Биографии Характеристики Анализ

Логические связки. Высказывания-простые и составные

ЛОГИЧЕСКИЕ СВЯЗКИ – символы логических языков, используемые для образования сложных высказываний (формул) из элементарных. Логическими связками называют также соответствующие этим символам союзы естественного языка. Обычно используются такие логические связки, как конъюнкция (союз «и», символические обозначения: &, ∧ и точка в виде знака умножения, которые часто опускают, записывая конъюнкцию А и В как AB ), дизъюнкция (нестрогий союз «или», обозначается как «∨»), импликация («если..., то», обозначается с помощью знака «⊃» и различного рода стрелок), отрицание («неверно, что...», обозначается: , ~ или чертой над отрицаемым выражением). Из перечисленных отрицание является одноместной (унарной) связкой. Другие являются двухместными (бинарными). В принципе логические связки могут быть сколь угодно местными, но на практике более, чем бинарные, используются очень редко. В классической логике (Логика , Логика высказываний ) любые многоместные логические связки выразимы через перечисленные. Некоторый практический смысл дает использование тернарной логической связки, называемой условной дизъюнкцией, связывающей три высказывания А, В и С и означающей, что «А в случае В , и С в случае не-B » или формально: (B A )&(B C ) (Сидоренко Е.А. Пропозициональное исчисление с условной дизъюнкцией. – В кн.: Методы логического анализа. М., 1977).

Классическая логика рассматривает логические связки экстенсионально (игнорируя содержательный смысл связываемых ими высказываний) как функции истинности, определяемые истинностными значениями связываемых ими высказываний. При двух имеющих место в этой логике истинностных значениях 1 (истинно) и 0 (ложно) высказывания А и В могут иметь четыре возможных набора упорядоченных истинностных значений: <1,1>, <1,0>, <0,1>, <0,0>. Пропозициональная истинностная функция ставит в соответствие каждому перечисленному набору одно из значений истинности – 1 или 0. Всего таких функций 16. Конъюнкция приписывает выражению А &В значение 1 только в случае, когда как А , так и В истинны, т.е. оба имеют значение 1, в остальных случаях значение А &В равно 0. Дизъюнкция Α В, напротив, ложна только в одном случае, когда ложны как А , так и В. Импликация А В является ложной только при истинном (антецеденте) А и ложном (консеквенте) В. В остальных случаях А В принимает значение 1. Из четырех одноместных функций интерес представляет только отрицание, меняющее значение высказывания на противоположное: когда А – истинно, A – ложно, и наоборот. Все другие унарные и бинарные классические функции могут быть выражены через представленные. Когда принятая в соответствующей семантике система логических связок позволяет дать определение всех остальных, ее называют функционально полной. К полным системам в классической логике относятся, в частности, конъюнкция и отрицание; дизъюнкция и отрицание; импликация и отрицание. Конъюнкция и дизъюнкция определимы друг через друга за счет эквивалентностей (А &В )≡(А В) и (A∨B)≡(А &B), именуемых законами де Моргана, а также: (Α⊃Β)≡(Α В ), (А &В )≡(А ⊃B), (Α В )≡((А В )⊃A). Любая эквивалентность вида A В имеет силу только тогда, когда общезначима (всегда истинна) конъюнкция (А В )&(В A ).

Функции антидизъюнкция и антиконъюнкция, определимые соответственно как (А В) и (А &В ), также представляют каждая в отдельности функционально полную систему связок. Это последнее обстоятельство было известно уже Ч.Пирсу (неопубликованная при его жизни работа 1880 г.) и было переоткрыто X.Шеффером (H.M.Sheffer). Используя антидизъюнкцию как единственную логическую связку, Шеффер в 1913 построил полное исчисление высказываний. Антидизъюнкцию обозначают А В и называют штрихом Шеффера, читая данное выражение, как «не-A и не-B ». Ж.Нико (J. G.P.Nicod) употребил то же обозначение для антиконъюнкции («Неверно, что одновременно А и B ») и с помощью только этой связки в 1917 сформулировал полное исчисление высказываний с одной (всего!) аксиомой и одним правилом вывода. Т.о., штрихом Шеффера называют по сути саму вертикальную черту, которая у разных авторов может обозначать как антидизъюнкцию, так и антиконъюнкцию.

Экстенсиональность логических связок придает им однозначность, упрощает проблему построения логических исчислений, дает возможность решать для последних метатеоретические проблемы непротиворечивости, разрешимости, полноты (см. Металогика ). Однако в некоторых случаях истинностно-функциональная трактовка связок приводит к значительному несоответствию с тем, как они понимаются в естественном языке. Так, указанная истинностная интерпретация импликации вынуждает признавать верными предложения вида «Если А, то B » даже в том случае, когда между высказываниями А и В (и, соответственно, событиями, о которых в них идет речь) нет никакой реальной связи. Достаточно, чтобы А было ложным или В – истинным. Поэтому из двух предложений: «Если А, то В » и «Если В, то А », по крайней мере одно приходится признавать верным, что плохо сообразуется с обычным употреблением условной связки. Импликацию в данном случае специально называют «материальной», отличая ее тем самым от условного союза, предполагающего, что между антецедентом и консеквентом истинного условного высказывания имеется действительная связь. При этом материальная импликация может прекрасно использоваться во многих контекстах, напр., математических, когда при этом не забывают о ее специфических особенностях. В некоторых случаях, однако, именно контекст не позволяет трактовать условный союз как материальную импликацию, предполагая взаимосвязь высказываний. Для анализа таких контекстов приходится строить специальные неклассические логики , напр., релевантные (см. Релевантная логика ), в язык которых вместо материальной импликации (или наряду с ней) вводятся другие импликации, которые понимаются интенсионально (содержательно) и верность которых не может быть обоснована истинностно-функционально. Интенсионально могут трактоваться также другие логические связки.

Литература:

1. Чёрч А. Введение в математическую логику, т. 1. М., 1960;

2. Карри Х. Основания математической логики. М., 1969.

Е.А.Сидоренко

ЛОГИЧЕСКИЕ СВЯЗКИ

ЛОГИЧЕСКИЕ СВЯЗКИ

ЛОГИЧЕСКИЕ СВЯЗКИ - символы логических языков, используемые для образования сложных высказываний (формул) из элементарных. Логическими связками называют также соответствующие этим символам союзы естественного языка. Обычно используются такие логические связки, как (союз “и”, символические обозначения: &, л и точка в виде знака умножения, которые часто опускают, записывая конъюнкцию А и В как AB), (нестрогий союз “или”, обозначается как “v”), (“если..., то”, обозначается с помощью знака отрицание (“неверно, что...”, обозначается: -ι, ЛОГИЧЕСКИЕ СВЯЗКИ или чертой над отрицаемым выражением). Из перечисленных отрицание является одноместной (унарной) связкой. Другие являются двухместными (бинарными). В принципе логические связки могут быть сколь угодно местными, но на практике более, чем бинарные, используются очень редко. В классической логике (Логика , Логика высказываний) любые многоместные логические связки выразимы через перечисленные. Некоторый практический дает использование тернарной логической связки, называемой условной дизъюнкцией, связывающей три высказывания А, В и С и означающей, что “А в случае В, и С в случае нв-?” или формально: (В з А)&(-, В э О (Сидоренко Е. А. Пропозициональное с условной дизъюнкцией.- В кн.: Методы логического анализа. М.,1977).

Классическая рассматривает логические связки экстенсионально (игнорируя содержательный смысл связываемых ими высказываний) как функции истинности, определяемые истинностными значениями связываемых ими высказываний. При двух имеющих в этой логике истинностных значе

ниях 1 (истинно) и 0 (ложно) высказывания А и В могут иметь четыре возможных набора упорядоченных истинностных зна^ чений: , . Пропозициональная истинностная ставит в соответствие каждому перечисленному набору одно из значений истинности - 1 или 0. Всгго таких функций 16. Конъюнкция приписывает выражению А&.В 1 только в случае, когда как Л, так и В истинны, т. е. оба имеют значение 1, в остальных случаях значение А&.В равно 0. Дизъюнкция Α ν В, напротив, ложна только в одном случае, когда ложны как А, так и В. Импликация А э В является ложной только при истинном (антецеденте) А и ложном (консеквенте) В. В остальных случаях А => В принимает значение 1. Из четырех одноместных функций представляет только отрицание, меняющее значение высказывания на противоположное: когда А - истинно, -А - ложно, и наоборот. Все другие унарные и бинарные классические функции могут быть выражены через представленные. Когда принятая в соответствующей семантике логических связок позволяет дать всех остальных, ее называют функционально полной. К полным системам в классической логике относятся, в частности, конъюнкция и отрицание; дизъюнкция и отрицание; импликация и отрицание. Конъюнкция и дизъюнкция определимы друг через друга за счет эквивалентностей (А&В) = -i(-i/4v-i.ß) и (A v В) a -,(-Α&-ιΒ), именуемых законами де Моргана, а также: (A^B)s(-iA^ В), (А&В) s -,(А э -ιΒ), (Α ν В) = ((А => В) зА). Любая видаЛ = В имеет силу только тогда, когда общезначима (всегда истинна) конъюнкция (А =) В)&(В э А).

Функции антидизъюнкция и антиконъюнкция, определимые соответственно как -ι(Α ν В) и -(А&.В), также представляют каждая в отдельности функционально полную систему связок. Это последнее обстоятельство было известно уже Ч. Пирсу (неопубликованная при его жизни работа 1880 г.) и было переоткрыто X. Шеффером (H. M. Shefier). Используя антидизъюнкцию как единственную логическую связку, Шеффер в 1913 построил полное . Антидизъюнкцию обозначают А В и называют штрихом Ше4)фера, читая выражение, как “не-Д и не-В”. Ж. Нико (J. G. P. Nicod) употребил то же обозначение для антиконъюнкции (“Неверно, что одновременно А и В”) и с помощью только этой связки в 1917 сформулировал полное исчисление высказываний с одной (всего!) аксиомой и одним правилом вывода. Т. о., штрихом Шеффера называют по сути саму вертикальную черту, которая у разных авторов может обозначать как антидизъюнкцию, так и антиконъюнкцию.

Экстенсиональность логических связок придает им однозначность, упрощает проблему построения логических исчислений, дает решать для последних метатеоретические проблемы непротиворечивости, разрешимости, полноты (см. Металогика). Однако в некоторых случаях истинностно-функциональная трактовка связок приводит к значительному несоответствию с тем, как они понимаются в естественном языке. Так, указанная истинностная импликации вынуждает признавать верными предложения вида “Если А, то В” даже в том случае, когда между высказываниями А и В (и, соответственно, событиями, о которых в них идет ) нет никакой реальной связи. Достаточно, чтобы А было ложным или В - истинным. Поэтому из двух предложений: “Если А, то В” и “Если В, то А”, по крайней мере одно приходится признавать верным, что плохо сообразуется с обычным употреблением условной связки. Импликацию в данном случае специально называют “материальной”, отличая ее тем самым от условного союза, предполагающего, что между антецедентом и консеквентом истинного условного высказывания имеется действительная . При этом материальная импликация может прекрасно использоваться во многих контекстах, напр., математических, когда при этом не забывают о ее специфических особенностях. В некоторых случаях, однако, именно не позволяет трактовать условный союз как материальную импликацию, предполагая высказываний. Для анализа таких контекстов приходится строить специальные , напр., релевантные (см. Релевантная логика), в которых вместо материальной импликации (или наряду с ней) вводятся другие импликации, которые понимаются интенсионально (содержательно) и верность которых не может быть обоснована истинностно-функционально. Интенсионально могут трактоваться также другие логические связки.

Лит.: Чёрч Л. Введение в математическую логику, т. 1. M., 1960; КарриХ. Основания математической логики. М., 1969.

Ε. А. Сидоренко

Новая философская энциклопедия: В 4 тт. М.: Мысль . Под редакцией В. С. Стёпина . 2001 .


Смотреть что такое "ЛОГИЧЕСКИЕ СВЯЗКИ" в других словарях:

    логические связки - — [Л.Г.Суменко. Англо русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.] Тематики информационные технологии в целом EN structural constants … Справочник технического переводчика

    Логические связки, логические операторы, функции, преобразующие высказывания или пропозициональные формы (т. е. выражения логики предикатов (См. Логика предикатов), содержащие переменные (См. Переменная) и обращающиеся в высказывания при… … Большая советская энциклопедия

    В логике логическими операциями называют действия, вследствие которых порождаются новые понятия, возможно с использованием уже существующих. В более узком, формализованном смысле, понятие логической операции используется в математической логике и … Википедия

    Логич. операторы, логич. связки, функции, преобразующие выражения логич. исчислений (формальных логич. систем); подразделяются на пропозициональные (сен тенциональные) связки, с помощью которых образуются выражения логики высказываний, и… … Философская энциклопедия

    Формализации содержательных логич. теорий; выводимые объекты Л. п. интерпретируются как суждения, составленные из простейших (имеющих, вообще говоря, субъектно предикатную структуру) при помощи пропозициональных связок и кванторов. Чаще всего… … Математическая энциклопедия

    Раздел логики, в котором изучаются истинностные взаимосвязи между высказываниями. В рамках данного раздела высказывания (пропозиции, предложения) рассматриваются только с т.зр. их истинности или ложности, безотносительно к их внутренней субъектно … Философская энциклопедия

    - (от греч. logos слово, понятие, рассуждение, разум), или Формальная логика, наука о законах и операциях правильного мышления. Согласно основному принципу Л., правильность рассуждения (вывода) определяется только его логической формой, или… … Философская энциклопедия

    ЛОГИКА ВЫСКАЗЫВАНИЙ, или ПРОПОЗИЦИОНАЛЬНАЯ ЛОГИКА - раздел дедуктивной логики, в котором вопрос об истинности (или ложности) высказываний (т. е. суждений, рассматриваемых без их субъектно предикатной структуры) в умозаключениях рассматривается на основе изучения следующего средства их выражения т … Современный философский словарь

    Список используемых в математике специфических символов можно увидеть в статье Таблица математических символов Математические обозначения («язык математики») сложная графическая система обозначений, служащая для изложения абстрактных… … Википедия

символы логических языков, используемые для образования сложных высказываний (формул) из элементарных. Логическими связками называют также соответствующие этим символам союзы естественного языка. Обычно используются такие логические связки, как конъюнкция (союз «и», символические обозначения: &, л и точка в виде знака умножения, которые часто опускают, записывая конъюнкцию А и В как AB), дизъюнкция (нестрогий союз «или», обозначается как «v»), импликация («если..., то», обозначается с помощью знака, . Пропозициональная истинностная функция ставит в соответствие каждому перечисленному набору одно из значений истинности - 1 или 0. Всгго таких функций 16. Конъюнкция приписывает выражению А&.В значение 1 только в случае, когда как Л, так и В истинны, т. е. оба имеют значение 1, в остальных случаях значение А&.В равно 0. Дизъюнкция В, напротив, ложна только в одном случае, когда ложны как А, так и В. Импликация А э В является ложной только при истинном (антецеденте) А и ложном (консеквенте) В. В остальных случаях А => В принимает значение 1. Из четырех одноместных функций интерес представляет только отрицание, меняющее значение высказывания на противоположное: когда А - истинно, -А - ложно, и наоборот. Все другие унарные и бинарные классические функции могут быть выражены через представленные. Когда принятая в соответствующей семантике система логических связок позволяет дать определение всех остальных, ее называют функционально полной. К полным системам в классической логике относятся, в частности, конъюнкция и отрицание; дизъюнкция и отрицание; импликация и отрицание. Конъюнкция и дизъюнкция определимы друг через друга за счет эквивалентностей (А&В) = -i(-i/4v-i.) и (A v В) a -,(-&-), именуемых законами де Моргана, а также: (A^B)s(-iA^ В), (А&В) s -,(А э -), (В) = ((А => В) зА). Любая эквивалентность видаЛ = В имеет силу только тогда, когда общезначима (всегда истинна) конъюнкция (А =) В)&(В э А).

Функции антидизъюнкция и антиконъюнкция, определимые соответственно как -(В) и -(А&.В), также представляют каждая в отдельности функционально полную систему связок. Это последнее обстоятельство было известно уже Ч. Пирсу (неопубликованная при его жизни работа 1880 г.) и было переоткрыто X. Шеффером (H. M. Shefier). Используя антидизъюнкцию как единственную логическую связку, Шеффер в 1913 построил полное исчисление высказываний. Антидизъюнкцию обозначают А В и называют штрихом Ше4)фера, читая данное выражение, как «не-Д и не-В». Ж. Нико (J. G. P. Nicod) употребил то же обозначение для антиконъюнкции («Неверно, что одновременно А и В») и с помощью только этой связки в 1917 сформулировал полное исчисление высказываний с одной (всего!) аксиомой и одним правилом вывода. Т. о., штрихом Шеффера называют по сути саму вертикальную черту, которая у разных авторов может обозначать как антидизъюнкцию, так и антиконъюнкцию.

Экстенсиональность логических связок придает им однозначность, упрощает проблему построения логических исчислений, дает возможность решать для последних метатеоретические проблемы непротиворечивости, разрешимости, полноты (см. Металогика). Однако в некоторых случаях истинностно-функциональная трактовка связок приводит к значительному несоответствию с тем, как они понимаются в естественном языке. Так, указанная истинностная интерпретация импликации вынуждает признавать верными предложения вида «Если А, то В» даже в том случае, когда между высказываниями А и В (и, соответственно, событиями, о которых в них идет речь) нет никакой реальной связи. Достаточно, чтобы А было ложным или В - истинным. Поэтому из двух предложений: «Если А, то В» и «Если В, то А», по крайней мере одно приходится признавать верным, что плохо сообразуется с обычным употреблением условной связки. Импликацию в данном случае специально называют «материальной», отличая ее тем самым от условного союза, предполагающего, что между антецедентом и консеквентом истинного условного высказывания имеется действительная связь. При этом материальная импликация может прекрасно использоваться во многих контекстах, напр., математических, когда при этом не забывают о ее специфических особенностях. В некоторых случаях, однако, именно контекст не позволяет трактовать условный союз как материальную импликацию, предполагая взаимосвязь высказываний. Для анализа таких контекстов приходится строить специальные неклассические логики, напр., релевантные (см. Релевантная логика), в язык которых вместо материальной импликации (или наряду с ней) вводятся другие импликации, которые понимаются интенсионально (содержательно) и верность которых не может быть обоснована истинностно-функционально. Интенсионально могут трактоваться также другие логические связки.

Конъюнктивное суждение.

Конъюнктивное суждение - суждение, которое является истинным тогда и только тогда, когда истинны все входящие в него суждения.

Образуется посредством логического союза конъюнкции, выражающегося грамматическими союзами «и», «да», «но», «однако». Например, «Светит, да не греет».

Символически обозначается следующим образом: А?В, где А, В - переменные, обозначающие простые суждения, ?- символическое выражение логического союза конъюнкции.

Определению конъюнкции соответствует таблица истинности:

Дизъюнктивные суждения.

Имеется два вида дизъюнктивных суждений: строгая (исключающая) дизъюнкция и нестрогая (неисключающая) дизъюнкция.

Строгая (исключающая) дизъюнкция - сложное суждение, принимающее логическое значение истины тогда и только тогда, когда истинно только одно из входящих в него суждений или «которое ложно тогда, когда оба высказывания ложны». Например, «Данное число либо кратно, либо не кратно пяти».

Логический союз дизъюнкция выражается посредством грамматического союза «либо…либо».

Символически записывается А?В.

Логическое значение строгой дизъюнкции соответствует таблице истинности:

Нестрогая (неисключающая) дизъюнкция - сложное суждение, принимающее логическое значение истины тогда и только тогда, когда истинным является, по крайней мере, одно (но может быть и больше) из простых суждений, входящих в сложное. Например, «Писатели могут быть или поэтами, или прозаиками (или тем и другим одновременно)» .

Нестрогая дизъюнкция выражается посредством грамматического союза «или…или» в разделительно-соединительном значении.

Символически записывается А? В. Нестрогой дизъюнкции соответствует таблица истинности:

Импликативные (условные) суждения.

Импликация - сложное суждение, принимающее логическое значение ложности тогда и только тогда, когда предшествующее суждение (антецедент ) истинно, а последующее (консеквент ) ложно.

В естественном языке импликация выражается союзом «если..., то» в смысле «наверно, что А и не В». Например, «Если число делится на 9, то оно делится и на 3».

Символически импликация записывается А> В (если А, то В).

Логическое значение представлено в таблице истинности:

Анализ свойств импликации показывает, что истинность антецедента является достаточным условием истинности консеквента, но не наоборот. Достаточным для некоторого явления считается такое условие, наличие которого непременно вызывает это явление. Например, «быть березой» достаточное условие, чтобы включить ее в класс деревьев, так как все березы - деревья и ни одна не береза не является деревом.

В то же время истинность консеквента является необходимым условием истинности антецедента, но недостаточным. Необходимым для явления считается такое условие, без которого оно (явление) не имеет место. Например, класс берез включен в класс деревьев, но не равен ему. Есть деревья, которые не являются березами. Однако условие «быть деревом» для березы является обязательным, так как все березы - деревья.

Парадоксы материальной импликации.

Так обозначается смысловое расхождение операции материальной импликации с ее символической формулой: А>В. Согласно материальной импликации истинность А, для истинности формулы А>В, необходимо, чтобы и В было истинно. В этом случае речь идет о содержательном понимании ложности и истинности высказывания. Однако формула А>В истинна не только в указанном случае, но и тогда, когда А - ложно, а В - истинно и тогда, когда они оба ложны. Из данного факта вытекает парадокс материальной импликации: из ложного высказывания следует любое высказывание, все что угодно и истинное высказывание следует из любого высказывания.

Суждения эквивалентности.

Эквивалентность - сложное суждение, которое принимает логическое значение истины тогда и только тогда, когда входящие в него суждения обладают одинаковым логически значением, т. е. одновременно либо истинны, либо ложны.

Логический союз эквивалентности выражается грамматическими союзами «тогда и только тогда, когда», «если и только если». Например, «Если и только если треугольник равносторонний, то он и равноугольный».

Символически эквивалентность записывается АВ или АВ («если и только если А , то В»).

Логическое значение эквивалентности соответствует таблице истинности:

Эквивалентное суждение со связанными по содержанию членами выражает одновременно условие достаточное и необходимое: (А> В)?(В> А).

Равносильность выражений (АВ) и (А> В)?(В>А) может быть доказана с помощью таблицы истинности.

Отрицание.

Отрицание - это логическая операция, с помощью которой из одного высказывания получают новое, при этом простое суждение P превращается в сложное, и если исходное простое суждение истинно, то новое сложное суждение ложно - «неверно, что P» или «высказывание А ложно тогда, когда высказывание АЇ истинно».

Выражение одних логических связок посредством других.

Рассмотренные выше логические союзы взаимозаменяемы и выразимы через другие. Например:

А> В = А?В - импликация через дизъюнкцию;

А> В = В> А - импликация через импликацию;

А> B = А? В - импликация через конъюнкцию;

А?В = А? В - конъюнкция через дизъюнкцию;

А?В = А? В - дизъюнкция через конъюнкцию;

А?В = А? В - конъюнкция через дизъюнкцию.

  • § 6. Деление понятий. Классификация
  • § 7. Ограничение и обобщение понятий
  • § 8. Операции с классами (объемами понятий)
  • Глава III суждение
  • § 1. Общая характеристика суждения
  • § 2. Простое суждение
  • § 3. Сложное суждение и его виды
  • § 4. Выражение логических связок (логических постоянных) в естественном языке
  • § 5. Отношения между суждениями по значениям истинности
  • § 6. Деление суждений по модальности
  • Глава IV основные законы (принципы) правильного мышления
  • § 1. Понятие о логическом законе
  • § 2. Законы логики и их материалистическое понимание
  • § 3. Использование формально-логических законов в обучении
  • Глава V умозаключение
  • § 1. Общее понятие об умозаключении
  • § 2. Дедуктивные умозаключения
  • § 3. Выводы из категорических суждений посредством их преобразования
  • § 4. Простой категорический силлогизм1
  • I. Правила терминов
  • § 5. Сокращенный категорический силлогизм (энтимема)
  • § 6. Сложные и сложносокращенные силлогизмы (полисиллогизмы, сориты, эпихейрема)
  • § 7. Условные умозаключения
  • § 8. Разделительные умозаключения
  • § 9. Условно-разделительные (лемматические) умозаключения
  • § 10. Непрямые (косвенные) выводы
  • § 11. Индуктивные умозаключения и их виды
  • § 12. Виды неполной индукции
  • I вид. Индукция через простое перечисление (популярная индукция)
  • II вид. Индукция через анализ и отбор фактов
  • III вид. Научная индукция
  • § 13. Индуктивные методы установления причинных связей
  • § 14. Дедукция и индукция в учебном процессе
  • § 15. Умозаключение по аналогии и его виды. Использование аналогий в процессе обучения
  • Глава VI логические основы теории аргументации
  • § 1. Понятие доказательства
  • § 2. Прямое и непрямое (косвенное) доказательство
  • § 3. Понятие опровержения
  • I. Опровержение тезиса (прямое и косвенное)
  • II. Критика аргументов
  • III. Выявление несостоятельности демонстрации
  • § 4. Правила доказательного рассуждения.
  • II. Правила по отношению к аргументам
  • III. Правила к форме обоснования тезиса (демонстрации) и ошибки в форме доказательства
  • § 5. Понятие о софизмах и логических парадоксах
  • § 6. Доказательство и дискуссия
  • Глава VII гипотеза
  • § 1. Гипотеза как форма развития знаний
  • § 2. Построение гипотезы и этапы ее развития
  • § 3. Способы подтверждения гипотез
  • § 4. Опровержение гипотез
  • § 5. Примеры гипотез, применяющихся на уроках в школе
  • Глава VIII роль логики в процессе обучения
  • § 1. Логическая структура вопроса
  • § 2. К. Д. Ушинский и в. А. Сухомлинский о роли логики в процессе обучения
  • § 3. Развитие логического мышления младших школьников
  • § 4. Развитие логического мышления учащихся в средних и старших классах на уроках литературы, математики, истории и других предметов
  • Глава IX этапы развития логики как науки и основные направления современной символической логики
  • § 1. Краткие сведения из истории классической и неклассической логик
  • § 2. Развитие логики в связи с проблемой обоснования математики
  • § 3. Многозначные логики
  • § 4. Интуиционистская логика
  • § 5. Конструктивные логики
  • § 6. Модальные логики
  • § 7. Положительные логики
  • § 8. Паранепротиворечивая логика
  • § 4. Выражение логических связок (логических постоянных) в естественном языке

    В мышлении мы оперируем не только простыми, но и слож­ными суждениями, образуемыми из простых посредством логи­ческих связок (или операций) - конъюнкции, дизъюнкции, имп­ликации, эквиваленции, отрицания, которые также называются логическими константами, или логическими постоянными. Про­анализируем, каким образом перечисленные логические связки выражаются в естественном (русском) языке.

    Конъюнкция (знак «л») выражается союзами «и», «а», «но», «да», «хотя», «который», «зато», «однако», «не только..., но и» и др. В логике высказываний знак « л » соединяет простые выска­зывания, образуя из них сложные. В естественном языке союз «и» и другие слова, соответствующие конъюнкции, могут соединять существительные, глаголы, наречия, прилагательные и другие части речи. Например, «В корзине у деда лежали подберезовики и маслята» (ab), «Интересная и красиво оформленная книга лежит на столе». Последнее высказывание нельзя разбить на два простых, соединенных конъюнкцией: «Интересная книга лежит на толе» и «Красиво оформленная книга лежит на столе», - так как создается впечатление, что на столе лежат две книги, а не одна.

    В логике высказываний действует закон коммутативности конъюнкции (ab)(ba). В естественном русском языке такого закона нет, так как действует фактор времени. Там, где учитывается последовательность во времени, употребление союза «и» некоммутативно. Поэтому не будут эквивалентными, например, такие два высказывания: 1) «Прицепили паровоз, и поезд тро­нулся» и 2) «Поезд тронулся, и прицепили паровоз».

    В естественном языке конъюнкция может быть выражена не только словами, но и знаками препинания: запятой, точкой с запятой, тире. Например, «Сверкнула молния, загремел гром, пошел дождь».

    О выражении конъюнкции средствами естественного языка пишет С. Клини в своей книге «Математическая логика». В раз­деле «Анализ рассуждений» он приводит (не исчерпывающий) список выражений естественного языка, которые могут быть заменены символами « Л » или «&». Формула А ^ В в естествен­ном языке может выражаться так:

    «Не только А , но и В. Как А, так и В.

    В, хотя и Л. А вместе с В.

    В, несмотря на А. А , в то время как В» 7 .

    Придумать примеры всех этих структур предоставляем чита­телю.

    В естественном (русском) языке дизъюнкция (обозначенная ab и ab) выражается союзами: «или», «либо», «то ли... то ли» и др. Например, «Вечером я пойду в кино или в библиотеку»; «Это животное принадлежит либо к позвоночным, либо к беспоз­воночным»; «Доклад будет то ли по произведениям Л. Н. Тол­стого, то ли по произведениям Ф. М. Достоевского».

    Для обоих видов дизъюнкции действует закон коммутативно­сти: (ab(ba) и (ab)(ba). В естественном языке эта эквивалентность сохраняется. Например, суждение «Я куплю ма­сло или хлеб» эквивалентно суждению «Я куплю хлеб или масло». С. Клини показывает, какими разнообразными способами могут быть выражены в естественном языке импликация (AB) и эквиваленция (A ~B ).

    (Буквами А и В обозначены переменные высказыва­ния.)

    Приведем логические схемы и соответствующие им примеры, иллюстрирующие разнообразные способы выражения имплика­ции А -> В (где А - антецедент, В - ковсеквент).

    1. Если А, то В.

    Если поставщики вовремя доставят детали, то завод выпол­нит свой производственный план.

    2. Коль скоро А, то В.

    Коль скоро приложенные силы снимаются, то сжатая пружина возвращается к своей первоначальной форме.

    3. Когда А, имеет место В.

    Когда наступает плохая погода, имеет место повышение числа сердечно-сосудистых заболеваний у людей.

    4. Для В достаточно А.

    Для того чтобы газы расширились, достаточно их нагреть.

    5. Для А необходимо В.

    Для сохранения мира на Земле необходимо объединить усилия всех государств в борьбе за мир.

    6. А, только если В.

    Студенты этого курса не приходили на субботник, только если они были больны.

    7. В. если А.

    Я разрешу тебе пойти погулять, если ты выполнишь все домашние задания.

    Приведем логические схемы и соответствующие им примеры разнообразных способов выражения эквиваленции.

    1. А, если и только если В.

    Иванов не закончит свои эксперименты к сроку, если и только если ему не помогут сотрудники.

    2. Если А, то В, и наоборот.

    Если студент сдал все экзамены и практику на «отлично», то он получает диплом с отличием, и наоборот.

    3. А, если В, и В, если А.

    Многоугольник является вписанным в круг, если его вершины лежат на окружности, и вершины многоугольника лежат на окру­жности, если этот многоугольник является вписанным в круг.

    4. Для А необходимо и достаточно В.

    Для того чтобы число без остатка делилось на 3, необходимо и достаточно, чтобы сумма цифр этого числа делилась без остатка на 3.

    5. А равносильно В (иногда).

    То, что площадь правильного многоугольника равна произ­ведению полупериметра на апофему, равносильно тому, что пло­щадь правильного многоугольника равна произведению периме­тра на половину апофемы.

    6. А тогда и только тогда, когда В.

    Фирма будет согласна принять предложение о покупке товара тогда и только тогда, когда будет снижена цена этого товара на 15%.

    Из приведенных выше схем и соответствующих им высказы­ваний с конкретным разнообразным содержанием становится ясно, насколько многогранны в естественном языке (в частности, в русском) средства выражения импликации, эквиваленции и дру­гих логических связок (логических терминов). Это можно сказать и о других естественных языках 9 .

    Импликация (ab) не совсем соответствует по смыслу союзу «если... то» естественного языка, так как в ней может отсут­ствовать содержательная связь между суждениями а и b . В логике высказываний законом является формула:(ab)(ab).

    Но в естественном языке дело обстоит иначе. Иногда союз «если, то» выражает не импликацию, а конъюнкцию. Например, «Если вче­ра было пасмурно, то сегодня ярко светит солнце». Это сложное суждение выражается формулой ab. Кроме логических связок для выражения общих и частных суждений в логике используются квантор общности и квантор существования. Запись с квантором общности VP() обычно читается так: «Все х (из некоторой области объектов) обладают свойством Р », а запись с квантором существования ЗхР (х ) чита­ется так: «Существуют такие х (в данной области), которые обладают свойством Р». Например, 3x(x>100) читается как «Существуют такие х, которые больше 100», где под х подразумева­ются числа. Квантор общности выражается словами: «все», «вся­кий», «каждый», «ни один» и др. Квантор существования выража­ется словами: «некоторые», «существуют», «большинство», «ме­ньшинство», «только некоторые», «иногда», «тот, который», «не все», «многие», «немало», «немногие», «много», «почти все» и др.

    С. Клини пишет о том, что, переводя выражения обычного языка с помощью табличных пропозициональных связок, мы лишаемся некоторых оттенков смысла, но зато выигрываем в то­чности 10 .

    В практике математических и иных рассуждений имеются понятия «необходимое условие» и «достаточное условие». Условие называется необходимым, если оно вытекает из заключения (след­ствия). Условие называется достаточным, если из него вытекает заключение (следствие). В импликации а -> b переменная а является основанием. Она называется антецедентом. Переменная b - след­ствием (заключением). Она называется консеквентом.

    Учащимся на уроках математики предлагаются задачи типа 1-4, требующие в каждом из следующих предложений вместо многоточия поставить слова: «необходимо» или «достаточно», либо «необходимо и достаточно»:

    1. Для того чтобы сумма двух целых чисел была четным числом... чтобы каждое слагаемое было четным.

    2. Для того чтобы число делилось на 15 ... чтобы оно дели­лось на 5.

    3. Для того чтобы произведение - 3) (х +2) (х - 5) было рав­но 0, ... чтобы х = 3.

    4. Для того чтобы четырехугольник был прямоугольником... чтобы все его углы были равны 11 .