Βιογραφίες Χαρακτηριστικά Ανάλυση

Πώς να βρείτε τη ρίζα μιας εξίσωσης με λογάριθμο. Λογάριθμοι: παραδείγματα και λύσεις

Η διατήρηση του απορρήτου σας είναι σημαντική για εμάς. Για το λόγο αυτό, έχουμε αναπτύξει μια Πολιτική Απορρήτου που περιγράφει τον τρόπο με τον οποίο χρησιμοποιούμε και αποθηκεύουμε τις πληροφορίες σας. Διαβάστε τις πρακτικές απορρήτου μας και ενημερώστε μας εάν έχετε ερωτήσεις.

Συλλογή και χρήση προσωπικών πληροφοριών

Οι προσωπικές πληροφορίες αναφέρονται σε δεδομένα που μπορούν να χρησιμοποιηθούν για την αναγνώριση ή επικοινωνία με ένα συγκεκριμένο άτομο.

Ενδέχεται να σας ζητηθεί να δώσετε τα προσωπικά σας στοιχεία ανά πάσα στιγμή όταν επικοινωνήσετε μαζί μας.

Ακολουθούν ορισμένα παραδείγματα των τύπων προσωπικών πληροφοριών που ενδέχεται να συλλέγουμε και πώς μπορούμε να χρησιμοποιήσουμε αυτές τις πληροφορίες.

Ποιες προσωπικές πληροφορίες συλλέγουμε:

  • Όταν υποβάλλετε μια αίτηση στον ιστότοπο, ενδέχεται να συλλέξουμε διάφορες πληροφορίες, όπως το όνομά σας, τον αριθμό τηλεφώνου, τη διεύθυνση email σας κ.λπ.

Πώς χρησιμοποιούμε τα προσωπικά σας στοιχεία:

  • Οι προσωπικές πληροφορίες που συλλέγουμε μας επιτρέπουν να επικοινωνήσουμε μαζί σας με μοναδικές προσφορές, προσφορές και άλλες εκδηλώσεις και επερχόμενες εκδηλώσεις.
  • Από καιρό σε καιρό, ενδέχεται να χρησιμοποιήσουμε τα προσωπικά σας στοιχεία για να στείλουμε σημαντικές ειδοποιήσεις και επικοινωνίες.
  • Ενδέχεται επίσης να χρησιμοποιήσουμε προσωπικές πληροφορίες για εσωτερικούς σκοπούς, όπως διεξαγωγή ελέγχων, ανάλυση δεδομένων και διάφορες έρευνες, προκειμένου να βελτιώσουμε τις υπηρεσίες που παρέχουμε και να σας παρέχουμε συστάσεις σχετικά με τις υπηρεσίες μας.
  • Εάν συμμετέχετε σε κλήρωση, διαγωνισμό ή παρόμοια προσφορά, ενδέχεται να χρησιμοποιήσουμε τις πληροφορίες που παρέχετε για τη διαχείριση τέτοιων προγραμμάτων.

Αποκάλυψη πληροφοριών σε τρίτους

Δεν αποκαλύπτουμε τις πληροφορίες που λαμβάνουμε από εσάς σε τρίτους.

Εξαιρέσεις:

  • Εάν είναι απαραίτητο - σύμφωνα με το νόμο, τη δικαστική διαδικασία, σε νομικές διαδικασίες και/ή βάσει δημόσιων αιτημάτων ή αιτημάτων από κυβερνητικές αρχές στην επικράτεια της Ρωσικής Ομοσπονδίας - να αποκαλύψετε τα προσωπικά σας στοιχεία. Ενδέχεται επίσης να αποκαλύψουμε πληροφορίες σχετικά με εσάς εάν κρίνουμε ότι αυτή η αποκάλυψη είναι απαραίτητη ή κατάλληλη για λόγους ασφάλειας, επιβολής του νόμου ή άλλους σκοπούς δημόσιας σημασίας.
  • Σε περίπτωση αναδιοργάνωσης, συγχώνευσης ή πώλησης, ενδέχεται να μεταφέρουμε τις προσωπικές πληροφορίες που συλλέγουμε στον αντίστοιχο τρίτο διάδοχο.

Προστασία προσωπικών πληροφοριών

Λαμβάνουμε προφυλάξεις - συμπεριλαμβανομένων διοικητικών, τεχνικών και φυσικών - για την προστασία των προσωπικών σας δεδομένων από απώλεια, κλοπή και κακή χρήση, καθώς και από μη εξουσιοδοτημένη πρόσβαση, αποκάλυψη, τροποποίηση και καταστροφή.

Σεβασμός του απορρήτου σας σε εταιρικό επίπεδο

Για να διασφαλίσουμε ότι τα προσωπικά σας στοιχεία είναι ασφαλή, κοινοποιούμε τα πρότυπα απορρήτου και ασφάλειας στους υπαλλήλους μας και εφαρμόζουμε αυστηρά τις πρακτικές απορρήτου.

Λογαριθμικές εξισώσεις. Συνεχίζουμε να εξετάζουμε προβλήματα από το Μέρος Β της Ενιαίας Κρατικής Εξέτασης στα μαθηματικά. Έχουμε ήδη εξετάσει λύσεις σε ορισμένες εξισώσεις στα άρθρα "", "". Σε αυτό το άρθρο θα δούμε τις λογαριθμικές εξισώσεις. Θα πω αμέσως ότι δεν θα υπάρξουν περίπλοκοι μετασχηματισμοί κατά την επίλυση τέτοιων εξισώσεων στην Ενιαία Κρατική Εξέταση. Είναι απλοί.

Αρκεί να γνωρίζουμε και να κατανοούμε τη βασική λογαριθμική ταυτότητα, να γνωρίζουμε τις ιδιότητες του λογαρίθμου. Σημειώστε ότι μετά την επίλυσή του, ΠΡΕΠΕΙ να κάνετε έναν έλεγχο - να αντικαταστήσετε την τιμή που προκύπτει στην αρχική εξίσωση και να υπολογίσετε, στο τέλος θα πρέπει να πάρετε τη σωστή ισότητα.

Ορισμός:

Ο λογάριθμος ενός αριθμού στη βάση b είναι ο εκθέτης,στο οποίο πρέπει να ανυψωθεί το b για να ληφθεί το α.


Για παράδειγμα:

Log 3 9 = 2, αφού 3 2 = 9

Ιδιότητες λογαρίθμων:

Ειδικές περιπτώσεις λογαρίθμων:

Ας λύσουμε προβλήματα. Στο πρώτο παράδειγμα θα κάνουμε έναν έλεγχο. Στο μέλλον, ελέγξτε το μόνοι σας.

Βρείτε τη ρίζα της εξίσωσης: log 3 (4–x) = 4

Αφού log b a = x b x = a, τότε

3 4 = 4 – x

x = 4 – 81

x = – 77

Εξέταση:

ημερολόγιο 3 (4–(–77)) = 4

ημερολόγιο 3 81 = 4

3 4 = 81 Σωστό.

Απάντηση: – 77

Αποφασίστε μόνοι σας:

Βρείτε τη ρίζα της εξίσωσης: log 2 (4 – x) = 7

Βρείτε τη ρίζα του ημερολογίου εξίσωσης 5(4 + x) = 2

Χρησιμοποιούμε τη βασική λογαριθμική ταυτότητα.

Αφού log a b = x b x = a, τότε

5 2 = 4 + x

x =5 2 – 4

x = 21

Εξέταση:

ημερολόγιο 5 (4 + 21) = 2

ημερολόγιο 5 25 = 2

5 2 = 25 Σωστό.

Απάντηση: 21

Βρείτε τη ρίζα της εξίσωσης log 3 (14 – x) = log 3 5.

Πραγματοποιείται η ακόλουθη ιδιότητα, η σημασία της είναι η εξής: αν στην αριστερή και δεξιά πλευρά της εξίσωσης έχουμε λογάριθμους με την ίδια βάση, τότε μπορούμε να εξισώσουμε τις εκφράσεις κάτω από τα πρόσημα των λογαρίθμων.

14 – x = 5

x=9

Κάντε έναν έλεγχο.

Απάντηση: 9

Αποφασίστε μόνοι σας:

Βρείτε τη ρίζα της εξίσωσης log 5 (5 – x) = log 5 3.

Βρείτε τη ρίζα της εξίσωσης: log 4 (x + 3) = log 4 (4x – 15).

Αν log c a = log c b, τότε a = b

x + 3 = 4x – 15

3x = 18

x=6

Κάντε έναν έλεγχο.

Απάντηση: 6

Βρείτε τη ρίζα της εξίσωσης log 1/8 (13 – x) = – 2.

(1/8) –2 = 13 – x

8 2 = 13 – x

x = 13 – 64

x = – 51

Κάντε έναν έλεγχο.

Μια μικρή προσθήκη - το ακίνητο χρησιμοποιείται εδώ

μοίρες ().

Απάντηση: – 51

Αποφασίστε μόνοι σας:

Βρείτε τη ρίζα της εξίσωσης: log 1/7 (7 – x) = – 2

Βρείτε τη ρίζα της εξίσωσης log 2 (4 – x) = 2 log 2 5.

Ας μεταμορφώσουμε τη δεξιά πλευρά. Ας χρησιμοποιήσουμε το ακίνητο:

log a b m = m∙log a b

log 2 (4 – x) = log 2 5 2

Αν log c a = log c b, τότε a = b

4 – x = 5 2

4 – x = 25

x = – 21

Κάντε έναν έλεγχο.

Απάντηση: – 21

Αποφασίστε μόνοι σας:

Βρείτε τη ρίζα της εξίσωσης: log 5 (5 – x) = 2 log 5 3

Λύστε την εξίσωση log 5 (x 2 + 4x) = log 5 (x 2 + 11)

Αν log c a = log c b, τότε a = b

x 2 + 4x = x 2 + 11

4x = 11

x = 2,75

Κάντε έναν έλεγχο.

Απάντηση: 2,75

Αποφασίστε μόνοι σας:

Βρείτε τη ρίζα της εξίσωσης log 5 (x 2 + x) = log 5 (x 2 + 10).

Λύστε την εξίσωση log 2 (2 – x) = log 2 (2 – 3x) +1.

Είναι απαραίτητο να λάβουμε μια έκφραση της φόρμας στη δεξιά πλευρά της εξίσωσης:

ημερολόγιο 2 (......)

Αντιπροσωπεύουμε το 1 ως λογάριθμο βάσης 2:

1 = ημερολόγιο 2 2

log c (ab) = log c a + log c b

log 2 (2 – x) = log 2 (2 – 3x) + log 2 2

Παίρνουμε:

log 2 (2 – x) = log 2 2 (2 – 3x)

Αν log c a = log c b, τότε a = b, τότε

2 – x = 4 – 6x

5x = 2

x = 0,4

Κάντε έναν έλεγχο.

Απάντηση: 0,4

Αποφασίστε μόνοι σας: Στη συνέχεια πρέπει να λύσετε την τετραγωνική εξίσωση. Παρεμπιπτόντως,

οι ρίζες είναι 6 και – 4.

Ρίζα "-Το 4" δεν είναι λύση, αφού η βάση του λογαρίθμου πρέπει να είναι μεγαλύτερη από το μηδέν και με " 4" ισούται με " 5". Η λύση είναι η ρίζα 6.Κάντε έναν έλεγχο.

Απάντηση: 6.

R φάτε μόνοι σας:

Λύστε την εξίσωση log x –5 49 = 2. Αν η εξίσωση έχει περισσότερες από μία ρίζες, απαντήστε με τη μικρότερη.

Όπως είδατε, δεν υπάρχουν περίπλοκοι μετασχηματισμοί με λογαριθμικές εξισώσειςΟχι. Αρκεί να γνωρίζουμε τις ιδιότητες του λογάριθμου και να μπορούμε να τις εφαρμόζουμε. Σε προβλήματα USE που σχετίζονται με τον μετασχηματισμό λογαριθμικών παραστάσεων, εκτελούνται πιο σοβαροί μετασχηματισμοί και απαιτούνται πιο εις βάθος δεξιότητες επίλυσης. Θα δούμε τέτοια παραδείγματα, μην τα χάσετε!Σου εύχομαι επιτυχία!!!

Με εκτίμηση, Alexander Krutitskikh.

P.S: Θα σας ήμουν ευγνώμων αν μου πείτε για τον ιστότοπο στα κοινωνικά δίκτυα.

Όπως γνωρίζετε, κατά τον πολλαπλασιασμό των παραστάσεων με δυνάμεις, οι εκθέτες τους αθροίζονται πάντα (a b *a c = a b+c). Αυτός ο μαθηματικός νόμος προήλθε από τον Αρχιμήδη και αργότερα, τον 8ο αιώνα, ο μαθηματικός Virasen δημιούργησε έναν πίνακα με ακέραιους εκθέτες. Ήταν αυτοί που χρησίμευσαν για την περαιτέρω ανακάλυψη των λογαρίθμων. Παραδείγματα χρήσης αυτής της συνάρτησης μπορούν να βρεθούν σχεδόν παντού όπου χρειάζεται να απλοποιήσετε τον περίπλοκο πολλαπλασιασμό με απλή πρόσθεση. Εάν αφιερώσετε 10 λεπτά για να διαβάσετε αυτό το άρθρο, θα σας εξηγήσουμε τι είναι οι λογάριθμοι και πώς να εργαστείτε με αυτούς. Σε απλή και προσιτή γλώσσα.

Ορισμός στα μαθηματικά

Ένας λογάριθμος είναι μια έκφραση της ακόλουθης μορφής: log a b=c, δηλαδή, ο λογάριθμος οποιουδήποτε μη αρνητικού αριθμού (δηλαδή οποιουδήποτε θετικού) "b" στη βάση του "a" θεωρείται ότι είναι η δύναμη "c ” στην οποία πρέπει να αυξηθεί η βάση “a” για να ληφθεί τελικά η τιμή “b”. Ας αναλύσουμε τον λογάριθμο χρησιμοποιώντας παραδείγματα, ας πούμε ότι υπάρχει μια έκφραση log 2 8. Πώς να βρείτε την απάντηση; Είναι πολύ απλό, πρέπει να βρείτε μια ισχύ τέτοια ώστε από το 2 στην απαιτούμενη ισχύ να παίρνετε 8. Αφού κάνετε κάποιους υπολογισμούς στο κεφάλι σας, παίρνουμε τον αριθμό 3! Και αυτό είναι αλήθεια, γιατί το 2 στη δύναμη του 3 δίνει την απάντηση ως 8.

Τύποι λογαρίθμων

Για πολλούς μαθητές και φοιτητές, αυτό το θέμα φαίνεται περίπλοκο και ακατανόητο, αλλά στην πραγματικότητα οι λογάριθμοι δεν είναι τόσο τρομακτικοί, το κύριο πράγμα είναι να κατανοήσουμε τη γενική τους σημασία και να θυμόμαστε τις ιδιότητές τους και ορισμένους κανόνες. Υπάρχουν τρεις διαφορετικοί τύποι λογαριθμικών παραστάσεων:

  1. Φυσικός λογάριθμος ln a, όπου η βάση είναι ο αριθμός Euler (e = 2,7).
  2. Δεκαδικό α, όπου η βάση είναι 10.
  3. Λογάριθμος οποιουδήποτε αριθμού b στη βάση a>1.

Κάθε ένα από αυτά επιλύεται με έναν τυπικό τρόπο, συμπεριλαμβανομένης της απλοποίησης, της αναγωγής και της επακόλουθης αναγωγής σε έναν μόνο λογάριθμο χρησιμοποιώντας λογαριθμικά θεωρήματα. Για να λάβετε τις σωστές τιμές των λογαρίθμων, θα πρέπει να θυμάστε τις ιδιότητές τους και την ακολουθία των ενεργειών κατά την επίλυσή τους.

Κανόνες και ορισμένοι περιορισμοί

Στα μαθηματικά υπάρχουν αρκετοί κανόνες-περιορισμοί που γίνονται δεκτοί ως αξίωμα, δηλαδή δεν υπόκεινται σε συζήτηση και είναι η αλήθεια. Για παράδειγμα, είναι αδύνατο να διαιρεθούν οι αριθμοί με το μηδέν, και είναι επίσης αδύνατο να εξαχθεί η ζυγή ρίζα των αρνητικών αριθμών. Οι λογάριθμοι έχουν επίσης τους δικούς τους κανόνες, ακολουθώντας τους οποίους μπορείτε εύκολα να μάθετε να εργάζεστε ακόμη και με μεγάλες και μεγάλες λογαριθμικές εκφράσεις:

  • Η βάση "a" πρέπει να είναι πάντα μεγαλύτερη από το μηδέν και όχι ίση με 1, διαφορετικά η έκφραση θα χάσει το νόημά της, επειδή το "1" και το "0" σε οποιοδήποτε βαθμό είναι πάντα ίσα με τις τιμές τους.
  • εάν a > 0, τότε a b >0, αποδεικνύεται ότι το "c" πρέπει επίσης να είναι μεγαλύτερο από το μηδέν.

Πώς να λύσετε λογάριθμους;

Για παράδειγμα, δίνεται η εργασία να βρείτε την απάντηση στην εξίσωση 10 x = 100. Αυτό είναι πολύ εύκολο, πρέπει να επιλέξετε μια δύναμη αυξάνοντας τον αριθμό δέκα στον οποίο λαμβάνουμε 100. Αυτό, φυσικά, είναι 10 2 = 100.

Τώρα ας αναπαραστήσουμε αυτήν την έκφραση σε λογαριθμική μορφή. Παίρνουμε log 10 100 = 2. Κατά την επίλυση λογαρίθμων, όλες οι ενέργειες πρακτικά συγκλίνουν για να βρούμε την ισχύ στην οποία είναι απαραίτητο να εισαγάγουμε τη βάση του λογαρίθμου για να λάβουμε έναν δεδομένο αριθμό.

Για να προσδιορίσετε με ακρίβεια την τιμή ενός άγνωστου βαθμού, πρέπει να μάθετε πώς να εργάζεστε με έναν πίνακα βαθμών. Μοιάζει με αυτό:

Όπως μπορείτε να δείτε, ορισμένοι εκθέτες μπορούν να μαντευτούν διαισθητικά εάν έχετε τεχνικό μυαλό και γνώση του πίνακα πολλαπλασιασμού. Ωστόσο, για μεγαλύτερες τιμές θα χρειαστείτε ένα τραπέζι τροφοδοσίας. Μπορεί να χρησιμοποιηθεί ακόμη και από εκείνους που δεν γνωρίζουν απολύτως τίποτα για πολύπλοκα μαθηματικά θέματα. Η αριστερή στήλη περιέχει αριθμούς (βάση α), η επάνω σειρά αριθμών είναι η τιμή της δύναμης c στην οποία αυξάνεται ο αριθμός a. Στη διασταύρωση, τα κελιά περιέχουν τις αριθμητικές τιμές που είναι η απάντηση (a c =b). Ας πάρουμε, για παράδειγμα, το πρώτο κελί με τον αριθμό 10 και τετράγωνο το, παίρνουμε την τιμή 100, η ​​οποία υποδεικνύεται στην τομή των δύο κελιών μας. Όλα είναι τόσο απλά και εύκολα που θα καταλάβει και ο πιο αληθινός ανθρωπιστής!

Εξισώσεις και ανισώσεις

Αποδεικνύεται ότι υπό ορισμένες συνθήκες ο εκθέτης είναι ο λογάριθμος. Επομένως, οποιεσδήποτε μαθηματικές αριθμητικές εκφράσεις μπορούν να γραφτούν ως λογαριθμική ισότητα. Για παράδειγμα, το 3 4 = 81 μπορεί να γραφτεί ως ο βασικός 3 λογάριθμος του 81 ίσος με τέσσερα (log 3 81 = 4). Για τις αρνητικές δυνάμεις οι κανόνες είναι οι ίδιοι: 2 -5 = 1/32 το γράφουμε ως λογάριθμο, παίρνουμε log 2 (1/32) = -5. Ένα από τα πιο συναρπαστικά τμήματα των μαθηματικών είναι το θέμα των «λογαρίθμων». Παραδείγματα και λύσεις εξισώσεων θα δούμε παρακάτω, αμέσως μετά τη μελέτη των ιδιοτήτων τους. Τώρα ας δούμε πώς μοιάζουν οι ανισότητες και πώς να τις διακρίνουμε από τις εξισώσεις.

Δίνεται η ακόλουθη έκφραση: log 2 (x-1) > 3 - είναι λογαριθμική ανισότητα, αφού η άγνωστη τιμή «x» βρίσκεται κάτω από το λογαριθμικό πρόσημο. Και επίσης στην έκφραση συγκρίνονται δύο ποσότητες: ο λογάριθμος του επιθυμητού αριθμού στη βάση δύο είναι μεγαλύτερος από τον αριθμό τρία.

Η πιο σημαντική διαφορά μεταξύ λογαριθμικών εξισώσεων και ανισώσεων είναι ότι οι εξισώσεις με λογάριθμους (για παράδειγμα, ο λογάριθμος 2 x = √9) υποδηλώνουν μία ή περισσότερες συγκεκριμένες αριθμητικές τιμές στην απάντηση, ενώ κατά την επίλυση μιας ανισότητας, τόσο το εύρος των αποδεκτών οι τιμές και τα σημεία προσδιορίζονται σπάζοντας αυτή τη συνάρτηση. Κατά συνέπεια, η απάντηση δεν είναι ένα απλό σύνολο μεμονωμένων αριθμών, όπως στην απάντηση σε μια εξίσωση, αλλά μια συνεχής σειρά ή σύνολο αριθμών.

Βασικά θεωρήματα για τους λογάριθμους

Κατά την επίλυση πρωτόγονων εργασιών εύρεσης των τιμών του λογάριθμου, οι ιδιότητές του μπορεί να μην είναι γνωστές. Ωστόσο, όταν πρόκειται για λογαριθμικές εξισώσεις ή ανισώσεις, πρώτα απ 'όλα, είναι απαραίτητο να κατανοήσουμε με σαφήνεια και να εφαρμόσουμε στην πράξη όλες τις βασικές ιδιότητες των λογαρίθμων. Θα δούμε παραδείγματα εξισώσεων αργότερα· ας δούμε πρώτα κάθε ιδιότητα με περισσότερες λεπτομέρειες.

  1. Η κύρια ταυτότητα μοιάζει με αυτό: a logaB =B. Ισχύει μόνο όταν το α είναι μεγαλύτερο από 0, όχι ίσο με ένα και το Β είναι μεγαλύτερο από μηδέν.
  2. Ο λογάριθμος του προϊόντος μπορεί να αναπαρασταθεί με τον ακόλουθο τύπο: log d (s 1 * s 2) = log d s 1 + log d s 2. Στην περίπτωση αυτή, η υποχρεωτική συνθήκη είναι: d, s 1 και s 2 > 0; a≠1. Μπορείτε να δώσετε μια απόδειξη για αυτόν τον λογαριθμικό τύπο, με παραδείγματα και λύση. Έστω log a s 1 = f 1 και log a s 2 = f 2, μετά a f1 = s 1, a f2 = s 2. Λαμβάνουμε ότι s 1 * s 2 = a f1 *a f2 = a f1+f2 (ιδιότητες του μοίρες ), και μετά εξ ορισμού: log a (s 1 * s 2) = f 1 + f 2 = log a s1 + log a s 2, το οποίο έπρεπε να αποδειχθεί.
  3. Ο λογάριθμος του πηλίκου μοιάζει με αυτό: log a (s 1/ s 2) = log a s 1 - log a s 2.
  4. Το θεώρημα με τη μορφή τύπου παίρνει την ακόλουθη μορφή: log a q b n = n/q log a b.

Αυτός ο τύπος ονομάζεται «ιδιότητα του βαθμού του λογάριθμου». Μοιάζει με τις ιδιότητες των συνηθισμένων βαθμών και δεν προκαλεί έκπληξη, γιατί όλα τα μαθηματικά βασίζονται σε φυσικά αξιώματα. Ας δούμε την απόδειξη.

Έστω log a b = t, προκύπτει t =b. Αν υψώσουμε και τα δύο μέρη στην ισχύ m: a tn = b n ;

αλλά εφόσον a tn = (a q) nt/q = b n, επομένως log a q b n = (n*t)/t, τότε log a q b n = n/q log a b. Το θεώρημα έχει αποδειχθεί.

Παραδείγματα προβλημάτων και ανισοτήτων

Οι πιο συνηθισμένοι τύποι προβλημάτων στους λογάριθμους είναι παραδείγματα εξισώσεων και ανισώσεων. Βρίσκονται σχεδόν σε όλα τα προβληματικά βιβλία και αποτελούν επίσης υποχρεωτικό μέρος των εξετάσεων των μαθηματικών. Για να εισέλθετε σε ένα πανεπιστήμιο ή να περάσετε εισαγωγικές εξετάσεις στα μαθηματικά, πρέπει να ξέρετε πώς να επιλύσετε σωστά τέτοιες εργασίες.

Δυστυχώς, δεν υπάρχει ένα ενιαίο σχέδιο ή σχήμα για την επίλυση και τον προσδιορισμό της άγνωστης τιμής του λογαρίθμου, αλλά ορισμένοι κανόνες μπορούν να εφαρμοστούν σε κάθε μαθηματική ανισότητα ή λογαριθμική εξίσωση. Πρώτα απ 'όλα, θα πρέπει να μάθετε εάν η έκφραση μπορεί να απλοποιηθεί ή να περιοριστεί σε μια γενική μορφή. Μπορείτε να απλοποιήσετε μεγάλες λογαριθμικές εκφράσεις εάν χρησιμοποιήσετε σωστά τις ιδιότητές τους. Ας τους γνωρίσουμε γρήγορα.

Όταν λύνουμε λογαριθμικές εξισώσεις, πρέπει να προσδιορίσουμε τον τύπο λογάριθμου που έχουμε: ένα παράδειγμα παράστασης μπορεί να περιέχει έναν φυσικό λογάριθμο ή έναν δεκαδικό.

Ακολουθούν παραδείγματα ln100, ln1026. Η λύση τους συνοψίζεται στο γεγονός ότι πρέπει να καθορίσουν την ισχύ στην οποία η βάση 10 θα είναι ίση με 100 και 1026, αντίστοιχα. Για να λύσετε φυσικούς λογάριθμους, πρέπει να εφαρμόσετε λογαριθμικές ταυτότητες ή τις ιδιότητές τους. Ας δούμε παραδείγματα επίλυσης λογαριθμικών προβλημάτων διαφόρων τύπων.

Πώς να χρησιμοποιήσετε τους τύπους λογαρίθμων: με παραδείγματα και λύσεις

Ας δούμε λοιπόν παραδείγματα χρήσης των βασικών θεωρημάτων για τους λογαρίθμους.

  1. Η ιδιότητα του λογάριθμου ενός προϊόντος μπορεί να χρησιμοποιηθεί σε εργασίες όπου είναι απαραίτητο να αποσυντεθεί μια μεγάλη τιμή του αριθμού b σε απλούστερους παράγοντες. Για παράδειγμα, log 2 4 + log 2 128 = log 2 (4*128) = log 2 512. Η απάντηση είναι 9.
  2. log 4 8 = log 2 2 2 3 = 3/2 log 2 2 = 1,5 - όπως μπορείτε να δείτε, χρησιμοποιώντας την τέταρτη ιδιότητα της λογαριθμικής ισχύος, καταφέραμε να λύσουμε μια φαινομενικά πολύπλοκη και άλυτη έκφραση. Απλά πρέπει να συνυπολογίσετε τη βάση και στη συνέχεια να αφαιρέσετε τις τιμές εκθέτη από το πρόσημο του λογαρίθμου.

Εργασίες από την Ενιαία Κρατική Εξέταση

Οι λογάριθμοι συναντώνται συχνά στις εισαγωγικές εξετάσεις, ειδικά πολλά λογαριθμικά προβλήματα στην Ενιαία Κρατική Εξέταση (κρατική εξέταση για όλους τους αποφοίτους σχολείων). Συνήθως, αυτές οι εργασίες υπάρχουν όχι μόνο στο μέρος Α (το πιο εύκολο τεστ της εξέτασης), αλλά και στο μέρος Γ (οι πιο περίπλοκες και ογκώδεις εργασίες). Η εξέταση απαιτεί ακριβή και τέλεια γνώση του θέματος «Φυσικοί λογάριθμοι».

Παραδείγματα και λύσεις προβλημάτων λαμβάνονται από τις επίσημες εκδόσεις της Ενιαίας Κρατικής Εξέτασης. Ας δούμε πώς επιλύονται τέτοιες εργασίες.

Δίνεται log 2 (2x-1) = 4. Λύση:
ας ξαναγράψουμε την παράσταση, απλοποιώντας την λίγο log 2 (2x-1) = 2 2, με τον ορισμό του λογάριθμου παίρνουμε ότι 2x-1 = 2 4, άρα 2x = 17. x = 8,5.

  • Είναι καλύτερο να μειώσετε όλους τους λογάριθμους στην ίδια βάση, έτσι ώστε η λύση να μην είναι περίπλοκη και μπερδεμένη.
  • Όλες οι εκφράσεις κάτω από το πρόσημο του λογάριθμου υποδεικνύονται ως θετικές, επομένως, όταν ο εκθέτης μιας παράστασης που βρίσκεται κάτω από το πρόσημο του λογάριθμου και ως βάση της αφαιρείται ως πολλαπλασιαστής, η παράσταση που παραμένει κάτω από τον λογάριθμο πρέπει να είναι θετική.

Λογαριθμικές εκφράσεις, επίλυση παραδειγμάτων. Σε αυτό το άρθρο θα εξετάσουμε προβλήματα που σχετίζονται με την επίλυση λογαρίθμων. Οι εργασίες θέτουν το ερώτημα της εύρεσης της σημασίας μιας έκφρασης. Πρέπει να σημειωθεί ότι η έννοια του λογάριθμου χρησιμοποιείται σε πολλές εργασίες και η κατανόηση της σημασίας της είναι εξαιρετικά σημαντική. Όσον αφορά την Ενιαία Κρατική Εξέταση, ο λογάριθμος χρησιμοποιείται κατά την επίλυση εξισώσεων, σε εφαρμοσμένα προβλήματα, καθώς και σε εργασίες που σχετίζονται με τη μελέτη συναρτήσεων.

Ας δώσουμε παραδείγματα για να κατανοήσουμε την ίδια την έννοια του λογάριθμου:


Βασική λογαριθμική ταυτότητα:

Ιδιότητες λογαρίθμων που πρέπει πάντα να θυμόμαστε:

*Ο λογάριθμος του γινομένου είναι ίσος με το άθροισμα των λογαρίθμων των παραγόντων.

* * *

*Ο λογάριθμος ενός πηλίκου (κλάσματος) ισούται με τη διαφορά μεταξύ των λογαρίθμων των παραγόντων.

* * *

*Ο λογάριθμος ενός εκθέτη είναι ίσος με το γινόμενο του εκθέτη και του λογάριθμου της βάσης του.

* * *

*Μετάβαση σε νέα βάση

* * *

Περισσότερες ιδιότητες:

* * *

Ο υπολογισμός των λογαρίθμων σχετίζεται στενά με τη χρήση των ιδιοτήτων των εκθετών.

Ας παραθέσουμε μερικά από αυτά:

Η ουσία αυτής της ιδιότητας είναι ότι όταν ο αριθμητής μεταφέρεται στον παρονομαστή και αντίστροφα, το πρόσημο του εκθέτη αλλάζει στο αντίθετο. Για παράδειγμα:

Συμπέρασμα από αυτό το ακίνητο:

* * *

Όταν αυξάνεται μια ισχύς σε μια ισχύ, η βάση παραμένει η ίδια, αλλά οι εκθέτες πολλαπλασιάζονται.

* * *

Όπως είδατε, η ίδια η έννοια του λογάριθμου είναι απλή. Το κύριο πράγμα είναι ότι χρειάζεστε καλή πρακτική, η οποία σας δίνει μια συγκεκριμένη ικανότητα. Φυσικά απαιτείται γνώση τύπων. Εάν η ικανότητα μετατροπής στοιχειωδών λογαρίθμων δεν έχει αναπτυχθεί, τότε κατά την επίλυση απλών εργασιών μπορείτε εύκολα να κάνετε ένα λάθος.

Εξασκηθείτε, λύστε πρώτα τα πιο απλά παραδείγματα από το μάθημα των μαθηματικών και μετά προχωρήστε σε πιο σύνθετα. Στο μέλλον, σίγουρα θα δείξω πόσο «άσχημοι» λογάριθμοι λύνονται· αυτοί δεν θα εμφανίζονται στην Ενιαία Κρατική Εξέταση, αλλά έχουν ενδιαφέρον, μην τους χάσετε!

Αυτό είναι όλο! Καλή σου τύχη!

Με εκτίμηση, Alexander Krutitskikh

P.S: Θα σας ήμουν ευγνώμων αν μου πείτε για τον ιστότοπο στα κοινωνικά δίκτυα.