется вариантов составления расписания на понедельник, если предметов у студентов 9, а в понедельник 4 пары занятий, и предметы не повторяются?

Решение . а) Для студентов порядок не важен, поэтому выбираем формулу числа сочетаний:

б) Для преподавателей порядок важен, поэтому выбираем формулу размещений без повторений:

Задача 4. Сколькими способами можно расставить на книжной полке девять книг, среди которых есть трехтомник А.С. Пушкина?

Решение .

Так как три тома, входящие в трехтомник, должны стоять рядом, причем по возрастанию номера славе направо, то рассматриваем их как один элемент данного множества, в котором имеется еще 6 элементов. Поэтому выбираем перестановки без повторений во множестве, содержащем семь элементов:

Р 7 = 7! = 5040

Задача 5. Сколькими способами можно назначить в группе из 30 человек трех дежурных?

Решение .

а) Если их роль в процессе дежурства одинакова, то порядок не важен, поэтому выбираем сочетания без повторений:

С 3 30 = 30! / 3!27! = 4060

б) Если порядок важен, т.е. во время дежурства их функциональные обязанности различны, то по формуле размещения без повторений имеем:

А 3 30 = 30! / 27! = 24360

Задача 6. Сколько существует шестизначных телефонных номеров, у которых: а) возможны любые цифры; б) все цифры различные?

Решение.

а) 1. Так как в шестизначном наборе телефонного номера возможны любые цифры, то на каждом из шести мест может встретиться любая из 10-ти цифр от 0 до 9. Необходимо из всех возможных десяти цифр выбрать лишь те шесть, которые будут испльзованы для для шастизначных телефонных номеров. Поскольку в записи телефонных номеров порядок расположения цифр важен, по формуле размещений с повторениями имеем:

А 10 6 = 10 6 = 1000000

2. Как известно, не бывает шестизначных номеров, начинающихся с нуля, поэтому надо подсчитать их количество и вычесть его из общего числа комбинаций. Число номеров, первая цифра у которых 0, найдем по формуле размещений с повторениями, «зафиксировав» ноль т.е. на каждом из пяти остальных возможных мест может встретиться любая из десяти цифр от
0 до 9. Тогда число таких комбинаций:

А 10 5 = 10 5 = 100000

3. Общее число шестизначных телефонных номеров, у которых могут быть любые, в том числе и повторяющиеся, цифры, равно разности:

А 10 6 – А 10 5 = 10 6 – 10 5 = 1000000 – 100000 = 900000

б) 1. Пусть теперь в шестизначном наборе все цифры различные. Необходимо из всех возможных десяти цифр выбрать лишь те шесть, которые используются для шестизначных телефонных номеров, причем никакая цифра не повторяется. Тогда по формуле размещений без повторений имеем:

А 10 6 = 10! / (10 – 6)! = 5х6х7х8х9х10 = 151200

2. Поскольку шестизначных номеров, начинающихся с нуля, не бывает, надо посчитать их количество и вычесть его из общего числа комбинаций. Число номеров, первая цифра у которых 0, найдем по формуле размещений без повторений, «зафиксировав ноль», т.е. на каждом из пяти оставшихся возможных мест могут встретиться цифры от 0 до 9. Тогда число таких комбинаций найдем по формуле размещений без повторений. Имеем:

А 10 5 = 10! / (10-5)! = 6х7х8х9х10 = 30240

3. Общее число шестизначных телефонных номеров, у которых не может быть повторяющихся цифр, равно разности:

А 10 6 – А 10 5 = 10 6 – 10 5 = 151200 – 30240 = 120960

Задача 7. Сколькими способами можно выделить делегацию в составе трех человек, выбирая их среди четырех супружеских пар, если:

а) в состав делегации входят любые трое из данных восьми человек;

б) делегация должна состоять из двух женщин и одного мужчины;

в делегацию не входят члены одной семьи?

Решение.

а) Порядок не важен:

С 8 3 = 8! / 3! 5! = 56

б) Выберем двух женщин из имеющихся 4-х С 4 2 способами и одного мужчину из 4-х С 4 1 способами. По правилу произведения (и мужчина, и две женщины) имеем С 4 2 х С 4 1 = 24.

в) Из четырех семей выбираем 3-х членов делегации четырьмя способами (т.к. С 4 3 = 4! / 3!1! = 4). Но в каждой семье имеется по два способа выбора члена делегации. По правилу произведения С 4 3 х2х2х2 = 4х8 =32.

Задача 8. В колледже учится 2000 студентов. Можно ли утверждать, что хотя бы двое из них имеют одинаковые инициалы и имени, и фамилии?

Решение.

В русском алфавите 33 буквы, из них ъ, ь, ы, й не могут быть использованы, поэтому n = 33-4 = 29. Каждая из 29 букв может быть инициалом и имени,и фамилии. По правилу произведения 29х29 = 841 < 2000. Значит может быть лишь 841 различных вариантов, и среди 2000 студентов обязательно будут совпадения.

Решение: А(способов).

Задача 6.

На странице альбома 6 свободных мест для фотографий.

Сколькими способами можно вложить в свободные места

а) 4 фотографии;

б) 6 фотографий.

Решение: а) А

Задача 7.

Сколько трехзначных чисел (без повторения цифр в записи числа) можно составить из цифр 0,1,2,3,4,5 и 6?

Объяснение: если среди семи цифр нет нуля, то число трехзначных чисел которые можно составить из этих цифр равно числу размещений из 7 элементов по 3 А. Однако, среди данных семи чисел есть цифра 0, с которой не может начинаться трехзначное число. Поэтому из размещений из 7 элементов по 3 нужно исключить те, у которых первым элементом является цифра 0.Их число равно числу размещений из 6 элементов по 2.

Значит, искомое число равно: А
.

Решение: А

Задача 8.

Из трехзначных чисел, записанных с помощью цифр 1,2,3,4,5,6,7,8,9 (без повторения цифр), сколько таких, в которых: а) не встречаются цифры 6 и 7;

б) цифра 8 является последней?

Решение: а) А

б) А

Задача 9.

Сколько существует семизначных телефонных номеров, в которых все цифры различные и первая цифра отлична от 0?

Решение: А

А теперь рассмотрим такой сюжет:

Имеется 5 гвоздик разного цвета. Обозначим их буквами a , b , c , d , e . Требуется составить букет из трех гвоздик.

Выясним, какие букеты можно составить.

Если в букет входит гвоздика a , то можно составить такие букеты:

Abc, abd, abc, acd, ace, adc.

Если в букет не входит гвоздика a , а входит гвоздика b , то можно получить такие букеты:

Bcd, bce, bdc.

Наконец, если в букет не входит ни гвоздика a ,гвоздика b , то можно составить букет

cde .

Мы показали все возможные способы составления букетов, в которых по-разному сочетаются три гвоздики из данных пяти.

Говорят, что составлены всевозможные сочетания из 5-ти элементов по 3.

Сочетанием из n элементов по k называется любое множество, составленное из k элементов, выбранных из данных n элементов и обозначается с

в отличие от размещений, в сочетаниях не имеет значения, в каком порядке указаны элементы.

С

Поэтому пример про гвоздики можно быстро решить так:

Решение: С

Задача 10.

Из 15 человек туристической группы надо выбрать трех дежурных. Сколькими способами это можно сделать?

Решение: С

Задача 11.

Из вазы с фруктами, где лежат 9 яблок и 6 груш, нужно выбрать 3 яблока и 2 груши. Сколькими способами можно это сделать?

Решение: 3 яблока из 9-ти можно выбрать С способами. При каждом выборе яблок груши можно выбрать Сспособами. Поэтому по правилу умножения выбор фруктов можно сделать С
способами.

Решение: С
=

Задачи для закрепления.

Задача I.

В классе 7 человек успешно занимаются математикой.

Сколькими способами можно выбрать из них двоих для участия в математической олимпиаде?

Решение: С

Задача II.

В лаборатории, в которой работают заведующий и 10 сотрудников, надо отправить в командировку 5 человек.

Сколькими способами это можно сделать, если:

а) заведующий лабораторией должен ехать в командировку;

б) заведующий должен остаться.

Решение: а) С
б)С

Задача III.

В классе учатся 16 мальчиков и 12 девочек. Для уборки территории нужно выделить 4 мальчика и три девочки.

Сколькими способами это можно сделать?

Решение: С

Задача IV.

В библиотеке читателю предложили на выбор 10 книг и 4 журнала. Сколькими способами он может выбрать из них 3 книги и 2 журнала?

Решение: С
.

Комбинаторика – это раздел математики, посвящённый решению задач выбора и расположения элементов некоторого множества в соответствии с заданными правилами. Комбинаторика изучает комбинации и перестановки предметов, расположение элементов, обладающее заданными свойствами. Обычный вопрос в комбинаторных задачах: сколькими способами….

К комбинаторным задачам относятся также задачи построения магических квадратов, задачи расшифровки и кодирования.

Рождение комбинаторики как раздела математики связано с трудами великих французских математиков 17 века Блеза Паскаля (1623–1662) и Пьера Ферма (1601–1665) по теории азартных игр. Эти труды содержали принципы определения числа комбинаций элементов конечного множества. С 50-х годов 20 века интерес к комбинаторике возрождается в связи с бурным развитием кибернетики.

Основные правила комбинаторики – это правило суммы и правило произведения .

  • Правило суммы

Если некоторый элемент А можно выбрать n способами, а элемент В можно выбрать m способами, то выбор «либо А, либо В» можно сделать n + m способами.

Например, Если на тарелке лежат 5 яблок и 6 груш, то один плод можно выбрать 5 + 6 = 11 способами.

  • Правило произведения

Если элемент А можно выбрать n способами, а элемент В можно выбрать m способами, то пару А и В можно выбрать n m способами.

Например, если есть 2 разных конверта и 3 разные марки, то выбрать конверт и марку можно 6 способами (2 3 = 6).

Правило произведения верно и в том случае, когда рассматривают элементы нескольких множеств.

Например, если есть 2 разных конверта, 3 разные марки и 4 разные открытки, то выбрать конверт, марку и открытку можно 24 способами (2 3 4 = 24).

Произведение всех натуральных чисел от 1 до n включительно называется n – факториалом и обозначается символом n!

n! = 1 2 3 4 … n.

Например, 5! = 1 2 3 4 5 = 120.

Например, если есть 3 шарика – красный, синий и зелёный, то выложить их в ряд можно 6 способами (3 2 1 = 3! = 6).

Иногда комбинаторная задача решается с помощью построения дерева возможных вариантов .

Например, решим предыдущую задачу о 3-х шарах построением дерева.

Практикум по решению задач по комбинаторике.

ЗАДАЧИ и решения

1. В вазе 6 яблок, 5 груш и 4 сливы. Сколько вариантов выбора одного плода?

Ответ: 15 вариантов.

2. Сколько существует вариантов покупки одной розы, если продают 3 алые, 2 алые и 4 жёлтые розы?

Ответ: 9 вариантов.

3. Из города А в город В ведут пять дорог, а из города В в город С ведут три дороги. Сколько путей, проходящих через В, ведут из А в С?

Ответ: 15 путей.

4. Сколькими способами можно составить пару из одной гласной и одной согласной букв слова «платок»?

гласные: а, о – 2 шт.
согласные: п, л, т, к – 4 шт.

Ответ: 8 способами.

5. Сколько танцевальных пар можно составить из 8 юношей и 6 девушек?

Ответ: 48 пар.

6. В столовой есть 4 первых блюда и 7 вторых. Сколько различных вариантов обеда из двух блюд можно заказать?

Ответ: 28 вариантов.

7. Сколько различных двузначных чисел можно составить, используя цифры 1, 4 и 7, если цифры могут повторяться?

1 цифра – 3 способа
2 цифра – 3 способа
3 цифра – 3 способа

Ответ: 9 различных двузначных чисел.

8. Сколько различных трёхзначных чисел можно составить, используя цифры 3 и 5, если цифры могут повторяться?

1 цифра – 2 способа
2 цифра – 2 способа
3 цифра – 2 способа

Ответ: 8 различных чисел.

9. Сколько различных двузначных чисел можно составить из цифр 0, 1, 2, 3, если цифры могут повторяться?

1 цифра – 3 способа
2 цифра – 4 способа

Ответ: 12 различных чисел.

10. Сколько существует трёхзначных чисел, у которых все цифры чётные?

Чётные цифры – 0, 2, 4, 6, 8.

1 цифра – 4 способа
2 цифра – 5 способов
3 цифра – 5 способов

Ответ: существует 100 чисел.

11. Сколько существует четных трёхзначных чисел?

1 цифра – 9 способов (1, 2, 3, 4, 5, 6, 7, 8, 9)
2 цифра – 10 способов (0, 1, 2, 3, 4, 5, 6, 7, 8, 9)
3 цифра – 5 способов (0, 2, 4, 6, 8)

9 10 5 = 450

Ответ: существует 450 чисел.

12.Сколько различных трёхзначных чисел можно составить из трёх различных цифр 4, 5, 6?

1 цифра – 3 способа
2 цифра – 2 способа
3 цифра – 1 способ

Ответ: 6 различных чисел.

13. Сколькими способами можно обозначить вершины треугольника, используя буквы А, В, С, D?

1 вершина – 4 способа
2 вершина – 3 способа
3 вершина – 2 способа

Ответ: 24 способа.

14. Сколько различных трёхзначных чисел можно составить из цифр 1, 2, 3, 4, 5,при условии, что ни одна цифра не повторяется?

1 цифра – 5 способов
2 цифра – 4 способа
3 цифра – 3 способа

Ответ: 60 различных чисел.

15. Сколько различных трёхзначных чисел, меньших 400, можно составить из цифр 1, 3, 5, 7, 9, если любая из этих цифр может быть использована только один раз?

1 цифра – 2 способа
2 цифра – 4 способа
3 цифра – 3 способа

Ответ: 24 различных числа.

16. Сколькими способами можно составить флаг, состоящий из трёх горизонтальных полос различных цветов, если имеется материал шести цветов?

1 полоса – 6 способов
2 полоса – 5 способов
3 полоса – 4 способа

Ответ: 120 способов.

17. Из класса выбирают 8 человек, имеющих лучшие результаты по бегу. Сколькими способами можно составить из них команду из трёх человек для участия в эстафете?

1 человек – 8 способов
2 человек – 7 способов
3 человек – 6 способов

Ответ: 336 способов.

18. В четверг в первом классе должно быть четыре урока: письмо, чтение, математика и физкультура. Сколько различных вариантов расписания можно составить на этот день?

1 урок – 4 способа
2 урок – 3 способа
3 урок – 2 способа
4 урок – 1 способ

4 3 2 1 = 24

Ответ: 24 варианта.

19. В пятом классе изучаются 8 предметов. Сколько различных вариантов расписания можно составить на понедельник, если в этот день должно быть 5 уроков и все уроки разные?

1 урок – 8 вариантов
2 урок – 7 вариантов
3 урок – 6 вариантов
4 урок – 5 вариантов
5 урок – 4 варианта

8 7 6 5 4 = 6720

Ответ: 6720 вариантов.

20. Шифр для сейфа составляется из пяти различных цифр. Сколько различных вариантов составления шифра?

1 цифра – 5 способов
2 цифра – 4 способа
3 цифра – 3 способа
4 цифра – 2 способа
5 цифра – 1 способ

5 4 3 2 1 = 120

Ответ: 120 вариантов.

21. Сколькими способами можно разместить 6 человек за столом, на котором поставлено 6 приборов?

6 5 4 3 2 1 = 720

Ответ: 720 способов.

22. Сколько вариантов семизначных телефонных номеров можно составить, если исключить из них номера, начинающиеся с нуля и 9?

1 цифра – 8 способов
2 цифра – 10 способов
3 цифра – 10 способов
4 цифра – 10 способов
5 цифра – 10 способов
6 цифра – 10 способов
7 цифра – 10 способов

8 10 10 10 10 10 10 = 8.000.000

Ответ: 8.000.000 вариантов.

23. Телефонная станция обслуживает абонентов, у которых номера телефонов состоят из 7 цифр и начинаются с 394. На сколько абонентов рассчитана эта станция?

№ телефона 394

10 10 10 10 = 10.000

Ответ: 10.000 абонентов.

24. Имеется 6 пар перчаток различных размеров. Сколькими способами можно выбрать из них одну перчатку на левую руку и одну перчатку на правую руку так, чтобы эти перчатки были различных размеров?

Левые перчатки – 6 способов
Правые перчатки – 5 способов (6 перчатка того же размера, что и левая)

Ответ: 30 способов.

25 . Из цифр 1, 2, 3, 4, 5 составляют пятизначные числа, в которых все цифры разные. Сколько таких чётных чисел?

5 цифра – 2 способа (две чётные цифры)
4 цифра – 4 способа
3 цифра – 3 способа
2 цифра – 2 способа
1 цифра – 1 способ

2 4 3 2 1 = 48

Ответ: 48 чётных чисел.

26. Сколько существует четырёхзначных чисел, составленных из нечётных цифр и делящихся на 5?

Нечётные цифр – 1, 3, 5, 7, 9.
Из них делятся на 5 – 5.

4 цифра – 1 способ (цифра 5)
3 цифра – 4 способа
2 цифра – 3 способа
1 цифра – 2 способа

1 4 3 2 = 24

Ответ: 24 числа.

27. Сколько существует пятизначных чисел, у которых третья цифра – 7, последняя цифра – чётная?

1 цифра – 9 способов (все, кроме 0)
2 цифра – 10 способов
3 цифра – 1 способ (цифра 7)
4 цифра – 10 способов
5 цифра – 5 способов (0, 2, 4, 6, 8)

9 10 1 10 5 = 4500

Ответ: 4500 чисел.

28. Сколько существует шестизначных чисел, у которых вторая цифра – 2, четвёртая – 4, шестая – 6, а все остальные – нечётные?

1 цифра – 5 вариантов (из 1, 3, 5, 7, 9)
2 цифра – 1 вариант (цифра 2)
3 цифра – 5 вариантов
4 цифра – 1 вариант (цифра 4)
5 цифра – 5 вариантов
6 цифра – 1 вариант (цифра 6)

5 1 5 1 5 1 = 125

Ответ: 125 чисел.

29.Сколько различных чисел, меньших миллиона, можно записать с помощью цифр 8 и 9?

Однозначных – 2
Двузначных – 2 2 = 4
Трёхзначных – 2 2 2 = 8
Четырёхзначных – 2 2 2 2 =16
Пятизначных – 2 2 2 2 2 = 32
Шестизначных – 2 2 2 2 2 2 = 64

Всего: 2 + 4 + 8 + 16 + 32 + 64 = 126

Ответ: 126 чисел.

30. В футбольной команде 11 человек. Нужно выбрать капитана и его заместителя. Сколькими способами это можно сделать?

Капитан – 11 способов
Заместитель – 10 способов

Ответ: 110 способов.

31.В классе учатся 30 человек. Сколькими способами из них можно выбрать старосту и ответственного за проездные билеты?

Староста – 30 способов
Ответ. за билеты – 29 способов

Ответ: 870 способов.

32. В походе участвуют 12 мальчиков, 10 девочек и 2 учителя. Сколько вариантов групп дежурных из трёх человек (1 мальчик, 1 девочка, 1 учитель) можно составить?

12 10 2 = 240

Ответ: 240 способов.

33. Сколько комбинаций из четырёх букв русского алфавита (в алфавите всего 33 буквы) можно составить при условии, что 2 соседние буквы будут разными?

Методическая разработка урока по математике в 5 классе

Кожокарь Ирина Евгеньевна, учитель математики.

ГБОУ СОШ № 354 г. Санкт-Петербурга

Тема урока: Знакомьтесь, комбинаторика!

Цель урока : сформулировать первоначальные навыки комбинаторных задач с помощью перебора возможных вариантов.

Задачи урока:

Образовательные:

  1. Развитие умения решать комбинаторные задачи методом полного перебора вариантов;
  2. Выработка умения применять математическую теорию в конкретных ситуациях;
  3. Знакомство учащихся с элементами гуманитарного знания, связанного с математикой.

Развивающие:

  1. Развитие умения самостоятельно выбирать способ решения и умения обосновать выбор;
  2. Развитие умения решать задачи путём только логических рассуждений;
  3. Развитие умения делать выбор рационального способа кодирования;
  4. Развитие коммуникативных и творческих способностей учащихся.

Воспитательные:

  1. Воспитывать чувство ответственности за качество и результат выполняемой работы;
  2. Прививать сознательное отношение к труду;
  1. Формировать ответственность за конечный результат .

Оборудование:

  1. интерактивная доска;
  2. раздаточный материал (цветные полоски: белая, синяя, красная);
  3. карточки с задачами.

Ход урока.

  1. Организационный момент.
  2. Изучение нового материала.
  3. Практическая часть.
  4. Рефлексия
  5. Выставление отметок
  6. Задание домашней работы
  1. Организационный момент.

Учитель: Здравствуйте, ребята!

Очень часто в жизни приходится делать выбор, принимать решение. Это сделать очень трудно, не потому что выбора нет, а потому что приходится выбирать из множества возможных вариантов, различных способов, комбинаций. И нам всегда хочется, чтобы этот выбор был оптимальный.

Задачи, которые мы сегодня будем решать помогут вам творить, думать необычно, оригинально, видеть то, мимо чего вы часто проходили не замечая.

И еще сегодня в очередной раз убедимся, что наш мир полон математики и продолжим исследование на предмет выявления математики вокруг нас.

  1. Актуализация темы и мотивация.

Давайте решим задачу №1,

Задача 1 . У кассы кинотеатра стоят четверо ребят. У двух из них сторублевые купюры, у других двух – пятидесятирублевые. (Учитель вызывает 4 учеников к доске и дает им модели купюр). Билет в кино стоит 50 рублей. В начале продажи касса пуста. (Учитель вызывает «кассира» и дает ему «билеты») . Как должны расположиться ребята, чтобы никому не пришлось ждать сдачи?

Разыгрываем сценку, с помощью которой можно найти два возможных варианта решения:

  1. 50 рублей, 100 рублей, 50 рублей, 100 рублей;
  2. 50 рублей, 50 рублей, 100 рублей, 100 рублей (слайд №2 и №3).

Задача №2 . Несколько стран решили использовать для своего государственного флага символику в виде трех горизонтальных полос одинаковой ширины разных цветов – белого, синего, красного. Сколько стран могут использовать такую символику при условии, что у каждой страны – свой флаг?

(Учащимся раздаются цветные полоски (белый, синий, красный) и предлагается составить разные варианты флагов? (Слайд№4)

  1. Изучение нового материала .

Учитель: При решении этих задач мы осуществили перебор всех возможных вариантов,

или, как обычно говорят в этих случаях, всех возможных комбинаций. Поэтому подобные задачи называют комбинаторными. Просчитывать возможные (или невозможные) варианты в жизни приходится довольно часто, поэтому полезно познакомиться с комбинаторными задачами, а раздел математики, занимающийся решением этих задач, называется комбинаторикой. (Слайд№5)

Определение учащиеся записывают в тетрадь:

Комбинаторика – это раздел математики, посвященный решению задач выбора и расположения заданных элементов по заданным правилам

Обычный вопрос в комбинаторных задачах – это « Сколькими способами …?» или

« Сколько вариантов …?»

Учитель : Давайте еще раз вернемся к задаче о флагах, решим ее используя перебор возможных вариантов: (слайд №7)

КБС КСБ

БСК БКС

СБК СКБ

Ответ: 6 вариантов.

Итак, при решении этой задачи мы искали способ перебора возможных вариантов. Во

многих случаях оказывается полезным прием построения картинки – схемы перебора вариантов. Это, во – первых, наглядно, во- вторых, позволяет нам все учесть, ничего не пропустить.

Решение Флаг

Варианты БСК, БКС, СБК, СКБ, КБС, КСБ.

Ответ: 6 вариантов.

Вопрос, ответ на который должны знать все, какой из представленных вариантов флагов – государственный флаг РФ.(Слайд№7)

Оказывается, Не только флаг России имеет эти три цвета. Есть государства, флаги которых, имеют такие же цвета.

КБС – Люксембург,

Нидерланды.

Франция СКБ

Учитель: Найдем правило решения таких задач путем логического рассуждения.

Разберем на примере цветных полосок. Возьмем белую полоску – её можно переставить 3 раза, возьмем синюю полоску – её можно переставить только 2 раза, т.к. одно из мест уже занято белой, возьмем красную полоску – её можно положить только 1 раз.

ИТОГО: 3 х 2 х 1=6

Основное правило произведения :

Правило умножения: если первый элемент в комбинации можно выбрать а способами, после чего второй элемент – b способами, то общее число комбинаций будет равно а х b . (слайд №8)

Физкультминутка для глаз. (слайд №9)

Упражнение « Фигуры».

Нарисовать глазами квадрат, круг, треугольник, овал, ромб по часовой стрелке, а затем- против.

  1. Практическая часть

Учитель: А теперь перейдем к математическим задачам. (раздаем карточки с задачами)

  1. У одного довольно знаменитого мушкетера в гардеробе имеются 3 элегантных шляпы,4 чудных плаща и 2 пары отличных сапог. Сколько вариантов костюма ему можно составить? (Выбираем по одному элементу из трех множеств, то есть, составляем «тройку», значит, по правилу умножения получаем 3 4 2 = 24 варианта костюма.)
  2. В футбольной команде 11 человек. Необходимо выбрать капитана и его заместителя. Сколькими способами можно это сделать? (Всего 11 человек, значит, капитана можно выбрать 11 способами, осталось 10 футболистов, из которых можно выбрать заместителя капитана. Итак, пару капитана и его заместителя можно выбрать 11 10 = 110 способами.)
  3. Сколько различных двузначных чисел можно составить, используя цифры 1, 4, 7, если допустить повторение цифр? (Должно получиться двузначное число – всего две позиции. На первую позицию можно поставить любую из предложенных цифр – 3 варианта выбора, на вторую позицию, с учетом возможности повтора цифры, тоже 3 варианта выбора. Значит, пару цифр мы составляем 3 3 = 9 способами, т.е. получится 9 чисел.
  4. Сколько различных трехзначных чисел можно составить из цифр 1, 2, 3, 4, 5 при условии, что ни одна цифра не повторяется? (Трехзначное число: первая позиция – 5 вариантов цифр, вторая позиция с учетом исключения повторов цифр - 4 варианта, третья позиция – 3 варианта. Получаем 5 4 3 = 60 чисел.)
  5. Сколько различных двузначных чисел можно составить из цифр 0, 1, 2, 3, если цифры: а) могут повторяться; б) не могут повторяться? (а) Двузначное число, как и любое многозначное, не может начинаться с 0, поэтому на первую позицию можно поставить лишь 3 из имеющихся 4-х цифр, 3 варианта выбора, на вторую позицию, с учетом повтора, можно поставить любую из цифр – 4 варианта выбора. Поэтому получается 3 4 = 12 чисел; б) Первая позиция – 3 варианта, вторая позиция – 3 варианта, т.к. повтор исключается. Получаем 3 3 = 9 чисел.)
  6. Шифр для сейфа состоит из пяти различных цифр. Сколько различных вариантов составления шифра? (5 4 3 2 1 = 120 вариантов.) Сколькими способами можно разместить 6 человек за столом, на котором поставлено 6 приборов? (6 5 4 3 2 1 = 720 способов.)
  7. 6 приборов? (6 · 5 · 4 · 3 · 2 · 1 = 720 способов.)
  8. (8 · 7 · 6 · 5 · 4 = 6720 вариантов.)
  9. (Используются цифры 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 – всего 10 цифр, исключая по условию 0 и 9 в начале номера, с учетом возможности повтора, получаем 8 · 10 · 10 · 10 · 10 · 10 · 10 = 8 000 000 номеров.)
  1. Рефлексия

Учитель: Ребята вот и подходит к концу наш урок. Как вы считаете, мы сегодня достигли нашей цели, почему? Что было трудным на уроке, как с эти можно бороться? Подумайте и поставьте себе за свой труд и работу отметку, поставьте сами, эту отметку никто из ребят не увидит, попробуйте быть честным с самим собой. Полностью ли вы участвовали в работе на уроке? Что нужно сделать, чтобы результат был лучше?

Кроме того, ученикам предлагается ответить на 3 блиц - вопроса:

  1. На сегодняшнем уроке мне было … (легко, обычно, трудно)
  2. Новый материал я … (усвоил и могу применить, усвоил и затрудняюсь применить, не усвоил)
  3. Моя самооценка за урок …

Ответы на приведенные вопросы можно не подписывать, т.к. их основная функция помочь учителю проанализировать урок и его результаты

  1. Подведение итогов . Выставление отметок

7. Задание домашней работы :

1)Составить задачу о своем классе

2) Несколько стран решили использовать для своего государственного флага символику в виде 3 горизонтальных полос разной ширины, разных цветов – белый, синий, красный. Сколько стран могут использовать такую символику при условии,что у каждой страны свой флаг?

3) а) Сколько двузначных чисел можно составить из цифр 1, 3, 5, 7, 9?

б) Сколько двузначных чисел можно составить из цифр 1, 3, 5, 7, 9 при условии, что цифры не должны повторяться

Учитель : Итак, я была рада встрече с вами, интересуйтесь математикой, это, несомненно, отразится в положительную сторону в ваших размышлениях и действиях. До свидания

Литература:

Е.А.Бунимович, В.А. Булычев. Вероятность и статистика в курсе математики общеобразовательной школы: лекции 1- 4, 5 – 8. – М.: Педагогический университет “Первое сентября”, 2006.

Виленкин Н.Я. Математика. 5 класс: учебник для общеобразоват. учреждений/ Н.Я.Виленкин и др. – М. : Мнемозина, 2009.

Смыкалова Е.В. Дополнительные главы по математике для учащихся 5 класса. СПб: СМИО. Пресс, 2006.

5 класс. «Математика-5», И.И. Зубарева, А.Г. Мордкович, 2004 год.

Задачи (карточки)

  1. У одного довольно знаменитого мушкетера в гардеробе имеются 3 элегантных шляпы,4 чудных плаща и 2 пары отличных сапог. Сколько вариантов костюма ему можно составить?
  2. В футбольной команде 11 человек. Необходимо выбрать капитана и его заместителя. Сколькими способами можно это сделать?
  3. Сколько различных двузначных чисел можно составить, используя цифры 1, 4, 7, если допустить повторение цифр
  4. Сколько различных трехзначных чисел можно составить из цифр 1, 2, 3, 4, 5 при условии, что ни одна цифра не повторяется?
  5. Сколько различных двузначных чисел можно составить из цифр 0, 1, 2, 3, если цифры: а) могут повторяться; б) не могут повторяться?
  6. Шифр для сейфа состоит из пяти различных цифр. Сколько различных вариантов составления шифра?
  7. Сколькими способами можно разместить 6 человек за столом, на котором поставлено 6 приборов?
  8. В пятом классе изучаются 8 предметов. Сколько различных вариантов расписания можно составить на понедельник, если в этот день должно быть 5 уроков и все уроки – разные?
  9. Сколько вариантов семизначных телефонных номеров можно составить, если исключить из них номера, начинающиеся с 0 и 9?

Ответы

  1. Выбираем по одному элементу из трех множеств, то есть, составляем «тройку», значит, по правилу умножения получаем 3 4 2 = 24 варианта костюма.
  2. Всего 11 человек, значит, капитана можно выбрать 11-ю способами, осталось 10 футболистов, из которых можно выбрать заместителя капитана. Итак, пару, капитана и его заместителя, можно выбрать 11 10 = 110 способами.
  3. Должно получиться двузначное число – всего две позиции. На первую позицию можно поставить любую из предложенных цифр – 3 варианта выбора, на вторую позицию, с учетом возможности повтора цифры, тоже 3 варианта выбора. Значит, пару цифр мы составляем 3 3 = 9 способами, т.е. получится 9 чисел.
  4. Трехзначное число: первая позиция – 5 вариантов цифр, вторая позиция, с учетом исключения повторов цифр, - 4 варианта, третья позиция – 3 варианта. Получаем 5 4 3 = 60 чисел.
  5. (а) Двузначное число, как и любое многозначное, не может начинаться с 0, поэтому на первую позицию можно поставить лишь 3 из имеющихся 4-х цифр, 3 варианта выбора, на вторую позицию, с учетом повтора, можно поставить любую из цифр – 4 варианта выбора. Поэтому получается 3 4 = 12 чисел; б) Первая позиция – 3 варианта, вторая позиция – 3 варианта, т.к. повтор исключается. Получаем 3 3 = 9 чисел.
  6. 5 4 3 2 1 = 120 вариантов.
  7. 6 5 4 3 2 1 = 720 способов
  8. 8 7 6 5 4 = 6720 вариантов
  9. Используются цифры 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 – всего 10 цифр, исключая по условию 0 и 9 в начале номера, с учетом возможности повтора, получаем 8 10 10 10 10 10 10 = 8 000 000 номеров.

Предварительный просмотр:

Задача 2 Ответ: Всего получилось 6 возможных вариантов. Такой флаг могут использовать 6 стран. Кожокарь И.Е. ГБОУ СОШ №354 г.Санкт-Петербург

Комбинаторика – это раздел математики, посвященный решению задач выбора и расположения заданных элементов по заданным правилам Обычный вопрос в комбинаторных задачах – это « Сколькими способами …?» или « Сколько вариантов …?» Кожокарь И.Е. ГБОУ СОШ №354 г.Санкт-Петербург

Несколько стран решили использовать для своего государственного флага символику в виде трех горизонтальных полос одинаковой ширины разных цветов – белого, синего, красного. Сколько стран могут использовать такую символику при условии, что у каждой страны – свой флаг? Перебор возможных вариантов КБС КСБ БСК БКС СБК СКБ Ответ: 6 вариантов. Схема перебора вариантов Флаг Кожокарь И.Е. ГБОУ СОШ №354 г.Санкт-Петербург

Флаг Нидерландов Флаг Люксембурга Флаг Франции Не только флаг России имеет эти три цвета. Есть государства, флаги которых, имеют такие же цвета Флаг России Кожокарь И.Е. ГБОУ СОШ №354 г.Санкт-Петербург

Правило произведения (выбор пары нескольких элементов) Кожокарь И.Е. ГБОУ СОШ №354 г.Санкт-Петербург

Физкультминутка для глаз Кожокарь И.Е. ГБОУ СОШ №354 г.Санкт-Петербург

Задачи 1) У одного довольно знаменитого мушкетера в гардеробе имеются 3 элегантных шляпы,4 чудных плаща и 2 пары отличных сапог. Сколько вариантов костюма ему можно составить? 2) В футбольной команде 11 человек. Необходимо выбрать капитана и его заместителя. Сколькими способами можно это сделать? 3) Сколько различных двузначных чисел можно составить, используя цифры 1, 4, 7, если допустить повторение цифр 4) Сколько различных трехзначных чисел можно составить из цифр 1, 2, 3, 4, 5 при условии, что ни одна цифра не повторяется? 5) Сколько различных двузначных чисел можно составить из цифр 0, 1, 2, 3, если цифры: а) могут повторяться; б) не могут повторяться? 6) Шифр для сейфа состоит из пяти различных цифр. Сколько различных вариантов составления шифра? 7) Сколькими способами можно разместить 6 человек за столом, на котором поставлено 6 приборов? 8) В пятом классе изучаются 8 предметов. Сколько различных вариантов расписания можно составить на понедельник, если в этот день должно быть 5 уроков и все уроки – разные? 9) Сколько вариантов семизначных телефонных номеров можно составить, если исключить из них номера, начинающиеся с 0 и 9? Кожокарь И.Е. ГБОУ СОШ №354 г.Санкт-Петербург

5) (а) Двузначное число, как и любое многозначное, не может начинаться с 0, поэтому на первую позицию можно поставить лишь 3 из имеющихся 4-х цифр, 3 варианта выбора, на вторую позицию, с учетом повтора, можно поставить любую из цифр – 4 варианта выбора. Поэтому получается 3 4 = 12 чисел; б) Первая позиция – 3 варианта, вторая позиция – 3 варианта, т.к. повтор исключается. Получаем 3 3 = 9 чисел. 6) 5 4 3 2 1 = 120 вариантов. 7) 6 5 4 3 2 1 = 720 способов 8) 8 7 6 5 4 = 6720 вариантов 9) Используются цифры 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 – всего 10 цифр, исключая по условию 0 и 9 в начале номера, с учетом возможности повтора, получаем 8 10 10 10 10 10 10 = 8 000 000 номеров 1) Выбираем по одному элементу из трех множеств, то есть, составляем «тройку», значит, по правилу умножения получаем 3 4 2 = 24 варианта костюма. 2) Всего 11 человек, значит, капитана можно выбрать 11-ю способами, осталось 10 футболистов, из которых можно выбрать заместителя капитана. Итак, пару, капитана и его заместителя, можно выбрать 11 10 = 110 способами. 3) Должно получиться двузначное число – всего две позиции. На первую позицию можно поставить любую из предложенных цифр – 3 варианта выбора, на вторую позицию, с учетом возможности повтора цифры, тоже 3 варианта выбора. Значит, пару цифр мы составляем 3 3 = 9 способами, т.е. получится 9 чисел. 4) Трехзначное число: первая позиция – 5 вариантов цифр, вторая позиция, с учетом исключения повторов цифр, - 4 варианта, третья позиция – 3 варианта. Получаем 5 4 3 = 60 чисел. Ответы Кожокарь И.Е. ГБОУ СОШ №354 г.Санкт-Петербург

Блиц-опрос На сегодняшнем уроке мне было … (легко, обычно, трудно) Новый материал я … (усвоил и могу применить, усвоил и затрудняюсь применить, не усвоил) Моя самооценка за урок … Ответы на приведенные вопросы можно не подписывать Кожокарь И.Е. ГБОУ СОШ №354 г.Санкт-Петербург

Домашнее задание составить задачу о своем классе Несколько стран решили использовать для своего государственного флага символику в виде 3х горизонтальных полос разной ширины, разных цветов – белый, синий, красный. Сколько стран могут использовать такую символику при условии,что у каждой страны свой флаг? а) Сколько двузначных чисел можно составить из цифр 1, 3, 5, 7, 9? б) Сколько двузначных чисел можно составить из цифр 1, 3, 5, 7, 9 при условии, что цифры не должны повторяться Кожокарь И.Е. ГБОУ СОШ №354 г.Санкт-Петербург

Молодцы! Спасибо з а урок Кожокарь И.Е. ГБОУ СОШ №354 г.Санкт-Петербург

Кожокарь И.Е. ГБОУ СОШ №354 г.Санкт-Петербург