Биографии Характеристики Анализ

Как переводится обыкновенная дробь в десятичную. Десятичные дроби

Пытаясь решить математические задачи с дробями, школьник понимает, что ему недостаточно одного только желания решить эти задачи. Также необходимы и знания по вычислениям с дробными числами. В некоторых задачах все начальные данные подаются в условии в дробном виде. В других же часть их может быть дробями, а часть - целыми числами. Чтобы производить какие-то вычисления с этими заданными значениями, надо сначала привести их к единому виду, то есть целые числа перевести в дробные, а потом уже заниматься вычислениями. Вообще способ, как целое число перевести в дробь, очень прост. Для этого надо в числителе итоговой дроби написать само заданное число, а в ее знаменателе - единичку. То есть если надо перевести в дробь число 12, то полученная дробь будет 12/1.

Такие модификации помогают приводить дроби к общему знаменателю. Это нужно для того, чтобы получить возможность проводить вычитание или сложение дробных чисел. При их умножении и делении общий знаменатель не требуется. Можно рассмотреть на примере, как перевести число в дробь и потом произвести сложение двух дробных чисел. Допустим надо сложить число 12 и дробное число 3/4. Первое слагаемое (число 12) приводится к виду 12/1. Однако его знаменатель равен 1 в то время, как у второго слагаемого он равен 4. Для последующего сложения этих двух дробей надо привести их к общему знаменателю. Благодаря тому, что у одного из чисел знаменатель равен 1, это сделать вообще просто. Надо взять знаменатель второго числа и умножить на него и числитель, и знаменатель первого.

В результате умножения получится: 12/1=48/4. Если 48 разделить на 4, то получается 12, значит дробь приведена к правильному знаменателю. Таким образом можно заодно и понять, как дробь перевести в целое число. Это касается только неправильных дробей, потому что у них числитель больше, чем знаменатель. В таком случае числитель делится на знаменатель и, если не получается остатка, будет целое число. С остатком же дробь так и остается дробью, но с выделенной целой частью. Теперь относительно приведения к общему знаменателю на рассмотренном примере. Если бы у первого слагаемого знаменатель был бы равен какому-нибудь другому числу, кроме 1, числитель и знаменатель первого числа надо бы было умножить на знаменатель второго, а числитель и знаменатель второго - на знаменатель первого.

Оба слагаемых приведены к их общему знаменателю и готовы к сложению. Получается, что в данной задаче нужно сложить два числа: 48/4 и 3/4. При сложении двух дробей с одинаковым знаменателем суммировать нужно только их верхние части, то есть числители. Знаменатель суммы останется без изменения. В этом примере должно получиться 48/4+3/4=(48+3) /4=51/4. Это и будет результат сложения. Но в математике принято неправильные дроби приводить к правильным. Выше рассматривалось, как превратить дробь в число, но в этом примере не получится целое число из дроби 51/4, так как число 51 не делится без остатка на число 4. Поэтому нужно выделить целую часть данной дроби и ее дробную часть. Целой частью будет то число, которое получается при делении нацело первого же меньшего, чем 51, числа.

То есть то, которое можно разделить на 4 без остатка. Первое число перед числом 51, которое нацело делится на 4, будет число 48. Разделив 48 на 4, получается число 12. Значит целой частью искомой дроби будет 12. Осталось только найти дробную часть числа. Знаменатель дробной части остается тем же, то есть 4 в данном случае. Чтобы найти числитель дробной части, надо от исходного числителя вычесть то число, которое делилось на знаменатель без остатка. В рассматриваемом примере требуется для этого вычесть из числа 51 число 48. То есть числитель дробной части равен 3. Результатом сложения будет 12 целых и 3/4. То же самое делается и при вычитании дробей. Допустим надо из целого числа 12 вычесть дробное число 3/4. Для этого целое число 12 переводится в дробное 12/1, а затем приводится к общему знаменателю со вторым числом - 48/4.

При вычитании точно так же знаменатель обеих дробей остается без изменения, а с их числителями и проводят вычитание. То есть от числителя первой дроби вычитают числитель второй. В данном примере это будет 48/4-3/4=(48-3) /4=45/4. И опять получилась неправильная дробь, которую надо привести к правильной. Для выделения целой части определяют первое до 45 число, которое делится на 4 без остатка. Это будет 44. Если число 44 разделить на 4, получится 11. Значит целая часть итоговой дроби равна 11. В дробной части также знаменатель оставляют без изменения а из числителя исходной неправильной дроби вычитают то число, которое делилось на знаменатель без остатка. То есть надо из 45 вычесть 44. Значит числитель в дробной части равен 1 и 12-3/4=11 и 1/4.

Если дано одно число целое и одно дробное, но его знаменатель равен 10, то проще второе число перевести в десятичную дробь, а потом производить вычисления. Например надо сложить целое число 12 и дробное число 3/10. Если число 3/10 записать в виде десятичной дроби, получится 0,3. Теперь значительно легче к 12 прибавить 0,3 и получить 2,3, чем приводить дроби к общему знаменателю, производить вычисления, а затем выделять целую и дробную части из неправильной дроби. Даже самые простые задачки с дробными числами предполагают, что школьник (или студент) знает, как перевести целое число в дробь. Эти правила слишком просты и легко запоминаются. Зато с помощью них очень просто проводить вычисления дробных чисел.

Преобразование обыкновенной дроби в десятичную

Допустим, мы хотим преобразовать обыкновенную дробь 11/4 в десятичную. Проще всего сделать это так:

2∙2∙5∙5

Это удалось нам потому, что в данном случае разложение знаменателя на простые множители состоит только из двоек. Мы дополнили это разложение еще двумя пятерками, воспользовались тем, что 10 = 2∙5, и получили десятичную дробь. Подобная процедура возможна, очевидно, тогда и только тогда, когда разложение знаменателя на простые множители не содержит ничего, кроме двоек и пятерок. Если в разложении знаменателя присутствует любое другое простое число, то такую дробь в десятичную преобразовать нельзя. Тем не менее, мы попробуем это сделать, но только другим способом, с которым мы познакомимся на примере всё той же дроби 11/4. Давайте поделим 11 на 4 «уголком»:

В строке ответа мы получили целую часть ( 2 ), и еще у нас есть остаток ( 3 ). Раньше мы деление на этом заканчивали, но теперь мы знаем, что к делимому ( 11 ) можно приписать справа запятую и несколько нулей, что мы теперь мысленно и сделаем. Следом после запятой идет разряд десятых. Ноль, который стоит у делимого в этом разряде, припишем к полученному остатку ( 3 ):

Теперь деление можно продолжать как ни в чем не бывало. Надо только не забыть поставить в строке ответа запятую после целой части:

Теперь приписываем к остатку ( 2 ) ноль, который стоит у делимого в разряде сотых и доводим деление до конца:

В результате получаем, как и раньше,

Попробуем теперь точно таким же способом вычислить, чему равна дробь 27/11:

Мы получили в строке ответа число 2,45, а в строке остатка - число 5 . Но такой остаток нам уже раньше встречался. Поэтому мы уже сразу можем сказать, что, если мы продолжим наше деление «уголком», то следующей цифрой в строке ответа будет 4, затем пойдет цифра 5, потом - снова 4 и снова 5, и так далее, до бесконечности:

27 / 11 = 2,454545454545...

Мы получили так называемую периодическую десятичную дробь с периодом 45. Для таких дробей применяется более компактная запись, в которой период выписывается только один раз, но при этом он заключается в круглые скобки:

2,454545454545... = 2,(45).

Вообще говоря, если делить «уголком» одно натуральное число на другое, записывая ответ в виде десятичной дроби, то возможно только два исхода: (1) либо рано или поздно в строке остатка мы получим ноль, (2) либо там окажется такой остаток, который уже нам раньше встречался (набор возможных остатков ограничен, поскольку все они заведомо меньше делителя). В первом случае результатом деления является конечная десятичная дробь, во втором случае - периодическая.

Преобразование периодической десятичной дроби в обыкновенную

Пусть нам дана положительная периодическая десятичная дробь с нулевой целой частью, например:

a = 0,2(45).

Как преобразовать эту дробь обратно в обыкновенную?

Умножим ее на число 10 k , где k - это число цифр, стоящих между запятой и открывающей круглой скобкой, обозначающей начало периода. В данном случае k = 1 и 10 k = 10:

a ∙ 10 k = 2,(45).

Полученный результат умножим на 10 n , где n - «длина» периода, то есть число цифр, заключенных между круглыми скобками. В данном случае n = 2 и 10 n = 100:

a ∙ 10 k ∙ 10 n = 245,(45).

Теперь вычислим разность

a ∙ 10 k ∙ 10 n a ∙ 10 k = 245,(45) − 2,(45).

Поскольку дробные части у уменьшаемого и вычитаемого одинаковы, то у разности дробная часть равна нулю, и мы приходим к простому уравнению относительно a :

a ∙ 10 k ∙ (10 n 1) = 245 − 2.

Решается это уравнение с помощью следующих преобразований:

a ∙ 10 ∙ (100 − 1) = 245 − 2.

a ∙ 10 ∙ 99 = 245 − 2.

245 − 2

10 ∙ 99

Мы специально пока не доводим вычисления до конца, чтобы было наглядно видно, как можно сразу выписать этот результат, опуская промежуточные рассуждения. Уменьшаемое в числителе ( 245 ) - это дробная часть числа

a = 0,2(45)

если в ее записи стереть скобки. Вычитаемое в числителе ( 2 ) - это непериодическая часть числа а , располагающаяся между запятой и открывающей скобкой. Первый сомножитель в знаменателе ( 10 ) - это единица, к которой приписано столько нулей, сколько цифр в непериодической части (k ). Второй сомножитель в знаменателе ( 99 ) - это столько девяток, сколько цифр содержит период (n ).

Теперь наши вычисления можно довести до конца:

Здесь в числителе стоит период, а в знаменателе - столько девяток, сколько цифр в периоде. После сокращения на 9 полученная дробь оказывается равной

Подобным же образом,

Если нам нужно разделить 497 на 4, то при делении мы увидим, что 497 не делится на 4 нацело, т.е. остаётся остаток от деления. В таких случаях говорят, что выполнено деление с остатком , и решение записывают в таком виде:
497: 4 = 124 (1 остаток).

Компоненты деления в левой части равенства называют так же, как при делении без остатка: 497 - делимое , 4 - делитель . Результат деления при делении с остатком называют неполным частным . В нашем случае это число 124. И, наконец, последний компонент, которого нет в обычном делении, - остаток . В тех случаях, когда остатка нет, говорят, что одно число разделилось на другое без остатка, или нацело . Считают, что при таком делении остаток равен нулю. В нашем случае остаток равен 1.

Остаток всегда меньше делителя.

Проверку при делении можно сделать умножением. Если, например, имеется равенство 64: 32 = 2, то проверку можно сделать так: 64 = 32 * 2.

Часто в случаях, когда выполняется деление с остатком, удобно использовать равенство
а = b * n + r ,
где а - делимое, b - делитель, n - неполное частное, r - остаток.

Частное от деления натуральных чисел можно записать в виде дроби.

Числитель дроби - это делимое, а знаменатель - делитель.

Поскольку числитель дроби - это делимое, а знаменатель - делитель, считают, что черта дроби означает действие деление . Иногда бывает удобно записывать деление в виде дроби, не используя знак «:».

Частное от деления натуральных чисел m и n можно записать в виде дроби \(\frac{m}{n} \), где числитель m - делимое, а знаменатель п - делитель:
\(m:n = \frac{m}{n} \)

Верны следующие правила:

Чтобы получить дробь \(\frac{m}{n} \), надо единицу разделить на n равных частей (долей) и взять m таких частей.

Чтобы получить дробь \(\frac{m}{n} \), надо число m разделить на число n.

Чтобы найти часть от целого, надо число, соответствующее целому, разделить на знаменатель и результат умножить на числитель дроби, которая выражает эту часть.

Чтобы найти целое по его части, надо число, соответствующее этой части, разделить на числитель и результат умножить на знаменатель дроби, которая выражает эту часть.

Если и числитель, и знаменатель дроби умножить на одно и то же число (кроме нуля), величина дроби не изменится:
\(\large \frac{a}{b} = \frac{a \cdot n}{b \cdot n} \)

Если и числитель, и знаменатель дроби разделить на одно и то же число (кроме нуля), величина дроби не изменится:
\(\large \frac{a}{b} = \frac{a: m}{b: m} \)
Это свойство называют основным свойством дроби .

Два последних преобразования называют сокращением дроби .

Если дроби нужно представить в виде дробей с одним и тем же знаменателем, то такое действие называют приведением дробей к общему знаменателю .

Правильные и неправильные дроби. Смешанные числа

Вы уже знаете, что дробь можно получить, если разделить целое на равные части и взять несколько таких частей. Например, дробь \(\frac{3}{4} \) означает три четвёртых доли единицы. Во многих задачах предыдущего параграфа обыкновенные дроби использовались для обозначения части целого. Здравый смысл подсказывает, что часть всегда должна быть меньше целого, но как тогда быть с такими дробями, как, например, \(\frac{5}{5} \) или \(\frac{8}{5} \)? Ясно, что это уже не часть единицы. Наверное, поэтому такие дроби, у которых числитель больше знаменателя или равен ему, называют неправильными дробями . Остальные дроби, т. е. дроби, у которых числитель меньше знаменателя, называют правильными дробями .

Как вы знаете, любую обыкновенную дробь, и правильную, и неправильную, можно рассматривать как результат деления числителя на знаменатель. Поэтому в математике, в отличие от обычного языка, термин «неправильная дробь» означает не то, что мы что-то сделали неправильно, а только то, что у этой дроби числитель больше знаменателя или равен ему.

Если число состоит из целой части и дроби, то такие дроби называются смешанными .

Например:
\(5:3 = 1\frac{2}{3} \) : 1 - целая часть, а \(\frac{2}{3} \) - дробная часть.

Если числитель дроби \(\frac{a}{b} \) делится на натуральное число n, то, чтобы разделить эту дробь на n, надо её числитель разделить на это число:
\(\large \frac{a}{b} : n = \frac{a:n}{b} \)

Если числитель дроби \(\frac{a}{b} \) не делится на натуральное число n, то, чтобы разделить эту дробь на n, надо её знаменатель умножить на это число:
\(\large \frac{a}{b} : n = \frac{a}{bn} \)

Заметим, что второе правило справедливо и в том случае, когда числитель делится на n. Поэтому мы можем его применять тогда, когда трудно с первого взгляда определить, делится числитель дроби на n или нет.

Действия с дробями. Сложение дробей.

С дробными числами, как и с натуральными числами, можно выполнять арифметические действия. Рассмотрим сначала сложение дробей. Легко сложить дроби с одинаковыми знаменателями. Найдем, например, сумму \(\frac{2}{7} \) и \(\frac{3}{7} \). Легко понять, что \(\frac{2}{7} + \frac{2}{7} = \frac{5}{7} \)

Чтобы сложить дроби с одинаковыми знаменателями, нужно сложить их числители, а знаменатель оставить прежним.

Используя буквы, правило сложения дробей с одинаковыми знаменателями можно записать так:
\(\large \frac{a}{c} + \frac{b}{c} = \frac{a+b}{c} \)

Если требуется сложить дроби с разными знаменателями, то их предварительно следует привести к общему знаменателю. Например:
\(\large \frac{2}{3}+\frac{4}{5} = \frac{2\cdot 5}{3\cdot 5}+\frac{4\cdot 3}{5\cdot 3} = \frac{10}{15}+\frac{12}{15} = \frac{10+12}{15} = \frac{22}{15} \)

Для дробей, как и для натуральных чисел, справедливы переместительное и сочетательное свойства сложения.

Сложение смешанных дробей

Такие записи, как \(2\frac{2}{3} \), называют смешанными дробями . При этом число 2 называют целой частью смешанной дроби, а число \(\frac{2}{3} \) - ее дробной частью . Запись \(2\frac{2}{3} \) читают так: «две и две трети».

При делении числа 8 на число 3 можно получить два ответа: \(\frac{8}{3} \) и \(2\frac{2}{3} \). Они выражают одно и то же дробное число, т.е \(\frac{8}{3} = 2 \frac{2}{3} \)

Таким образом, неправильная дробь \(\frac{8}{3} \) представлена в виде смешанной дроби \(2\frac{2}{3} \). В таких случаях говорят, что из неправильной дроби выделили целую часть .

Вычитание дробей (дробных чисел)

Вычитание дробных чисел, как и натуральных, определяется на основе действия сложения: вычесть из одного числа другое - это значит найти такое число, которое при сложении со вторым дает первое. Например:
\(\frac{8}{9}-\frac{1}{9} = \frac{7}{9} \) так как \(\frac{7}{9}+\frac{1}{9} = \frac{8}{9} \)

Правило вычитания дробей с одинаковыми знаменателями похоже на правило сложения таких дробей:
чтобы найти разность дробей с одинаковыми знаменателями, надо из числителя первой дроби вычесть числитель второй, а знаменатель оставить прежним.

С помощью букв это правило записывается так:
\(\large \frac{a}{c}-\frac{b}{c} = \frac{a-b}{c} \)

Умножение дробей

Чтобы умножить дробь на дробь, нужно перемножить их числители и знаменатели и первое произведение записать числителем, а второе - знаменателем.

С помощью букв правило умножения дробей можно записать так:
\(\large \frac{a}{b} \cdot \frac{c}{d} = \frac{a \cdot c}{b \cdot d} \)

Пользуясь сформулированным правилом, молено умножать дробь на натуральное число, на смешанную дробь, а также перемножать смешанные дроби. Для этого нужно натуральное число записать в виде дроби со знаменателем 1, смешанную дробь - в виде неправильной дроби.

Результат умножения надо упрощать (если это возможно), сокращая дробь и выделяя целую часть неправильной дроби.

Для дробей, как и для натуральных чисел, справедливы переместительное и сочетательное свойства умножения, а также распределительное свойство умножения относительно сложения.

Деление дробей

Возьмем дробь \(\frac{2}{3} \) и «перевернем» ее, поменяв местами числитель и знаменатель. Получим дробь \(\frac{3}{2} \). Эту дробь называют обратной дроби \(\frac{2}{3} \).

Если мы теперь «перевернем» дробь \(\frac{3}{2} \), то получим исходную дробь \(\frac{2}{3} \). Поэтому такие дроби, как \(\frac{2}{3} \) и \(\frac{3}{2} \) называют взаимно обратными .

Взаимно обратными являются, например, дроби \(\frac{6}{5} \) и \(\frac{5}{6} \), \(\frac{7}{18} \) и \(\frac{18}{7} \).

С помощью букв взаимно обратные дроби можно записать так: \(\frac{a}{b} \) и \(\frac{b}{a} \)

Понятно, что произведение взаимно обратных дробей равно 1 . Например: \(\frac{2}{3} \cdot \frac{3}{2} =1 \)

Используя взаимно обратные дроби, можно деление дробей свести к умножению.

Правило деления дроби на дробь:
чтобы разделить одну дробь на другую, нужно делимое умножить на дробь, обратную делителю.

Используя буквы, правило деления дробей можно записать так:
\(\large \frac{a}{b} : \frac{c}{d} = \frac{a}{b} \cdot \frac{d}{c} \)

Если делимое или делитель является натуральным числом или смешанной дробью, то, для того чтобы воспользоваться правилом деления дробей, его надо предварительно представить в виде неправильной дроби.

Очень часто в школьной программе математики дети сталкиваются с проблемой, как перевести обычную дробь в десятичную. Для того чтобы перевести обычную дробь в десятичную, вспомним для начала, что такое обычная дробь и десятичная дробь. Обычная дробь – это дробь вида m/n , где m – числитель, а n – знаменатель. Пример: 8/13; 6/7 и т.д. Дроби делятся на правильные, неправильные и смешанные числа. Правильная дробь – это когда числитель меньше знаменателя: m/n, где m 3. Неправильную дробь всегда можно представить в виде смешанного числа, а именно: 4/3 = 1 и 1/3;

Перевод обычной дроби в десятичную

Теперь рассмотрим, как перевести смешанную дробь в десятичную. Любую обыкновенную дробь, будь она правильной или не правильной, можно перевести в десятичную. Для этого нужно числитель разделить на знаменатель. Пример: простая дробь (правильная) 1/2. Делим числитель 1 на знаменатель 2, получаем 0,5. Возьмем пример 45/12, сразу видно, что это дробь неправильная. Здесь знаменатель меньше числителя. Превращаем неправильную дробь в десятичную: 45: 12 = 3,75.

Перевод смешанных чисел в десятичную дробь

Пример: 25/8. Сначала мы превращаем смешанное число в неправильную дробь: 25/8 = 3х8+1/8 =3 и 1/8; затем делим числитель равный 1 на знаменатель равный 8, столбиком или на калькуляторе и получим десятичную дробь равную 0,125. В статье приведены самые легкие примеры перевода в десятичные дроби. Поняв методику перевода на простых примерах, вы легко сможете решать самые сложные из них.

Уже в начальной школе учащиеся сталкиваются с дробями. И потом они появляются в каждой теме. Забывать действия с этими числами нельзя. Поэтому нужно знать всю информацию про обыкновенные и десятичные дроби. Понятия эти несложные, главное - разбираться во всем по порядку.

Зачем нужны дроби?

Окружающий нас мир состоит из целых предметов. Поэтому в долях необходимости нет. Зато повседневная жизнь постоянно наталкивает людей на работу с частями предметов и вещей.

Например, шоколад состоит из нескольких долек. Рассмотрим ситуацию, когда его плитка образована двенадцатью прямоугольниками. Если ее разделить на двоих, то получится по 6 частей. Она хорошо разделится и на троих. А вот пятерым не удастся дать по целому числу долек шоколада.

Кстати, эти дольки - уже дроби. А дальнейшее их деление приводит к появлению более сложных чисел.

Что такое «дробь»?

Это число, состоящее из частей единицы. Внешне оно выглядит как два числа, разделенные горизонтальной или наклонной чертой. Эта черта носит название дробной. Число, записанное сверху (слева), называется числителем. То, что стоит снизу (справа), является знаменателем.

По сути, дробная черта оказывается знаком деления. То есть числитель можно назвать делимым, а знаменатель — делителем.

Какие существуют дроби?

В математике их имеется всего два вида: обыкновенные и десятичные дроби. С первыми школьники знакомятся в начальных классах, называя их просто «дроби». Вторые узнают в 5 классе. Именно тогда появляются эти названия.

Обыкновенные дроби — все те, что записываются в виде двух чисел, разделенных чертой. Например, 4/7. Десятичная — это число, в котором дробная часть имеет позиционную запись и отделяется от целой при помощи запятой. К примеру, 4,7. Учащимся нужно четко уяснить, что два приведенных примера — это совершенно разные числа.

Каждую простую дробь можно записать в виде десятичной. Это утверждение почти всегда верно и в обратном направлении. Существуют правила, которые позволяют записать обыкновенной дробью десятичную дробь.

Какие подвиды имеют указанные виды дробей?

Начать лучше в хронологическом порядке, так как они изучаются. Первыми идут обыкновенные дроби. Среди них можно выделить 5 подвидов.

    Правильная. Ее числитель всегда меньше знаменателя.

    Неправильная. У нее числитель больше или равен знаменателю.

    Сократимая/несократимая. Она может оказаться как правильной, так и неправильной. Важно другое, есть ли у числителя со знаменателем общие множители. Если имеются, то на них полагается разделить обе части дроби, то есть сократить ее.

    Смешанная. К ее привычной правильной (неправильной) дробной части приписывается целое число. Причем оно всегда стоит слева.

    Составная. Она образуется из двух разделенных друг на друга дробей. То есть в ней насчитывается сразу три дробные черты.

У десятичных дробей есть всего два подвида:

    конечная, то есть та, у которой дробная часть ограничена (имеет конец);

    бесконечная — число, у которого цифры после запятой не заканчиваются (их можно писать бесконечно).

Как переводить десятичную дробь в обыкновенную?

Если это конечное число, то применяется ассоциация, основанная на правиле — как слышу, так пишу. То есть нужно правильно прочитать ее и записать, но уже без запятой, а с дробной чертой.

В качестве подсказки о необходимом знаменателе, нужно запомнить, что он всегда единица и несколько нулей. Последних нужно написать столько, сколько цифр в дробной части рассматриваемого числа.

Как перевести десятичные дроби в обыкновенные, если их целая часть отсутствует, то есть равна нулю? Например, 0,9 или 0,05. После применения указанного правила, получается, что нужно написать ноль целых. Но оно не указывается. Остается записать только дробные части. У первого числа знаменатель будет равен 10, у второго — 100. То есть указанные примеры ответами будут иметь числа: 9/10, 5/100. Причем последнее оказывается можно сократить на 5. Поэтому результатом для нее нужно записать 1/20.

Как из десятичной дроби сделать обыкновенную, если ее целая часть отлична от нуля? Например, 5,23 или 13,00108. В обоих примерах читается целая часть и записывается ее значение. В первом случае это — 5, во втором — 13. Потом нужно переходить к дробной части. С ними полагается провести ту же операцию. У первого числа появляется 23/100, у второго — 108/100000. Второе значение снова нужно сократить. В ответе получаются такие смешанные дроби: 5 23/100 и 13 27/25000.

Как перевести бесконечную десятичную дробь в обыкновенную?

Если она является непериодической, то такую операцию провести не удастся. Этот факт связан с тем, что каждая десятичная дробь всегда переводится или в конечную или в периодическую.

Единственное, что допускается делать с такой дробью, — это округлять ее. Но тогда десятичная будет приблизительно равно той бесконечной. Ее уже можно превратить в обыкновенную. Но обратный процесс: перевод в десятичную — никогда не даст начального значения. То есть бесконечные непериодические дроби в обыкновенные не переводятся. Это нужно запомнить.

Как записать бесконечную периодическую дробь в виде обыкновенной?

В этих числах после запятой всегда появляются одна или несколько цифр, которые повторяются. Их называют периодом. Например, 0,3(3). Здесь «3» в периоде. Их относят к классу рациональных, так как могут быть преобразованы в обыкновенные дроби.

Тем, кто встречался с периодическими дробями, известно, что они могут быть чистыми или смешанными. В первом случае период начинается сразу от запятой. Во втором — дробная часть начинается с каких-либо цифр, а потом начинается повтор.

Правило, по которому нужно записать в виде обыкновенной дроби бесконечную десятичную, будет разным для указанных двух видов чисел. Чистые периодические дроби записать обыкновенными достаточно просто. Как с конечными, их нужно преобразовать: в числитель записать период, а знаменателем будет цифра 9, повторяющаяся столько раз, сколько цифр содержит период.

Например, 0,(5). Целой части у числа нет, поэтому сразу нужно приступать к дробной. В числитель записать 5, а в знаменатель одну 9. То есть ответом будет дробь 5/9.

Правило о том, как записать обыкновенной десятичную периодическую дробь, являющуюся смешанной.

    Посмотреть на длину периода. Столько 9 будет иметь знаменатель.

    Записать знаменатель: сначала девятки, потом нули.

    Чтобы определить числитель, нужно записать разность двух чисел. Уменьшаемым будут все цифры после запятой, вместе с периодом. Вычитаемым — оно же без периода.

Например, 0,5(8) - запишите периодическую десятичную дробь в виде обыкновенной. В дробной части до периода стоит одна цифра. Значит ноль будет один. В периоде тоже только одна цифра — 8. То есть девятка одна. То есть в знаменателе нужно написать 90.

Для определения числителя из 58 нужно вычесть 5. Получается 53. Ответом к примеру придется записать 53/90.

Как переводятся обыкновенные дроби в десятичные?

Самым простым вариантом оказывается число, в знаменателе которого стоит число 10, 100 и прочее. Тогда знаменатель просто отбрасывается, а между дробной и целой частями ставится запятая.

Бывают ситуации, когда знаменатель легко превращается в 10, 100 и т. д. Например, числа 5, 20, 25. Их достаточно умножить на 2, 5 и 4 соответственно. Только умножать полагается не только знаменатель, но и числитель на то же число.

Для всех остальных случаев пригодится простое правило: разделить числитель на знаменатель. В этом случае может получиться два варианта ответов: конечная или периодическая десятичная дробь.

Действия с обыкновенными дробями

Сложение и вычитание

С ними учащиеся знакомятся раньше других. Причем сначала у дробей одинаковые знаменатели, а потом разные. Общие правила можно свести к такому плану.

    Найти наименьшее общее кратное знаменателей.

    Записать дополнительные множители ко всем обыкновенным дробям.

    Умножить числители и знаменатели на определенные для них множители.

    Сложить (вычесть) числители дробей, а общий знаменатель оставить без изменения.

    Если числитель уменьшаемого меньше вычитаемого, то нужно выяснить, перед нами смешанное число или правильная дробь.

    В первом случае у целой части нужно занять единицу. К числителю дроби прибавить знаменатель. А потом выполнять вычитание.

    Во втором — необходимо применить правило вычитания из меньшего числа большее. То есть из модуля вычитаемого вычесть модуль уменьшаемого, а в ответ поставить знак «-».

    Внимательно посмотреть на результат сложения (вычитания). Если получилась неправильная дробь, то полагается выделить целую часть. То есть разделить числитель на знаменатель.

    Умножение и деление

    Для их выполнения дроби не нужно приводить к общему знаменателю. Это упрощает выполнение действий. Но в них все равно полагается следовать правилам.

      При умножении обыкновенных дробей необходимо рассмотреть числа в числителях и знаменателях. Если какой-либо числитель и знаменатель имеют общий множитель, то их можно сократить.

      Перемножить числители.

      Перемножить знаменатели.

      Если получилась сократимая дробь, то ее полагается снова упростить.

      При делении нужно сначала заменить деление на умножение, а делитель (вторую дробь) — на обратную дробь (поменять местами числитель и знаменатель).

      Потом действовать, как при умножении (начиная с пункта 1).

      В заданиях, где умножить (делить) нужно на целое число, последнее полагается записать в виде неправильной дроби. То есть со знаменателем 1. Потом действовать, как было описано выше.

    Действия с десятичными дробями

    Сложение и вычитание

    Конечно, всегда можно превратить десятичную дробь в обыкновенную. И действовать по уже описанному плану. Но иногда удобнее действовать без этого перевода. Тогда правила для их сложения и вычитания будут совершенно одинаковыми.

      Уравнять число цифр в дробной части числа, то есть после запятой. Приписать в ней недостающее количество нулей.

      Записать дроби так, чтобы запятая оказалась под запятой.

      Сложить (вычесть) как натуральные числа.

      Снести запятую.

    Умножение и деление

    Важно, что здесь не нужно дописывать нули. Дроби полагается оставлять в том виде, как они даны в примере. А дальше идти по плану.

      Для умножения нужно написать дроби одна под другой, не обращая внимание на запятые.

      Умножить, как натуральные числа.

      Поставить в ответе запятую, отсчитав от правого конца ответа столько цифр, сколько их стоит в дробных частях обоих множителей.

      Для деления нужно сначала преобразовать делитель: сделать его натуральным числом. То есть умножить его на 10, 100 и т. д., в зависимости от того, сколько цифр в дробной части делителя.

      На то же число умножить делимое.

      Разделить десятичную дробь на натуральное число.

      Поставить в ответе запятую в тот момент, когда закончится деление целой части.

    Как быть, если в одном примере есть оба вида дробей?

    Да в математике часто встречаются примеры, в которых нужно выполнить действия над обыкновенными и десятичными дробями. В таких заданиях возможны два пути решения. Нужно объективно взвесить числа и выбрать оптимальный.

    Первый путь: представить обыкновенные десятичными

    Он подходит, если при делении или переводе получаются конечные дроби. Если хотя бы одно число дает периодическую часть, то этот прием применять запрещено. Поэтому, даже если не нравится работать с обыкновенными дробями, придется считать их.

    Второй путь: записать десятичные дроби обыкновенными

    Этот прием оказывается удобным, если в части после запятой стоят 1-2 цифры. Если их больше, может получиться очень большая обыкновенная дробь и десятичные записи позволят сосчитать задание быстрее и проще. Поэтому всегда нужно трезво оценивать задание и выбирать самый простой метод решения.