Биографии Характеристики Анализ

Работа сил приложенных к механической системе. Работа и мощность силы, приложенной к твердому телу

Работа внутренних сил на конечном перемещении равна нулю.

Работа силы, действующей на поступательно движущееся тело равна произведению этой силы на приращение линейного перемещения.

Работа силы, действующей на вращающееся тело равна произведению момента этой силы относительно оси вращения на приращение угла поворота: ; . Мощность:
.

Кинетическая энергия механической системы при различных видах движения.

Кинетическая энергия механической системы - скаляр, равный сумме кинетических энергий всех точек системы: .

При поступательном движении:

При вращательном движении:

При плоскопараллельном движении: , где d - расстояние от центра масс до МЦС

27. Теорема об изменении кинетической энергии материальнойточки.

Кинетическая энергия материальной точки - скаляр, равный половине произведение массы точки на квадрат ее скорости.

Основное уравнение динамики: , помножим на элементарное перемещение: ; ; . Интегрируя полученное выражение:

Теорема : изменение кинетической энергии материальной точки на некотором перемещении равно работе силы, действующей на точку, на том же перемещении.

Теорема об изменении кинетической энергии механической системы.

Так как работа внутренних сил равна нулю, то:
.

Теорема : изменение кинетической энергии механической системы на конечном перемещении равно сумме работ внешних сил на том же перемещении.

Принцип возможных перемещений для механической системы.

; , пусть связи, наложенные на точки механической системы двусторонние, стационарные, голономные и идеальные, тогда: .

Принцип возможных перемещений - принцип Лагранжа - для равновесия механической системы с двусторонними, стационарными, голономными и идеальными связями необходимо и достаточно, чтоб алгебраическая сумма работ задаваемых сил на возможном перемещении равнялась нулю.

Принцип Даламбера для материальной точки.

Геометрическая сумма всех приложенных к движущейся материальной точке сил и сил инерции этой точки равна нулю

Принцип Даламбера для несвободной механической системы.

В движущейся несвободной механической системе для каждой материальной точки в любой момент времени геометрическая сумма приложенных к ней задаваемых сил, реакций связи и сил инерции равна нулю. Умножив обе части выражения на r i получим: ;
.

, сумма моментов задаваемых сил, реакций связи и сил инерции относительно осей координат равна нулю.

Приведение сил инерции точек твердого тела к простейшему виду.

К системе сил инерции точек твердого тела, можно применить метод Пуансона, рассмотренный в статике. Тогда любую систему сил инерции можно привести к главному вектору сил инерции и главному моменту сил инерции.

При поступательном движении: Ф=-ma (при поступательном движении твердого тела, силы инерции его точек приводятся к главному вектору сил инерции равному по модулю произведению массы тела, на ускорение центра масс приложенному в этом центре и направленному в сторону противоположному ускорению центра масс).

При вращательном движении: М=-Iε (при вращательном движении твердого тела силы инерции его точек приводятся к главному моменту сил инерции равному произведению момента инерции тела относительно сил вращения на угловое ускорение. Направлен этот момент в сторону противоположному угловому ускорению).

При плоском движении: Ф=-ma М=-Iε (при плоском движении твердого тела силы инерции его точек приводятся к главному вектору и главному моменту сил инерции).

Общее уравнение динамики. Принцип Даламбера-Лагранжа.

Принцип Даламбера: å(P i + R i + Ф i) = 0; å(P i + R i + Ф i)Dr i = 0, полагаем. что связи, наложенные на механическую систему двусторонние, стационарные, голономные и идеальные, тогда: å(R i × Dr i) = 0;

å(P i + Ф i)Dr i = 0 - общее уравнение динамики - для движения механической системы с двусторонними, стационарными, голономными и идеальными связями сумма работ задаваемых сил и сил инерции точек системы на любом возможном перемещении равна нулю.

Теорема об изменении кинетической энергии механической системы

Учебные вопросы:

1. Работа силы.

2. Кинетическая энергия точки и механической системы.

3.Теорема об изменении кинетической энергии точки.

4. Теорема об изменении кинетической энергии механической системы.

5. Потенциальное силовое поле и потенциальная энергия.

1. Работа силы.

Элементарная работа силы - это бесконечно малая ска­лярная величина, равная скалярному произведению вектора силы на вектор бесконечного малого перемещения точки приложения силы :

.

-приращение ра­диуса-вектора точки приложе­ния силы, годографом которого является траектория этой точки. Элементарное перемещение
точ­ки по траектории совпадает с
в силу их малости. Поэтому

Так как
- проекция силы на направление пе­ремещения точки (при криволинейной траектории - на каса­тельную оськ траектории, то

,

т. е. работу совершает только касательная сила, а работа нор­мальной силы равна нулю.

Если
то

если
то

если
то
.

Представим векторы и
через их проекции на оси де­картовых координат:

,

Работа силы на конечном перемещении равна инте­гральной сумме элементарных работ на этом перемещении

.

.

Если сила постоянная, а точка ее приложения перемещает­ся прямолинейно, то

.

Работа силы тяжести

где h - перемещение точки приложения силы по вертикали вниз (высота).

При перемещении точки приложения силы тяжести вверх
(точка
- внизу,
- вверху). Итак
,

.

Работа силы тяжести не зависит от формы траектории. При движении по замкнутой траектории (
совпадает с
) работа равна нулю.

Работа силы упругости пружины.

Пружина растягивается только вдоль оси х

,

где - величина деформации пружины. При перемещении точки приложения силы
из нижнего положения в верхнее направление силы и направление перемещения совпадают, тогда
.

Поэтому работа силы упругости

.

Работа сил, приложенных к твердому телу.

а) Работа внутренних сил

Для двух k - х точек: , т. к.
и(доказывается в кинематике) (рис. 80).

Элементарная работа всех внутренних сил в твердом теле равна нулю:

.

Следовательно, на любом конечном перемещении тела

.

б) Работа внешних сил.

Поступательное движение тела.

Элементарная работа k –й силы

Для всех сил

.

Так как при поступательном движении , то

,

где
- проекция главного вектора внешних сил на направление перемещения.

Работа сил на конечном перемещении

.

Вращение тела вокруг неподвижной оси .

Элемен­тарная работа k - й силы

где
,
и
- составляю­щие силыпо естественным осям

Так как
,
, то работа этих сил на перемещение
точки приложения силы равна нулю. Тогда

.

Элементарная работа k - й внешней силы равна произве­дению момента этой силы относительно оси вращения
на элементарный угол поворота
тела вокруг оси.

Элементарная работа всех внешних сил

,

где
- главный момент внешних сил относительно оси.

Работа сил на конечном перемещении

.

Если
, то

где
- конечный угол поворота;
, гдеп - число оборотов тела вокруг оси.

Мощность - это работа, выполненная силой в единицу времени . Если работа совершается равномерно, то мощность

,

где А – работа, совершенная силой на конечном перемещении, за время t .

В более общем случае мощность силы можно определить как отношение элементарной работы силы dA к элементарному про­межутку времени dt , за который совершена эта работа, что представляет собой производную от работы по времени. Поэтому

При вращении тела вокруг неподвижной оси

,

где
- угловая скорость вращения тела.

Единицы измерения работы и мощности . В системе СИ единица измерения работы силы - джоуль (1 Дж = 1 Нм ),

Единица измерения мощности соответственно - ватт (1 Вт = 1 Дж/с )

75 кГм/с = 1 л. с . (лошадиная сила).

1 кВт = 1000 Вт = 1,36 л. с .

Рассмотрим две произвольные точки твердого тела М 1 и М 2 , являющиеся частью механической системы. Проведем построения (см. рис.14.13).

Внутренние силы P J 1 , P J 2 , действующие со стороны одной точки на другую, на основании закона равенства действия и противодействия равны по модулю и противонапралены P J 1 = - P J 2 .

Пусть в данное мгновение скорости точек равны соответственно u 1 и u 2 и за промежуток времени приращения вдоль векторов составляют ds 1 = u 1 dt , ds 2 = u 2 dt .

Т.к., на основании 1-го следствия теоремы о скоростях точек плоской фигуры проекции векторов скоростей на направление отрезка М 1 М 2 равны, то и проекции элементарных перемещений этих точек будут равны.

Поэтому, вычисляя сумму элементарных работ 2-х внутренних сил на рассматриваемом перемещении и учитывая их равенство и противонаправленность получим

P J 1 ds 1 cos(P J 1 , u 1) + P J 2 ds 1 cos(P J 2 , u 2)= P J 1 * M 1 M’ 1 - P J 1 *M 2 M’ 2 = 0.

Поскольку каждой внутренней силе соответствует другая, равная по модулю и противонапраленная, то сумма элементарных работ всех внутренних сил равна нулю.

Конечное перемещение является совокупностью элементарных перемещений, а поэтому

А j = 0 ,

т.е. сумма работ внутренних сил твердого тела на любом его перемещении равна нулю.

Поступательное движение твердого тела .

При поступательном движении твердого тела траектории всех его точек тождественны и параллельны. Поэтому векторы элементарных перемещений геометрически равны.

Элементарная работа силы P E i

d A E i = P E i dr.

Для всех сил будет

d A=Sd A E i = S P E i dr= dr S P E = dr R E .

Следовательно,

d A=dr R E . (14-46)

Элементарная работа сил, приложенных к твердому телу, движущемуся поступательно, равна элементарной работе главного вектора сил .

А= . (14-47)

Элементарная работа сил, приложенных к твердому телу, вращающемуся вокруг неподвижной оси, равна произведению главного момента внешних сил относительно оси вращения на приращение угла поворота .

Работа на конечном перемещении

SA i = , (14-48)

где - главный момент внешних сил относительно оси вращения.

Если главный момент постоянен, то

SA i = E z = E z (j 2 - j 1). (14-49)

В этом случае сумма работ на конечном перемещении равна произведению главного момента внешних сил на конечное изменение угла поворота тела.

Тогда мощность

N= =M E z dj/dt= M E z w. (14-50)

В общем случае движения элементарная работа внешних сил, приложенных к свободному твердому телу, равна

dA= SdA i = R E dr O + M E W da, (14-51)

где M E W - главный момент внешних сил относительно мгновенной оси; da - элементарный угол поворота относительно мгновенной оси.

14.10. Сопротивление при качении .

На цилиндрический каток, находящийся на горизонтальной плоскости в состоянии покоя (рис.14.14,а) действуют две взаимно уравновешивающиеся силы: вес катка G и нормальная реакция плоскости N = -G .

Если под действием горизонтальной силы Р , приложенной в центре катка С, он катится по плоскости без скольжения, то силы G , N образуют пару сил, препятствующую качению (рис. 14.14,б).

Возникновение этой пары сил обусловлено деформацией контактирующих поверхностей катка и плоскости. Линия действия реакции N оказывается сдвинутой на некоторое расстояние d от линии действия силы G.

Момент пары сил G , N называется моментом сопротивления качению. Его величина определяется произведением

М сопр = Nd . (14-52)

Коэффициент качения выражается в линейных единицах, т.е. [d]= см. Например, стальной бандаж по стальному рельсу d = 0,005 см.; дерево по стали d = 0,03- 0,04 см.

Определим наименьшую горизонтальную силу Р , приложенную к центру катка.

Чтобы каток начал катиться, момент пары сил, составленный силой Р и силой сцепления F сц, должен стать больше момента сопротивления, т.е.

PR> Nd .

Откуда P> Nd/R .

Т.к. здесь N=G, то

Практическая работа на тему: «Работа и мощность при вращательном движении»

Цель работы: закрепить изучение материал по теме, научиться решать задачи.

Ход работы:

    Изучить материал по теме.

    Записать краткую теорию.

    Решить задачи.

    Оформить работу.

    Ответить на контрольные вопросы.

    Написать вывод.

Краткая теория:

Работа постоянной силы, приложенной к вращающемуся телу

Представим себе диск, вращающийся вокруг неподвижной оси под действием постоянной силы F (рис. 6) , точка приложения которой перемещается вместе с диском. Разложим силу F на три взаимно-перпендикулярные составляющие: F 1 – окружная сила, F 2 – осевая сила, F 3 – радиальная сила.

При повороте диска на бесконечно малый угол сила F совершит элементарную работу, которая на основании теоремы о работе равнодействующей будет равна сумме работ составляющих.

Очевидно, что работа составляющих F 2 и F 3 будет равна нулю, так как векторы этих сил перпендикулярны бесконечно малому перемещению ds точки приложения М , поэтому элементарная работа силы F равна работе ее составляющей F 1 :

dW = F 1 ds = F 1 Rdφ .

При повороте диска на конечный угол φ работа силы F равна

W = ∫ F 1 Rdφ = F 1 R ∫ dφ = F 1 ,

где угол φ выражается в радианах.

Так как моменты составляющих F 2 и F 3 относительно оси z равны нулю, то на основании момент силы F относительно оси z равен:

М z (F) = F 1 R .

Момент силы, приложенной к диску, относительно оси вращения называется вращающим моментом, и, согласно стандарту ИСО , обозначается буквой Т :

Т = М z (F) , следовательно, W = Tφ .

Работа постоянной силы, приложенной к вращающемуся телу, равна произведению вращающего момента на угловое перемещение .

Пример решения задачи

Задача: рабочий вращает рукоятку лебедки силой F = 200 Н , перпендикулярной радиусу вращения.
Найти работу, затраченную в течение времени
t = 25 секунд , если длина рукоятки r = 0,4 м , а ее угловая скорость ω = π/3 рад/с .

Решение.
Прежде всего определим угловое перемещение
φ рукоятки лебедки за 25 секунд :

φ = ωt = (π/3)×25 = 26,18 рад.

W = Tφ = Frφ = 200×0,4×26,18 ≈ 2100 Дж ≈ 2,1 кДж .

Мощность силы, приложенной к равномерно вращающемуся телу, равна произведению вращающего момента на угловую скорость .

Если работа совершается силой, приложенной к равномерно вращающемуся телу, то мощность в этом случае может быть определена по формуле:

P = W/t = Tφ/t или P = Tω .

Вариант №1

    На двух шнурах одинаковой длины, равной 0,8 м, подвешены два свинцовых шара массами 0,5 и 1 кг. Шары соприкасается между собой. Шар меньшей массы отвели в сторону так, что шнур отклонился на угол α= 60°, и отпустили. На какую высоту поднимутся оба шара после столкновения? Удар считать центральным и неупругим. Определить энергию, израсходованную на деформацию шаров при ударе.

    Маховик массой 4 кг свободно вращается вокруг горизонтальной оси, проходящей через его центр, с частотой 720 мин-1. Массу маховика можно считать распределенной по его ободу радиусом 40 см. Через 30 с под действием тормозящего мо­мента маховик остановился. Найти тормозящий момент и число оборотов, которое делает маховик до полной остановки.

    Тело массой m=1,0 кг падает с высоты h=20 м. Пренебрегая сопротивлением воздуха найти среднюю мощность, развиваемую силой тяжести на пути h, и мгновенную мощность на высоте h/2.

Вариант №2

    Маховик вращается по закону, выражаемому уравнением, где А = 2 рад, В = 32 рад/с, С = -4 рад/с2. Найти среднюю мощность N , развиваемую силами, действующими на маховик при его вращении, до остановки, если момент инерции I = 100 кг·м 2 .

    Тело массы m вращается на горизонтальной поверхности по окружности радиуса r=100мм. Найти работу силы трения при повороте тела на угол α=30. Коэффициент трения между телом и поверхностью равен k=0,2.

    Первый шар массой m1 = 2 кг движется со скоростью, величина которой v1 = 3 м/с. Второй шар массой m2 = 8 кг движется со скоростью, величина которой v2 = 1 м/с. Найти скорость v 1 первого шара и скорость v 2 второго шара сразу после удара, если: а) шары движутся навстречу друг другу; б) первый шар догоняет второй. Удар считать центральным и абсолютно упругим.

Работа сил вычисляется по формулам, полученным в § 87 и 88. Рассмотрим дополнительно следующие случаи.

1. Работа сил тяжести, действующих на систему. Работа силы тяжести, действующей на частицу весом будет равна где - координаты, определяющие начальное и конечное положения частицы (см. § 88). Тогда, учтя, что (см. § 32), найдем для суммы работ всех сил тяжести, действующих на систему, значение

Этот результат можно еще представить в виде

где Р - вес системы, - вертикальное перемещение центра масс (или центра тяжести). Следовательно, работа сил тяжести, действующих на систему, вычисляется как работа их главного вектора (в случае твердого тела равнодействующей) Р на перемещении центра масс системы (или центра тяжести тела).

2. Работа сил, приложенных к вращающемуся телу. Элементарная работа приложенной к телу силы F (рис. 307) будет равна (см. § 87)

так как , где - элементарный угол поворота тела.

Но, как легко видеть,

Будем называть величину вращающим моментом. Тогда получим

Следовательно, в рассматриваемом случае элементарная работа равна произведению вращающего момента на элементарный угол поворота. Формула (46) справедлива и при действии нескольких сил, если считать

При повороте на конечный угол работа

а в случае постоянного момента

Если на тело действует пара сил, лежащая в плоскости, перпендикулярной оси Oz, то в формулах (46)-(47) будет, очевидно, означать момент этой пары.

Укажем еще, как в данном случае определяется мощность (см. § 87). Пользуясь равенством (46), находим

Следовательно, при действии сил на вращающееся тело мощность равна произведению вращающего момента на угловую скорость тела. При той же самой мощности вращающий момент будет тем больше, чем меньше угловая скорость.

3. Работа сил трения, действующих на катящееся тело. На колесо радиусом R (рис. 308), катящееся по некоторой плоскости (поверхности) без скольжения, действует приложенная в точке В сила трения , препятствующая скольжению точки вдоль плоскости. Элементарная работа этой силы . Но точка В в данном случае совпадает с мгновенным центром скоростей (см. § 56) и

Так как то и для каждого элементарного перемещения .

Следовательно, при качении без скольжения работа силы трения, препятствующей скольжению, на любом перемещении тела равна нулю. По той же причине в этом случае равна нулю и работа нормальной реакции N, если считать тела недеформируемыми в силу N приложенной в точке В (как на рис. 308, а).