Биографии Характеристики Анализ

Опыты по физике. Интересные опыты по физике

Урок по физике «Сила трения»

Тема урока: Сила трения.

Цели урока: актуализировать и углубить знания учащихся о силе трения, выявить основные особенности силы трения, учет и применение в технике.

Оборудование: деревянный брусок, динамометр, набор грузов, листы наждачной бумаги, войлока, деревянная пластина, таблицы, дисковод, проектор, презентации урока.

Ход урока

I. Мотивация.

— Мы знаем, что физика – наука о природе. Вспомним Ф.И. Тютчева:

«Не то, что мните вы, природа:

Не слепок, не безликий лик, —

В ней есть душа, в ней есть свобода.

В ней есть любовь, в ней есть язык».

Да, у природы есть свой язык, и мы должны его понимать.

Падение яблока, взрыв сверхновой звезды, прыжок кузнечика или радиоактивный распад веществ происходят в результате взаимодействий. Существует четыре вида фундаментальных взаимодействий.

    Гравитационное взаимодействие

    Электромагнитное взаимодействие

    Слабое взаимодействие

    Сильное взаимодействие

Количественной мерой взаимодействия является – сила. Среди многочисленных сил электромагнитной природы выделим силу трения. В земных условиях трение сопутствует любому движению и покою тел.

II. Новый материал.

— Ребята, тема нашего урока «Сила трения».

С явлением трения мы знакомы уже давно. В походе можно услышать: «Не натрите ноги», в школе – «Сотрите с доски записи». Первые исследования трения были проведены великим итальянский ученым Леонардо да Винчи более 400 лет назад, но эти работы не были опубликованы. Законы трения были описаны французским ученым Гильомом Амонтоном в 1699 и Шарлем Кулоном в 1785 г.

— Ребята, дайте, пожалуйста, определение силы трения.

— Сила трения – сила, взаимодействующая при соприкосновении поверхностей тел, препятствующая их относительному перемещению, направленная вдоль поверхности соприкосновения.

Выясним причины трения.

— Сейчас мы, пользуясь предложенным оборудованием, определим силу трения. У вас на столах динамометры. Возьмем брусок, прикрепим его к динамометру, и будем тянуть брусок по горизонтальной поверхности так, чтобы он двигался равномерно. Эта сила по модулю равна силе трения, действующей на брусок.

I ряд дерево — по дереву
II ряд дерево — по войлоку
III ряд дерево — наждачная бумага

— Почему получились разные значения?

    Причиной трения являются шероховатости соприкасающихся поверхностей: от смазки, веса тела, состояния трущихся поверхностей.

    Другая причина – межмолекулярное притяжение, действующее в местах контакта трущихся тел. (Проявляется в тех случаях, когда поверхности соприкасающихся тел хорошо отполированы).

При контакте твердых тел возможны три вида трения.

Опыт №1. Брусок, динамометр (трение покоя)

Динамометр прикрепляем к бруску и тянем. Действующая сила между бруском и поверхностью – сила трения покоя.

Опыт №2. Брусок, динамометр (трение скольжения)

Брусок скользит по поверхности – возникающая сила трения – сила трения скольжения.

Опыт №3. Тележка, динамометр

Тележка катиться по поверхности. Динамометр показывает силу трения качения.

Трение качения меньше трения скольжения и покоя. Однако из самых гениальных изобретений человечества – колесо. Хорошо известно, что несравнимо легче везти груз на тележке, чем тащить его.

— А сейчас просмотрим презентацию к этой части урока.

Очевидно, в реальной жизни важно учитывать трение. Посмотрим, как это делается в задаче о движении автотранспорта по дороге.

Ребята, вы видите, что для полной остановки автомобиля требуется определенное время. Поэтому соблюдайте правила пешеходов при переходе через дорогу.

В природе и технике трение имеет большое значение. Оно может быть полезным и вредным. Когда оно полезно, его стараются увеличить. Например, поверхности шин у автомобиля делают с ребристыми выступами зимой, когда дорога бывает скользкая, ее посыпают песком.

Трение играет большую роль в жизни растений и животных.

Выступление учащихся.

О роли трения в жизни растений и животных.

В жизни многих растений трение играет положительную роль. Растения благодаря трению цепляются за находящиеся поблизости опоры, удерживаются на них и тянутся к свету. Трение здесь создается за счет того, что стебли многократно обвивают опоры и поэтому очень плотно прилегают к ним.

А вот растения, имеющие корнеплоды, такие, как морковь, свекла, брюква. Сила трения о грунт способствует удержанию корнеплода в почве. С ростом корнеплода давление окружающей земли на него увеличивается, а это значит, что сила трения тоже возрастает. Именно поэтому так трудно вытащить из земли большую свеклу, редьку, репу.

Таким растениям, как репейник, трение помогает распространять семена, имеющие колючки с небольшими крючками на концах.

Эти колючки зацепляются за шерсть животных и вместе с ними перемещаются. Семена же гороха, орехи благодаря своей шарообразной форме и малому трению качения перемещаются легко сами.

Путем длительной эволюции организмы многих живых существ приспособились к трению, научились его уменьшать или увеличивать. Так, тело рыб имеет обтекаемую форму и покрыто слизью, что позволяет им развивать при плавании большую скорость. Кости животных и человека в местах их подвижного сочленения имеют очень гладкую поверхность, а внутренняя оболочка полости сустава выделяет специальную синовиальную жидкость, которая служит как бы суставной «смазкой». При глотании пищи и ее движении по пищеводу трение уменьшается за счет предварительного дробления и пережевывания пищи, а также смачивания ее слюной.

Действие органов хватания (к ним можно отнести клешни рака, передние конечности и хвост некоторых пород обезьян и др.) тоже тесно связано с трением. Ведь предмет или живое существо будет тем прочнее схвачено, чем больше трение между ним и органом хватания. Величина же силы трения находится в прямой зависимости от прижимающей силы. Поэтому органы хватания устроены так, что могут либо охватывать добычу с двух сторон и зажимать ее, либо обвивать несколько раз и за счет этого стягивать с большой силой.

Во всех этих примерах трение полезно. Но оно может быть и вредным, тогда его необходимо уменьшить. В этом случае применяют смазку или подшипники.

Казалось бы, что может быть общего между подшипником и памятнику Петру Великому в Санкт-Петербурге. Послушаем историческую справку.

Выступление учащихся.

Может быть, не всем известны некоторые технические подробности создания памятника великому организатору государства Российского.

Для пьедестала памятника подготовили монолитную гранитную глыбу весом 80 тыс. пудов, т.е. более тысячи тонн! И доставили ее из деревни Лахти, что на берегу Финского залива, в Петербург. Как же в XVIII веке, не имея ни мощных тягачей, ни подъемных кранов, люди могли совершить такое чудо?

Обнаружена эта глыба была местным крестьянином Вишняковым. Глыбу называли Гром-камнем, так как в него однажды ударила молния, отбив большой осколок. Около 9 км пропутешествовал Гром-камень по суше, а потом по Неве на плотах был доставлен в Петербург. Небывалый успех русской техники того времени был даже отмечен особой медалью, на которой была вычеканена надпись: «Дерзновению подобно, 1770 год». И действительно, это был акт дерзновенный! Вся Европа только и говорила об этой невиданной операции, какой не повторялось с времен перевозки в древний Рим египетских памятников. Как же это было сделано? Смелый, остроумный проект передвижения Гром-камня дал кузнец из казенных мужиков, оставшийся, к сожалению, неизвестным. Он предложил перекатить камень на специально отлитых бронзовых шарах, заключенных в салазки. Салазки представляли собой большие бревна с выдолбленными вдоль них желобами, обитыми внутри медью. Гранитную глыбу поместили на помост из нескольких рядов плотно уложенных бревен, под которым находились желоба с шарами. Согнанные из ближайших деревень крестьяне при помощи канатов и воротов двигали камень к берегу. Несколько мужиков должны были все время смазывать шары говяжьим салом и переставлять их вперед после того, как глыба пройдет через них; 120 дней путешествовал так по суше Гром-камень. Доставленный в Петербург и обработанный мастерами-каменотесами, он стал прекрасным пьедесталом памятника Петру.

Да, изобретение русских крестьян послужило прообразом современного подшипника. Их устанавливают в автомобилях, токарных станках, электрических двигателях и велосипедах.

— Вот и подошел к концу наш урок. Сегодня мы с вами подробно поговорили об одной из сил э/м природы.

Особенность педагогической системы многоуровневого непрерывного креативного образования НФТМ-ТРИЗ состоящая в том, что учащийся из объекта обучения становится субъектом творчества, а учебный материал (знания) из предмета усвоения становится средством достижения некоторой созидательной цели , до недавнего времени, являлась моей мечтой, как учителя. Сегодня, медленно, но верно, мечта становится реальностью.

Внести в урок элемент творчества, навести мосты между физикой и лирикой, связать скучные физические законы с накопленным жизненным опытом учащихся, - всегда было одной из важных составляющих моей педагогической деятельности. Но одно дело - «вариться» в собственном котле, а другое, - когда на всех уровнях образования идет непрерывное формирование творческого мышления и развитие творческих способностей обучающихся, поиск высокоэффективных творческих решений.

Немецкий педагог А. Дистервег сказал: «Ученик проходит в несколько лет дорогу, на которую человечество употребило тысячелетия. Однако его следует вести к цели не с завязанными глазами, а зрячим: он должен воспринимать истину не как готовый результат, а должен ее открыть. Учитель должен руководить этой экспедицией открытий, следовательно, также присутствовать не только в качестве простого зрителя. Но ученик должен напрягать свои силы, ему ничто не должно доставаться даром. Дается только тому, кто стремится». Как правильно и в унисон с требованиями нового образовательного Стандарта сказано!

Я с каким-то душевным трепетом предвкушаю встречу с семиклассниками, готовыми самостоятельно ставить цели, ориентироваться в ситуации, творчески мыслить, действовать…

Но тогда и учителю придется по-новому принять для себя принцип Гиппократа «не навреди» как: помоги ребенку развить личность, обрести духовно-нравственный опыт и социальную компетентность.

В Федеральном государственном образовательном стандарте основного общего образования (ФГОС ООО) в требованиях к естественнонаучным предметам отмечаются, в частности,

Овладение умениями формулировать гипотезы, конструировать, проводить эксперименты, оценивать полученные результаты;

Овладение умением сопоставлять экспериментальные и теоретические знания с объективными реалиями жизни .

О том, как, применяя блочную структуру сдвоенного креативного урока , эти требования можно реализовать, используя приемы и методы НФТМ-ТРИЗ, я покажу на примере урока физики в 7-м классе по теме «Сила трения. Виды трения. Трение в природе и технике».

Принцип работы - воспитание личности через творчество.

Задача - создать педагогические условия для выявления творческих способностей и их развития.

Эпиграфом к уроку взяла два афоризма (хотя, они отражают, на мой взгляд, всю линию развития творческого мышления и способностей, поэтому могут занять почетное место в оформлении кабинета):

Человек рожден для мышления и действий.

Афоризм древних греков и римлян

Способности, как и мускулы, растут при тренировке.

Отечественный геолог и географ В. А. Обручев (1863-1956)

Блок 1 . Мотивация (5 мин). Для развития любознательности учащихся в начале урока - опыт.

На демонстрационном столе стоят две глубоких тарелки, наполненные до краев водой. Учитель приглашает к доске двух помощников и предлагает поучаствовать в эксперименте. Дает в руки одному ученику теннисный шарик, другому - такой же резиновый. Задача: заставить шарики вращаться в воде как можно быстрее .

Что наблюдаем?

Какой шарик крутится в воде быстрее?

Как вы думаете, почему теннисный шарик крутится быстрее, чем резиновый?

Вывод, к которому приходим после всестороннего анализа задачи: теннисный шарик вращается быстрее, чем резиновый, т.к. его поверхность вызывает меньше трения с водой.

Трение - это взаимодействие, возникающее при соприкосновении одного тела с другим и препятствующее их относительному движению. А сила, характеризующая это взаимодействие, - сила трения. Сегодня на уроке мы с вами раскроем все секреты этого удивительного явления - трения. Готовы? Тогда за дело!

Блок 2. Содержательная часть (30 мин)

У детей на столах: катушка из-под ниток; петля из резинки; гладкая пуговица, две спички, клей . Учитель предлагает, пользуясь набором этих инструментов, создать движущуюся конструкцию.

Работа в группах (учитель контролирует процесс поисковой и коммуникативной деятельности), демонстрация того, что получилось и рассказ о том, как действовали:

Какие идеи рождались?

Почему остановились на этой?

Как ее воплощали?

С какими проблемами столкнулись?

Как их решали? Все ли удалось?

Как работалось в команде?

Образец возможной конструкции:

Рис. 1

1 - катушка из-под ниток;

2 - петля из резинки;

3 - гладкая пуговица;

4 - обломок спички, продетый в петлю (его лучше приклеить к катушке);

5 - спичка.

Все группы поработали изобретателями, результат работы творческой мысли - движущаяся конструкция. Цель достигнута. Не малую роль в этом сыграла слаженность команды, умение слушать друг друга, формулировать и аргументировать свое мнение и корректное отстаивание своей позиции. Но все вы отмечаете, что скорость вашей машинки не так высока, как хочется.

Для того чтобы понять, как сделать полученную конструкцию более быстроход-ной, надо разобраться с тем, что ей мешает двигаться так, как нам того хочется.

Поиск будем вести в 3 направлениях: причина трения, виды трения, факторы его определяющие. На классной доске открываются записи:

Причины трения: Виды трения: Трение зависит от:

Не сомневаюсь в том, что уже есть идеи. Есть желание изложить свою точку зрения, - с удовольствием послушаем.

Работаем в группах сменного состава по сценарию: идея → опыт → вывод.

Каждая группа получает оборудование для постановки опытов: деревянный брусок с крючком, грузы, динамометр, деревянная доска 50×10 см, доски такого же размера, обитые линолеумом, резиной, круглые карандаши. А на интерактивной доске - подсказки в виде картинок:

Рис. 2 Рис. 3 Рис. 4

Рис. 5 Рис. 6 Рис. 7

Найдите рисунки, на которых встречается трение. Объясните свою точку зрения.

Обратите внимание на рис. 3, 4, 5. Что между ними общего, и чем отличаются? (Общее - трение. Но при этом хоккеист - скользит, телега - катится, а пианино - стоит на месте).

В природе и технике встречаются три вида трения: покоя, скольжения, качения (+запись на доске). Попробуйте дать им определения. Найдите их на других рисунках.

Чем же обусловлено возникновение силы трения? Как вы считаете?

Положите брусок с грузом на деревянную доску. Прикрепите к нему динамометр и, подействовав с силой, параллельной доске, равномерно перемещайте груз. Запишите показания динамометра. Какую силу мы измерили? (силу тяги, равную силе трения скольжения).

Повторите опыт на линолеуме и резине. Сделайте выводы
(1) одна из причин трения - неровности соприкасающихся поверхностей, которые при движении цепляются друг за друга; 2) сила трения зависит от материала соприкасающихся поверхностей) → записи на доске.

Добавить груз на брусок. Повторить эксперимент. Сформулировать вывод. (Сила трения прямо пропорциональна силе нормального давления) → запись на доске.

Положите брусок с гирями на карандаши. Эксперимент. Вывод.

Ребята, а что вы знаете о смазке? Какова ее роль? На каких рисунках она присутствует?

В свое время великий итальянский художник и ученый Леонардо да Винчи, удивляя окружающих, проводил странные опыты: он таскал по полу веревку то во всю длину, то собирая ее кольцами. Он изучал: зависит ли сила трения скольжения от площади соприкасающихся тел?

Прежде, чем мы узнаем, к какому выводу пришел Леонардо да Винчи, давайте тоже попробуем ответить на этот вопрос. Но вот оказия: веревки у нас нет. Как быть? Можно ли обойтись подручными средствами? Находим выход из положения в бруске, у которого различны площади граней. Сравнив силу трения скольжения при трех положениях бруска, приходим к выводу, что сила трения скольжения во всех случаях оказалась одной и той же, т. е. она не зависит от площади соприкасающихся тел. А что же Леонардо? (зачитываю ответ). И вот она - радость познания!

А сейчас я предлагаю вам с целью самоанализа изученного материала заполнить 2 таблицы , составив по получившимся записям устный рассказ. В случае затруднений обращаться к 30 и 31 параграфам учебника .

Таблица 1

Изученное физическое явление

Таблица 2

Силы, с которыми я познакомился

Работаете сначала самостоятельно, затем в группах обсуждаются, корректируются, «шлифуются» записи.

Но тут оказывается, что одна проблема возникла у всех: формулы для расчета силы трения в учебнике нет.

Ребята, вы уже знаете, что сила трения скольжения зависит от веса тела и материала соприкасающихся поверхностей. Величину, характеризующую зависимость силы трения от материала соприкасающихся поверхностей, их качества обработки называют коэффициентом трения скольжения μ. Таким образом, формула для расчета силы трения скольжения: F тр = μmg.

Думаю, что сейчас вы готовы сделать свою конструкцию быстроходной, доведя до совершенства. Это и будет вашим домашним заданием. На следующем уроке - соревнование ваших «машин». Победителей ждут высокие оценки. А сейчас…

Блок 3. Психологическая разгрузка (5 мин)

Мальчики жеребьевкой делятся на две команды, соревнуясь в перетягивании каната. Девочки - болельщицы. Им же предстоит объяснить, в чем могла быть причина победы или проигрыша команды. С каким видом трения и где столкнулись в данном состязании? Выступало оно в роли помощника или помехи? Что бы вы могли предложить для увеличения трения подошв о пол? рук о канат?

Блок 4. Головоломка (10 мин)

Скажите, ребята, кто из вас любит ходить на лыжах? Мы с моим классом иногда проводим выходные за этим замечательным занятием! Правда, воспоминания о нашем первом походе вызывают у нас смешанные чувства, т.к. намучались мы изрядно: лыжи все время «стремились» катиться назад, неимоверных усилий стоило подняться по самому небольшому взъёму.

Как думаете, что с нами было не так? - Смазка! А почему? Казалось бы, скольжение на лыжах требует уменьшения трения и все. Нет, не все. При беге на лыжах (классическим стилем) проявляются два вида трения. Какие? Одно полезное, и его нужно увеличить, другое вредное, и его нужно уменьшить. Вот так, увеличить и уменьшить одновременно! Ясно, как трудно подобрать такую грань, чтобы, как говорится, «и овцы были целы, и волки сыты». Для каждой погоды она своя - эта трудноуловимая грань. Ошибешься - и лыжи будут либо плохо скользить, либо плохо держать при отталкивании (отдача) . По этому поводу у финнов есть пословица «Лыжи скользят по погоде».

В пословицах - кратких изречениях, поучениях - проявляются национальная история, мировоззрение, быт людей. Но ведь все это неразрывно связано с физикой. Сегодня я предлагаю вам несколько пословиц, имеющих отношение к нашей теме (распределяются по группам жеребьевкой). Ваша задача: прочитать пословицу и ответить на вопросы:

  1. Каков ее физический смысл?
  2. Верна ли пословица с точки зрения физики?
  3. В чем ее житейский смысл?

Пословицы:

Пошло дело как по маслу (русская).

Лыжи скользят по погоде (финская).

Из навощенной нити трудно плести сеть (корейская).

Угря в руках не удержишь (французская).

Не подмажешь - не поедешь (французская).

Арбузную корку обошел, а на кокосовой поскользнулся (вьетнамская).

Коси коса, пока роса; роса долой, и мы домой (русская) .

Блок 5. Интеллектуальная разминка (15 мин)

Сегодня вам, мои юные физики, я расскажу сказку «Репка» о силе трения покоя, механизме ее возникновения, величине и направлении . Слушайте внимательно, т. к. по окончании вам предстоит ответить на 10 вопросов проще «пареной репы».

Итак, слушайте.

Посадил дед репку. Выросла репка большая-пребольшая, тяжелая-претяжелая, разрослась она во все стороны, грунт потеснила. Потому-то очень плотный контакт у ее клубня с почвой получился, во все мельчайшие трещины и выступы земля проникла. Пошел дед репку рвать. Тянет-потянет - вытянуть не может. Силы ему не хватает: упирается репка, неровностями и выступами за землю цепляется, своему движению противится. Местами зазор между репкой и участками почвы порядка радиуса действия молекулярных сил оказывается. Там слипание частичек грунта с репкой происходит, перемещению репки относительно земли оно препятствует.

Позвал дед бабку. Бабка за дедку, дедка за репку, тянут-потянут- вытянуть не могут: крепко утолщено-округленный корень в грунте держится. Сила тяжести его к земле прижимает. Нет, и вдвоем им не справиться.

Позвала бабка внучку. Внучка за бабку, бабка за дедку, дедка за репку, тянут-потянут - вытянуть не могут: все еще их общая сила тяги меньше той предельной силы, которая по поверхности соприкосновения репы с землей возникает. Силой трения покоя она называется. Вызвана внешней силой, но всегда против внешней силы и направлена. Неоднозначна эта сила - многолика. В широких пределах меняться может: от нуля до определенного максимального значения... Видно, еше не наступило это максимальное значение.

Позвала внучка Жучку. Жучка четырьмя лапами в землю уперлась. Между лапами и землей тоже сила трения покоя возникает. Помогает эта сила Жучке так же, как деду, бабке и внучке. Не будь этой силы, не смогли бы они упереться, по земле скользили бы, проскальзывали. Жучка за внучку, внучка за бабку, бабка за дедку, дедка за репку, тянут-потянут - вытянуть не могут. А на самом деле на микроны уже сдвинулась репка. Величина этих микро перемещений пропорциональна приложенной силе и от свойств самого грунта зависит. А слипание репки с землей и упругие деформации сдвига почвы и микро выступов самой репки при попытке ее вытянуть к росту силы упругости почвы приводят. А эта возникшая сила упругости почвы, по существу, и есть сила трения покоя. Не дает она никак вытянуть репку.

Позвала Жучка кошку. Кошка за Жучку, Жучка за внучку, внучка за бабку, бабка за дедку, тянут-потянут - вытянуть не могут: на самую малость, но все же меньше внешняя сила оказалась, чем максимально возможное значение силы трения покоя.

Позвала кошка мышку. Мышка за кошку, кошка за Жучку, Жучка за внучку, внучка за бабку, бабка за дедку, тянут-потянут - вытащили репку.

Только не подумайте, что маленькая мышка сильнее всех оказалась! Сколько тех сил у маленькой мышки! Но ее маленькая сила к общей силе тяги добавилась, и теперь результирующая сила даже превысила несколько максимальное значение величины силы трения покоя: больше силы трения скольжения стала. Возникли необратимые относительные перемещения. «Живая цепочка» - от деда до мышки - репку вытянула, а сама... упала! Больше приложенная сила, чем сила трения скольжения репки о грунт оказалась. Вот в сторону большей силы все и упали. Но это... уже другая сказка.

А теперь обещанные вопросы, проще «пареной репы»:

Блок 6 . Содержательная часть (15 мин)

Еще немного и о силе трения вы будете знать все.

Самостоятельная работа с учебником: изучить § 32 , структурировать текст (схема, таблица и пр.), обсудить в группе и наиболее удачный вариант представить всему классу, защитив его. Оцениваться работа будет по следующим критериям: интересная форма представления, компетентность защитника (четкое, понятное изъяснение, умение заинтересовать аудиторию, аргументированно ответить на заданные вопросы, если они возникнут), поддержка группы. В представлении результата деятельности должны прозвучать ответы на три вопроса: «Для чего делаю?», «Что делаю?» и «Как делаю?»

Блок 7 . Компьютерная интеллектуальная поддержка (10 мин)

Видеофрагмент мультфильма «Бременские музыканты» (Едут, поют «Ничего на свете лучше нету, чем бродить друзьям по белу свету»).

Рис. 8 Рис. 9

Найти все, что имеет отношение к нашей теме, аргументировать свой выбор. Но представить это надо «глазами» физика. Один начинает рассказ, эстафету принимает второй, затем третий и т. д. В случае необходимости, мультфильм повторяем, останавливаясь по просьбе отвечающего.

Блок 8. Резюме (5 мин)

«Сделай свою «фотографию» урока или работы»

Представьте, что каждый из вас фотограф, и вам надо сделать несколько снимков «стоп-кадров» с урока или того дела, которым вы только что занимались. Снимок может быть цветной или черно-белый. Цветной стоп-кадр отражает что-то понравившееся, доставившее вам радость от увиденного, услышанного, выполненного, сконструированного и пр. Черно-белый «стоп-кадр» должен показать то, что вам не понравилось, не удалось, огорчило.

Каждый изображает, как он делает свой снимок: держит в руках фотоаппарат, спускает затвор и громко комментирует кадр, поясняя, почему что-то понравилось или не понравилось. Затем фотоаппарат нужно передать другому учащемуся .

Последним несколько «стоп-кадров» делает учитель.

  1. Зиновкина М. М., Утёмов В. В. Структура креативного урока по развитию творческой личности учащихся в педагогической системе НФТМ-ТРИЗ // Социально-антропологические проблемы информационного общества. Выпуск 1. - Концепт. - 2013. - ART 64054. - URL: http://e-koncept.ru/teleconf/64054.html
  2. Федеральный государственный образовательный стандарт основного общего образования. - URL: http://минобрнауки.рф]
  3. Опыт «Трение» - Уроки волшебства. - URL: http://lmagic.info/friction.html
  4. Балашов М. М. О природе: Кн. для учащихся 7 кл. - М.: Просвещение. 1991. -64 с.: ил.
  5. Преподавание физики, развивающее ученика. - Кн. 2. - Развитие мышления: общие представления, обучение мыслительным операциям / сост. и под ред. Э. М. Браверман. Пособие для учителей и методистов. - М.: Ассоциация учителей физики. 2005. - 272 с.; ил. - (Обучение, ориентированное на личность.)
  6. Класс!ная физика. - URL: http://class-fizika.narod.ru/
  7. Перышкин А. В. Физика. 7 кл.: учеб. для общеобразоват. учреждений. - 8-е изд., стереотип. - М.: Дрофа, 2004. - 192 с.: ил.
  8. Тихомирова С. А. Физика в пословицах, загадках и сказках. - М.: Школьная Пресса, 2002. - 128 с. - (Библиотека журнала «Физика в школе»; Вып. 22)
  9. Урок физики в современной школе: Творч. поиск учителей: Кн. для учителя / сост. Э. М. Браверман; под ред. В. Г. Разумовского. - М.: Просвещение,1993. - 288 с
  10. Преподавание физики, развивающее ученика. Кн. 1. Подходы, компоненты, уроки, задания / сост. и под ред. Э.М. Браверман: Пособие для учителей и методистов. - М.: Ассоциация учителей физики. 2003. - 400 с.; ил. - (Обучение, ориентированное на личность.)

Актуальность: Работа предназначена для формирования мировоззрения о реальной действительности. Ответы на многие важные вопросы, связанные с движением тел, дают законы трения. Актуальность темы в том, что она связывает теорию с практикой, раскрывает возможность объяснения природы, применение и использование изученного материала. Данная работа позволяет развивать творческое мышление, умение приобретать знания из различных источников, анализировать факты, проводит эксперименты, делать обобщения, высказывать собственные суждения, задумываться над загадками природы и искать тропинку к истине.


Проследить исторический опыт человечества по использованию и применению этого явления; выяснить природу явления трения, закономерности трения; провести эксперименты, подтверждающие закономерности и зависимости силы трения; проделать демонстрационные эксперименты, доказывающие зависимость силы трения от силы нормального давления, от свойств соприкасающихся поверхностей.Задачи:



Коси, коса, пока роса, роса долой – и ты домой. Не подмажешь, не поедешь. Пошло дело, как по маслу. Без мыла в душу влезет. Кататься, как сыр в масле. От того телега запела, что давно дёгтя не ела.Пословицы объясняются существованием трения и использованием смазки для его уменьшения.




Тихая вода подмывает берега.Между отдельными слоями воды, текущей в реке, действует трение, которое называется внутренним. В связи с этим, скорость течения воды на разных участках поперечного сечения русла реки неодинакова: самая большая - в середине русла, самая маленькая - у берегов. Сила трения не только тормозит воду, но и действует на берег, вырывая частицы грунта и, тем самым, подмывая его.






























3. История изучения трения Леонардо да Винчи Эйлер Леонард Амонт Кулон Шарль Огюстен де


Год Имя ученого ЗАВИСИМОСТЬ модуля силы трения скольжения от площади соприкасающихся тел от материала от нагрузки от относительной скорости движения трущихся поверхностей от степени шероховатости поверхностей 1500 Леонардо да Винчи Нет Да НетДа 1699Амонтон Нет Да Нет 1748 Леонард Эйлер Нет Да 1779Кулон Да 1883Н.П.Петров НетДа




Вывод: Сила трения скольжения зависит от нагрузки, чем больше нагрузка, тем больше сила трения. Результаты экспериментов: 1. Зависимость силы трения скольжения от нагрузки. m (г) F тp (Н)0,50,81,0





Когда завязываем пояс Без трения все нитки выскальзывали бы из ткани. Без трения все узлы бы развязались. Без трения нельзя бы было ступить и шагу, да и, вообще, стоять. Трение принимает участие там, где мы о нем даже и не подозреваем Заключение Когда шьем Когда ходим


Мы выяснили,что человек издавна использует знания о явлении трения,полученные опытным путем. Нами была создана серия экспериментов, помогающих понять и объяснить некоторые трудные наблюдения. Сила трения возникает между соприкасающимися поверхностями. Сила трения зависит от рода соприкасающихся поверхностей. Сила трения не зависит от площади трущихся поверхностей. Сила трения уменьшается при замене трения скольжения трением качения, при смазывании трущихся поверхностей. Выводы по результатам работы:

Одна из проблем современной школы – снижение интереса к физике. Я задала себе вопрос: Какими средствами может воспользоваться учитель, чтобы сформировать у учащихся положительное отношение к предмету, вызвать у них познавательный интерес к знаниям? Можно предложить такую схему воспитания у школьников увлечения учебным предметом: от любопытства к удивлению, от него к активной любознательности и стремлению узнать, от них к прочному знанию и научному поиску.

Остановлюсь подробнее на первой стадии - удивления и любопытства: у школьников возникает ситуативный интерес, проявляющийся при демонстрации эффектного опыта, прослушивании рассказа об интересном случае из истории физики, причем его объектом является не содержание предмета, а чисто внешние моменты урока - оборудование, мастерство учителя, формы работы на уроке.

Новизна, непосредственный интерес и эмоциональная привлекательность вызывают прежде всего непроизвольное внимание. В свою очередь, непроизвольное внимание вызывает непроизвольное запоминание. Каждый учитель хорошо знает, что при проверке домашнего задания ученик, отвечая на поставленный вопрос, начинает с описания опыта, который он видел на предыдущем уроке. Зрительные образы демонстрационных опытов сохраняются в памяти и выполняют функцию ориентиров, опор, на основании которых восстанавливается остальная часть изученного учебного материала.

Я полностью согласна с психологами, которые отмечают, что сложный зрительный материал запоминается лучше, чем его описание. Поэтому демонстрация опытов запечатлевается памятью учащихся значительно лучше, чем рассказ учителя о физических опытах.

Однако ученики, вспоминая демонстрационные опыты, вносят в свое описание изменения, которые обусловлены не только забыванием некоторых деталей, но и преобразованием описания в форму, более, легкую для понимания. Вспоминая, ученики выделяют детали опытов, которые представляются им наиболее значимыми и интересными. Все это свидетельствует о том, что припоминание является не простым воспроизведением, а конструктивным процессом.

Таким образом, я считаю, что демонстрация опытов развивает внимание и память учащихся на стадии эмпирического познания изучаемых явлений и закономерностей.

В этой связи предлагается использовать эффектные опыты, поскольку у учащихся возникает не только живой интерес к демонстрации явления, но и бурное обсуждение разгадки явления (проблемная ситуация). Таким образом, при показе эффектного опыта, мы убиваем сразу двух зайцев: демонстрируем физическое явление и создаем проблемную ситуацию. А в качестве "побочного эффекта" пробуждаем интерес к предмету. Поэтому, характер и форма организации учебно-познавательной деятельности учащихся: проблемно – поисковый, исследовательский и репродуктивный характер деятельности позволяет осуществить комплексное применение знаний учащихся.

Я как учитель совместно с учащимися ставила цели:

Образовательная:систематизация знаний по теме “Сила трения”: знать природу силы трения, формировать умение различать виды трения; сравнивать их в разных практических ситуациях; обосновывать необходимость увеличения и уменьшения силы трения; формировать у ребят умение осуществлять самоконтроль с помощью конкретных вопросов и использования дидактического материала.

Развивающая:совершенствовать навыки самостоятельной работы, активизировать мышление школьников, умение самостоятельно формулировать выводы, развивать речь. Развитие творческих способностей на основе практической работы. Отработка практических навыков в работе с физическим оборудованием.

Воспитательная: развитие чувства взаимопонимания и взаимопомощи в процессе совместного выполнения экспериментального задания; развитие мотивации изучения физики, используя разнообразные приёмы деятельности, сообщая интересные сведения.

В ходе такого вида деятельности у учащихся формируются способности к структурированию и систематизации изучаемого предметного содержания. Освещение темы сопровождается демонстрацией презентации с последующим обсуждением и объяснением явлений, происходящих из-за наличия силы трения. Демонстрируются способы изменения силы трения на практике. Учащиеся имеют возможность анализировать происходящее и делать выводы.

Наряду с этим, происходит развитие метапредметных УУД: коммуникативные – выражать с достаточной полнотой полнотой и точностью свои мысли, добывать недостающую информацию с помощью вопросов; регулятивные – осознавать самого себя как движущую силу своего научения, свою способность к преодолению препятствий и самокоррекции, составлять план решения задачи, самостоятельно исправлять ошибки; познавательные – уметь создавать модели для решения учебных и познавательных задач, выделять и классифицировать существенные характеристики объекта. А так же планируются результаты личностные: формирование целостного мировоззрения, соответствующего современному уровню развития науки и общественной практики.

Цель:

  • познакомить с видами силы трения;
  • выяснить от чего зависит сила трения

Задача:

  • определить значение силы трения в повседневной жизни, природе.

Трение – явление, сопровождающее нас с детства, на каждом шагу, а потом ставшее таким привычным и таким незаметным.

Сила трения в сказках: “Колобок” (сила трения качения), “Репка” (сила трения покоя), “Медвежья горка” (сила трения скольжения), “Царевна лягушка” (сила трения качения).

Трение – один из видов взаимодействия тел. Оно возникает при соприкосновении двух тел. Трение, как и все другие виды взаимодействия, подчиняется третьему закону Ньютона: если на одно из тел действует сила трения, то такая же по модулю, но направленная в противоположную сторону сила действует и на второе тело.

Виды силы трения: Fтр.качения, Fтр.скольжения, Fтр.покоя, но возможна замена одного вида трения другим (Fтр.скольжения на Fтр.качения). При помощи бруска, динамометра и двух карандашей можно продемонстрировать, что Fтр.скольжения больше, чем Fтр.качения.

Зависимость силы трения от некоторых показателей демонстрируют следующие опыты:

С помощью динамометра, бруска и набора грузов показываем, что сила трения зависит от силы нормального давления;

На место гладкой поверхности кладем шероховатый лист бумаги (сила трения зависит от материала);

Устраняем пластилин с поверхности, измеряем при этом силу трения до и после;

Используем смазку, что ведет к уменьшению силы трения;

Сила трения почти не зависит от площади опоры.

У силы трения есть свои плюсы и, к сожалению, минусы. В том случае, когда оно полезно – стараются увеличить. Если вредно – пытаются уменьшить (использование смазки, подшипников, которые уменьшают силу трения в 20-30 раз).

Вот несколько примеров. Мелодия, исходящая от скрипки существует за счет того, что смычок приводит в колебание струны. Струна под смычком всегда движется медленнее, чем смычок. Когда струна движется навстречу смычку, то сила трения скольжения тормозит струну, замедляя ее движение. А когда смычок движется по направлению струны, то сила трения скольжения наоборот “тащит” струну за собой, не давая ей отставать. Когда зимой на дорогах образовывается лед, то велика вероятность аварий, также пешеходы могут получить травмы на заледеневших тропинках. Чтобы этого избежать, можно насыпать песок на дорогу, тем самым увеличили силу трения. Польза силы трения качения в том, что катящееся колесо немного вдавливается в дорогу, и перед ним образуется небольшой бугорок, который приходится преодолевать. Так происходит движение. В 1779 году французский физик Кулон установил, от чего зависит максимальная сила трения покоя. Чем тяжелее книга, лежащая на столе, чем сильнее она прижимается к столу, тем труднее ее сдвинуть. Именно за счет трения покоя все остается на своих местах: шнурки не развязываются, гвоздь держится в стене, шкаф стоит на своем месте. Можно сделать выводы о плюсах силы трения. Благодаря этой силе мы можем стоять или двигаться вперед, замедлять или ускорять движение отдельных тел.

Но, наряду с плюсами, есть еще и минусы. Человек никогда не сможет изобрести вечный двигатель, т.к. со временем любое движение прекратится из-за силы трения и приходится время от времени это движение сохранять – воздействовать на него. Трение не только тормоз для движения, это еще и главная причина изнашивания технических устройств - проблема, с которой человек столкнулся на заре цивилизации.

Леонардо де Винчи занимался многими вопросами деталей машин, трения и износа. Сила трения направленна в противоположную от приложенной силы сторону, и это приводит к совершению большой работы.

Основной характеристикой трения является коэффициент трения “мю”, который определяется материалами, из которых изготавливают поверхности взаимодействующих тел.

В жизни многих растений трение играет положительную роль. Например, лианы, хмель, горох, бобы и др. вьющиеся растения благодаря трению могут цепляться за опоры, удерживаются на них и тянутся к свету. Между опорой и стеблем возникает большая сила трения, т.к. стебли плотно прилегают к опоре. У растений, имеющие корнеплоды, такие, как морковь, свекла, сила трения о грунт способствует удержанию их в почве. С ростом корнеплода, давление окружающей земли на него увеличивается, и сила трения тоже возрастает. Поэтому так трудно вытащить из земли большую репу, свеклу. Таким растениям, как репейник, трение помогает распространять семена, имеющие колючки с небольшими крючками на концах. Эти колючки зацепляются за шерсть животных и вместе с ними перемещаются. Семена же гороха, ореха, благодаря своей шарообразной форме и малому трению качения, перемещаются легко сами.

Организмы многих живых существ приспособились к трению, научились его уменьшать или увеличивать. Тело рыб имеют обтекаемую форму и покрыто слизью, что позволяет им развивать при плавании большую скорость. Щетинистый покров моржей, тюленей, морских львов помогает им передвигаться по суше и льдинам. Чтобы увеличить сцепление с грунтом, стволами деревьев, на конечностях животных имеется целый ряд приспособлений: когти, острые края копыт, подковные шипы, тело пресмыкающихся покрыто бугорками и чешуйками. Действие органов хватания (хватательные органы жуков, клешни рака; передние конечности и хвост некоторых пород обезьян; хобот слона) тоже связано с трением. У многих живых организмов существуют приспособления, благодаря которым трение получается небольшим при движении в одном направлении и резко увеличивается при движении в обратном направлении. Это, например, шерсть и чешуйки, растущие наклонно к поверхности кожи. На этом принципе основано движение дождевого червя. Водяной жук-вертячка быстро носится на поверхности воды. Быстроте передвижения он обязан покрывающей тело жировой смазке, которая значительно уменьшает трение о воду.

Кости животных и человека в местах их подвижного сочленения имеют очень гладкую поверхность, а внутренняя оболочка полости сустава выделяет специальную жидкость, которая служит суставной “смазкой”. При глотании пищи и ее движении по пищеводу трение уменьшается за счет предварительного дробления и пережевывания пищи, а также смачивания ее слюной. При действии же органов движения у животных и человека трение проявляется как полезная сила.

Пословицы и поговорки о силе трения, сказанные людьми и взятые из жизненного опыта:

  • Скрипит, как несмазанная телега.
  • От того телега запела, что давно дегтя не ела.
  • Против шерсти не гладят.
  • Прошло дело как по маслу.
  • Хорошо смазал – хорошо поехал.
  • Живет как сыр в масле.
  • Где скрипит, там и мажут
  • Не тертая стрела в бок идет.
  • Плуг от работы блестит.
  • Три, три – будет дырка.

Опыты, демонстрирующие силу трения:

Опыт №1 . Вращение сырого и вареного яйца. Вареное яйцо вращается быстрее. В сыром яйце его желток и белок стараются сохранить неподвижное состояние (в этом проявляется их инерция) и своим трением о скорлупу тормозят его вращение.

Опыт №2. Развести в маленькой баночке марганцовку до темно-фиолетового цвета. Налить в другую банку простую воду. Затем, набрать пипеткой раствор марганцовки и капнуть в банку с высоты 1-2 сантиметра от поверхности воды. Кончик пипетки не должен колебаться. Руки должны опираться н локти. Капля, упав в воду, превращается в кольцо правильной формы, которое будет опускаться на дно банки, увеличиваясь в размере. Это объясняется тем, что когда капля упала в воду, она, встретив сопротивление, расплющилась. При движении ее вниз вследствие трения о воду, ее края завернулись. Получилось вихревое кольцо в виде баранки, вращающейся вокруг своей кольцевой оси.

Опыт №3. Положить на книгу шестигранный карандаш параллельно ее корешку. Медленно поднимать верхний край книги до тех пор, пока карандаш не начнет скользить вниз. Чуть уменьшить наклон книги и закрепить ее в теком положении, подложив под нее что-нибудь. Теперь карандаш, если его снова положить на книгу, съезжать не будет. Его удерживает на месте сила трения покоя. Достаточно щелкнуть пальцем по книге, сила трения покоя ослабнет, и карандаш поползет вниз.

Французский физик Гильом о роли силы трения: “Всем нам случалось выходить в гололедицу; сколько усилий стоило нам удерживаться от падения, сколько смешных движений приходилось нам проделать, чтобы устоять! Это заставляет нас признать, что обычно земля, по которой мы ходим, обладает драгоценным свойством, благодаря которому мы сохраняем равновесие без особых усилий. Та же мысль возникает у нас, когда мы едем на велосипеде по скользкой мостовой, или когда лошадь скользит по асфальту и падает. Изучая подобные явления, мы приходим к открытию тех следствий, к которым приводит трение. Инженеры стремятся его устранить в машинах – и хорошо делают. Однако, это правильно лишь в узкой специальной области. Во всех прочих случаях мы должны быть благодарны трению: оно дает нам возможность ходить, сидеть и работать без опасения, что книги и чернильница упадут на пол, что стол будет скользить, пока не упрется в угол, а перо выскользнет из пальцев”.

Большинство людей, вспоминая свои школьные годы, уверены, что физика - это весьма скучный предмет. Курс включает множество задач и формул, которые никому в последующей жизни не пригодятся. С одной стороны, эти утверждения правдивы, но, как и любой предмет, физика имеет и другую сторону медали. Только ее не каждый открывает для себя.

Очень многое зависит от учителя

Возможно, в этом виновата наша система образования, а может быть, все дело в учителе, который думает только о том, что нужно отчитать утвержденный свыше материал, и не стремится заинтересовать своих учеников. Чаще всего виноват именно он. Однако если детям повезет, и урок у них будет вести преподаватель, который сам любит свой предмет, то он сможет не только заинтересовать учеников, но и поможет им открыть для себя что-то новое. Что в результате приведет к тому, что дети начнут с удовольствием посещать такие занятия. Конечно, формулы являются неотъемлемой частью этого учебного предмета, от этого никуда не деться. Но есть и положительные моменты. Особый интерес у школьников вызывают опыты. Вот об этом мы и поговорим более детально. Мы рассмотрим некоторые занимательные опыты по физике, которые вы сможете провести вместе со своим ребенком. Это должно быть интересно не только ему, но и вам. Вполне вероятно, что при помощи таких занятий вы привьете своему чаду неподдельный интерес к учебе, а любимым предметом для него станет "скучная" физика. проводить совсем несложно, для этого потребуется совсем немного атрибутов, главное, чтобы было желание. И, возможно, тогда вы сможете заменить своему ребенку школьного учителя.

Рассмотрим некоторые интересные опыты по физике для маленьких, ведь начинать нужно с малого.

Бумажная рыбка

Чтобы провести данный эксперимент, нам необходимо вырезать из плотной бумаги (можно картона) маленькую рыбку, длина которой должна составить 30-50 мм. Делаем в середине круглое отверстие диаметром примерно 10-15 мм. Далее со стороны хвоста прорезаем узкий канал (ширина 3-4 мм) до круглого отверстия. После чего наливаем воду в таз и аккуратно помещаем туда нашу рыбку таким образом, чтобы одна плоскость лежала на воде, а вторая - оставалась сухой. Теперь необходимо в круглое отверстие капнуть масла (можно воспользоваться масленкой от швейной машинки или велосипеда). Масло, стремясь разлиться по поверхности воды, потечет по прорезанному каналу, а рыбка под действием вытекающего назад масла поплывет вперед.

Слон и Моська

Продолжим проводить занимательные опыты по физике со своим ребенком. Предлагаем вам познакомить малыша с понятием рычага и с тем, как он помогает облегчать работу человека. Например, расскажите, что при помощи него легко можно приподнять тяжелый шкаф или диван. А для наглядности показать элементарный опыт по физике с применением рычага. Для этого нам понадобятся линейка, карандаш и пара маленьких игрушек, но обязательно разного веса (вот почему мы и назвали этот опыт «Слон и Моська»). Крепим нашего Слона и Моську на разные концы линейки при помощи пластилина, или обычной нитки (просто привязываем игрушки). Теперь, если положить линейку средней частью на карандаш, то перетянет, конечно же, слон, ведь он тяжелее. А вот если сместить карандаш в сторону слона, то Моська запросто перевесит его. Вот в этом и заключается принцип рычага. Линейка (рычаг) опирается на карандаш - это место является точкой опоры. Далее ребенку следует рассказать, что этот принцип используется повсеместно, он заложен в основу работы крана, качелей и даже ножниц.

Домашний опыт по физике с инерцией

Нам понадобятся банка с водой и хозяйственная сетка. Ни для кого не будет секретом, что если открытую банку перевернуть, то вода выльется из нее. Давайте попробуем? Конечно, для этого лучше выйти на улицу. Ставим банку в сетку и начинаем плавно раскачивать ее, постепенно наращивая амплитуду, и в результате делаем полный оборот - один, второй, третий и так далее. Вода не выливается. Интересно? А теперь заставим воду выливаться вверх. Для этого возьмем жестяную банку и сделаем в донышке отверстие. Ставим в сетку, наполняем водой и начинаем вращать. Из отверстия бьет струя. Когда банка в нижнем положении, это не удивляет никого, а вот когда она взлетает вверх, то и фонтан продолжает бить в том же направлении, а из горловины - ни капли. Вот так-то. Все это может объяснить принцип инерции. При вращении банка стремится улететь прямо, а сетка не пускает ее и заставляет описывать окружности. Вода также стремится лететь по инерции, а в том случае, когда мы в донышке сделали отверстие, ей уже ничего не мешает вырваться и двигаться прямолинейно.

Коробок с сюрпризом

Теперь рассмотрим опыты по физике со смещением Нужно положить спичечный коробок на край стола и медленно двигать его. В тот момент, когда он пройдет свою среднюю отметку, произойдет падение. То есть масса выдвинутой за край столешницы части превысит вес оставшейся, и коробок опрокинется. Теперь сместим центр массы, например, положим внутрь (как можно ближе к краю) металлическую гайку. Осталось поместить коробок таким образом, чтобы малая ее часть оставалась на столе, а большая висела в воздухе. Падения не произойдет. Суть этого эксперимента заключатся в том, что вся масса находится выше точки опоры. Этот принцип также используется повсюду. Именно благодаря ему в устойчивом положении находятся мебель, памятники, транспорт, и многое другое. Кстати, детская игрушка Ванька-встанька тоже построена на принципе смещения центра массы.

Итак, продолжим рассматривать интересные опыты по физике, но перейдем к следующему этапу - для школьников шестых классов.

Водяная карусель

Нам потребуются пустая консервная банка, молоток, гвоздь, веревка. Пробиваем при помощи гвоздя и молотка в боковой стенке у самого дна отверстие. Далее, не вытягивая гвоздь из дырки, отгибаем его в сторону. Необходимо, чтобы отверстие получилось косое. Повторяем процедуру со второй стороны банки - сделать нужно так, чтобы дырки получились друг напротив друга, однако гвозди были загнуты в разные стороны. В верхней части сосуда пробиваем еще два отверстия, в них продеваем концы каната или толстой нити. Подвешиваем емкость и наполняем ее водой. Из нижних отверстий начнут бить два косых фонтана, а банка начнет вращаться в противоположную сторону. На этом принципе работаю космические ракеты - пламя из сопел двигателя бьет в одну сторону, а ракета летит в другую.

Опыты по физике - 7 класс

Проведем эксперимент с плотностью масс и узнаем, как можно заставить яйцо плавать. Опыты по физике с различными плотностями лучше всего проводить на примере пресной и соленой воды. Возьмем банку, заполненную горячей водой. Опустим в нее яйцо, и оно сразу утонет. Далее насыпаем в воду поваренную соль и размешиваем. Яйцо начинает всплывать, причем, чем больше соли, тем выше оно поднимется. Это объясняется тем, что соленая вода имеет более высокую плотность, чем пресная. Так, всем известно, что в Мертвом море (его вода самая соленая) практически невозможно утонуть. Как видите, опыты по физике могут существенно увеличить кругозор вашего ребенка.

и пластиковая бутылка

Школьники седьмых классов начинают изучать атмосферное давление и его воздействие на окружающие нас предметы. Чтобы раскрыть эту тему глубже, лучше провести соответствующие опыты по физике. Атмосферное давление оказывает влияние на нас, хоть и остается невидимым. Приведем пример с воздушным шаром. Каждый из нас может его надуть. Затем мы поместим его в пластиковую бутылку, края оденем на горлышко и зафиксируем. Таким образом, воздух сможет поступать только в шар, а бутылка станет герметичным сосудом. Теперь попробуем надуть шар. У нас ничего не получится, так как атмосферное давление в бутылке не позволит нам этого сделать. Когда мы дуем, шар начинает вытеснять воздух в сосуде. А так как бутылка у нас герметична, то ему деваться некуда, и он начинает сжиматься, тем самым становится гораздо плотнее воздуха в шаре. Соответственно, система выравнивается, и шар надуть невозможно. Теперь сделаем отверстие в донышке и пробуем надуть шар. В таком случае никакого сопротивления нет, вытесняемый воздух покидает бутылку - атмосферное давление выравнивается.

Заключение

Как видите, опыты по физике совсем не сложные и довольно интересные. Попробуйте заинтересовать своего ребенка - и учеба для него будет проходить совсем по-другому, он начнет с удовольствием посещать занятия, что в конце концов скажется и на его успеваемости.