Биографии Характеристики Анализ

Поверхностный аппарат ядра, его строение и функции. строение ядерного порового комплекса

Введение
Глава 1. Структура и химия клеточного ядра. Открытие ядра. Роберт Броун
1.1. Интерфазное ядро
1.2. Работы флемминга
1.3. Ядрышки
1.4. Ядерная мембрана
1.5. Кариоплазма
1.6. Хроматин
Глава 2. Клеточное ядро - центр управления жизнедеятельностью клетки
2.1. Ядро - незаменимый компонент клетки
2.2. Функциональная структура ядра
2.3. Роль ядерных структур в жизнедеятельности клетки
2.4. Ведущее значение днк
Список литературы

ВВЕДЕНИЕ

Клеточное ядро - центр управления жизнедеятельностью клетки. Из общей схемы белкового синтеза можно видеть, что начальным пунктом, с которого начинается поток информации для биосинтеза белков в клетке, является ДНК. Следовательно, именно ДНК содержит ту первичную запись информации, которая должна сохраняться и воспроизводиться от клетки к клетке, из поколения в поколение. Кратко касаясь вопроса о месте хранения генетической информации, т. е. о локализации ДНК в клетке, можно сказать следующее. Уже давно известно, что, в отличие от всех прочих компонентов синтезирующего белок аппарата, универсально распределенных по всем частям живой клетки, ДНК имеет особую, весьма ограниченную локализацию: местом ее нахождения в клетках высших (эукариотических) организмов является клеточное ядро.
У низших (прокариотических) организмов, не имеющих оформленного клеточного ядра, - бактерий и сине-зеленых водорослей, - ДНК также отделена от остальной части протоплазмы одним или несколькими компактными нуклеоидными образованиями. В полном соответствии с этим ядро эукариотов или нуклеоид прокариотов издавна рассматриваются как вместилище генов, как уникальный клеточный органоид, контролирующий реализацию наследственных признаков организмов и их передачу в поколениях. Генетические данные о «единоначалии» ядра в клетке всегда непосредственно объединялись с биохимическими данными об уникальной локализации ДНК в ядре.

1. СТРУКТУРА И ХИМИЯ КЛЕТОЧНОГО ЯДРА. ОТКРЫТИЕ ЯДРА. РОБЕРТ БРОУН

Термин «ядро» впервые был применен Броуном в 1833 г. для обозначения шаровидных постоянных структур в клетках растений. В 1831-1833 гг., шотландский путешественник и физик (открывший «броуновское движение») Роберт Броун (1773-1858) обнаружил ядро в растительных клетках. Он дал ему название «Nucleus», или «Areola». Первый термин стал общепринятым и сохранился по настоящее время, второй же распространения не получил и забыт. Весьма важно, что Броун настаивал на постоянном наличии ядра во всех живых клетках.
Роль и значение клеточного ядра не были в то время известны. Полагали, что оно представляет собой «конденсированную в комочек слизь, а возможно, и запасное питательное вещество». Позднее такую же структуру описали во всех клетках высших организмов. Говоря о клеточном ядре, мы имеем в виду собственно ядра эукариотических клеток. Их ядра построены сложным образом и довольно резко отличаются от «ядерных» образований, нуклеоидов прокариотических организмов. У последних в состав нуклеоидов (ядроподобных структур) входит одиночная, кольцевая молекула ДНК, практически лишенная белков. Иногда такую молекулу ДНК бактериальных клеток называют бактериальной хромосомой, или генофором (носителем генов).
Бактериальная хромосома не отделена мембранами от основной цитоплазмы, однако собрана в компактную, ядерную зону, нуклеоид, который можно видеть в световом микроскопе после специальных окрасок или же в электронном микроскопе. Анализируя структуру и химию клеточного ядра, мы будем опираться на данные, касающиеся ядер эукариотических клеток, постоянно сравнивая их с ядрами прокариотов. Клеточное ядро, обычно одно на клетку (есть примеры многоядерных клеток), состоит из ядерной оболочки, отделяющей его от цитоплазмы, хроматина, ядрышка и кариоплазмы или ядерного сока. Эти четыре основных компонента встречаются практически во всех неделящихся клетках эукариотических одно- или многоклеточных организмов.



1.2. РАБОТЫ ФЛЕММИНГА

До некоторых пор роль ядра в клеточном делении оставалась неопределенной. Это, вероятно, было связано с трудностью наблюдения за ним. В живой клетке ядро, как правило, можно видеть только при значительном увеличении обычного светового микроскопа. Ядро, находящееся в процессе деления, наблюдать еще труднее. Анилиновые красители окрашивают ядро, цитоплазму и клеточную оболочку по-разному и, следовательно, облегчают узнавание этих структур.
Анилиновые красители синтезируются искусственно, и методика их получения не была известна до середины XIX в. Естественные красители, которые биологи использовали раньше, не всегда окрашивали ядра достаточно хорошо, чтобы их можно было отличить от остальных частей клетки. И вновь дальнейший прогресс зависел от развития подходящих для проведения исследований методов. В то время не было недостатка в хороших микроскопах, но не было известно, как обрабатывать клетки, чтобы увидеть как можно больше клеточных структур. Следует отметить, что никто не знал, будут ли анилиновые красители для этой цели лучше, чем естественные.
Когда в 1860-х гг. химики получили анилиновые красители, кто-то просто наугад попытался использовать их для окрашивания тонких срезов растительных и животных тканей. В 1879 г. немецкий биолог Вальтер Флемминг использовал различные анилиновые красители и ахроматические линзы. Обработав клетки красителями и изучая их под микроскопом с ахроматическими линзами, он проследил за поведением ядра в процессе клеточного деления. В его книге «Клеточное вещество, ядро и клеточное деление» описаны результаты наблюдений над клеточным делением, причем описания очень близки к современным.
Поскольку хромосомы похожи на нити, Флемминг решил назвать этот процесс митозом (греческое слово, что в переводе значит «нить»). Строго говоря, митоз относится только к процессу ядерного удвоения. Образования клеточной пластинки в растительных клетках и клеточной бороздки в животных клетках являются делениями цитоплазмы.
Было бы неправильным считать, что Флемминг - единственный первооткрыватель явления митоза. Понимание всей последовательности процесса митоза зависело от многих ученых, работавших над этой проблемой все предыдущие годы. Одна из основных трудностей исследования событий, происходящих в клетке, состояла в том, что клетки погибали в процессе окрашивания. Это означает, что клетка изучается только после того, как жизнедеятельность в ней прекращена. По этой «остановленной в движении» картине Флемминг и другие исследователи воссоздали то, что происходит в живых клетках. Это примерно то же, что воссоздать работу фабрики по серии моментальных снимков, взятых в различные интервалы времени. По существу, это и было сделано Флеммингом. Другие ученые, основываясь на работе Флеминга, в конце концов выявили связь хромосом с наследственностью и эволюцией.
Именно так развивается наука: успех зависит не от случайных открытий ученых-«гигантов», а от кропотливой работы большого отряда ученых. В световом, а также в фазово-контрастном микроскопах ядро обычно представляется оптически гомогенным: видны лишь оболочка и одно или несколько ядрышек внутри. Иногда обнаруживаются также гранулы и небольшие глыбки. Реже в неделящихся живых клетках удается наблюдать хромосомы. Тонкая хроматиновая сеть отчетливо выявляется лишь после фиксации и окрашивания клетки основными красителями.
Исследования ядра на фиксированных и окрашенных препаратах показали, что его микроскопическое изображение почти не зависит от метода изготовления препаратов. Лучше всего тонкая структура ядра сохраняется при фиксации четырехокисью осмия. Другие общепринятые фиксаторы позволяют различать на препарате ядерную оболочку, ядрышко, хроматиновые структуры в виде глыбок и нитей и неокрашенную массу между ними - нуклеоплазму.
Хроматиновые структуры расположены в более жидкой ахроматической среде, они могут быть плотными или рыхлыми, пузыревидными. У некоторых объектов хроматин после фиксации не образует явно выраженной ядерной сети, а концентрируется в ядре в виде крупных глыбок, названных хромоцентрами, или прохромосомами. В ядрах подобного типа весь хроматин сосредоточен в хромоцентрах.

1.3. ЯДРЫШКИ

Согласно электронно-микроскопическим исследованиям, ядрышки лишены какой-либо мембраны. Вещество их в основном состоит из субмикроскопических нитей и нуклеоплазмы. Ядрышки можно наблюдать, применяя специальные методы окрашивания, а также в ядрах некоторых живых клеток при использовании фазово-контрастного микроскопа или темнопольного конденсора.
На электронных микрофотографиях в ядрышках нередко видны две зоны: центральная - гомогенная и периферическая - построенная из гранулированных нитей. Эти гранулы напоминают рибосомы, но отличаются от них меньшей плотностью и величиной. Ядрышки богаты белками (80-85 %) и РНК (около 15 %) и служат активными центрами синтеза рибосомальной РНК. В соответствии с этим главной составной частью ядрышка является ядрышковая ДНК, которая принадлежит организатору ядрышек одной из хромосом.
содержание РНК заметно колеблется, в зависимости от интенсивности обмена веществ в ядре и цитоплазме. Ядрышки не присутствуют в ядре постоянно: они возникают в средней телофазе митоза и исчезают в конце профазы. Полагают, что по мере затухания синтеза РНК в средней профазе происходят разрыхление ядрышка и выход в цитоплазму образовавшихся в нуклеоплазме субчастиц рибосом. При исчезновении ядрышка во время митоза его белки, ДНК и РНК, становятся основой матрикса хромосом, а в дальнейшем из материала старого ядрышка формируется новое.
Установлена связь ядрышек с хромосомами, имеющими спутников, поэтому число ядрышек соответствует числу спутничных хромосом. Нуклеолонемы сохраняются на протяжении всего цикла клеточного деления и в телофазе переходят от хромосом к новому ядрышку.

1.4. ЯДЕРНАЯ МЕМБРАНА

Неделящееся клеточное ядро заключено в плотную и упругую оболочку, которая растворяется и вновь восстанавливается в процессе деления клетки. Это образование отчетливо видно лишь на некоторых объектах, например у гигантских ядер слизевых клеток алоэ толщина мембраны достигает 1 мкм. В световом микроскопе структуру ядерной оболочки удается наблюдать лишь у плазмолизированных клеток, фиксированных и окрашенных.
Детальное изучение ядерной мембраны стало возможным с появлением электронной микроскопии. Исследования показали, что наличие ядерной оболочки характерно для всех эукариотических клеток. Она состоит из двух элементарных мембран толщиной 6-8 нм каждая - внешней и внутренней, между которыми находится перинуклеарное пространство шириной от 20 до 60 нм. Оно заполнено энхилемой - сывороткообразной жидкостью с низкой электронной плотностью.
Итак, ядерная мембрана представляет собой полый мешок, отделяющий содержимое ядра от цитоплазмы, и состоит из двух слоев: внешний слой ограничивает перинуклеарное пространство снаружи, т. е. со стороны цитоплазмы, внутренний - изнутри, т. е. со стороны ядра. Из всех внутриклеточных мембранных компонентов подобным строением мембран обладают ядро, митохондрии и пластиды.
Морфологическое строение каждого слоя такое же, как и внутренних мембран цитоплазмы. Отличительная особенность ядерной оболочки - наличие в ней пор - округлых перфораций, образующихся в местах слияния внешней и внутренней ядерных мембран. Размеры пор довольно стабильны (30-100 нм в диаметре), в то же время их число изменчиво и зависит от функциональной активности клетки: чем активнее идут в ней синтетические процессы, тем больше пор приходится на единицу поверхности клеточного ядра.
Обнаружено, что количество пор увеличивается в период реконструкции и роста ядра, а также при репликации ДНК. Одно из крупнейших открытий, сделанных с помощью электронной микроскопии, - обнаружение тесной взаимосвязи между ядерной оболочкой и эндоплазматической сетью. Поскольку ядерная оболочка и тяжи эндоплазматической сети во многих местах сообщаются между собой, перинуклеарное пространство должно содержать ту же сывороткообразную жидкость, что и полости между мембранами эндоплазматической сети.
При оценке функциональной роли ядерной оболочки большое значение приобретает вопрос о ее проницаемости, обусловливающей обменные процессы между ядром и цитоплазмой в связи с передачей наследственной информации. Для правильного понимания ядерно-цитоплазматических взаимодействий важно знать, насколько ядерная оболочка проницаема для белков и других метаболитов. Опыты показывают, что ядерная оболочка легко проницаема для относительно крупных молекул. Так, рибонуклеаза - фермент, гидролизующий рибонуклеиновую кислоту без выделения свободной фосфорной кислоты, - имеет молекулярную массу около 13000 и очень быстро проникает в ядро.
Даже в корешках, фиксированных видоизмененным методом замораживания, можно наблюдать, как окрашивание ядрышек подавляется во всех клетках уже через 1 ч после обработки рибонуклеазой.

1.5. КАРИОПЛАЗМА

Кариоплазма (ядерный сок, нуклеоплазма) - основная внутренняя среда ядра, она занимает все пространство между ядрышком, хроматином, мембранами, всевозможными включениями и другими структурами. Кариоплазма под электронным микроскопом имеет вид гомогенной или мелкозернистой массы с низкой электронной плотностью. В ней во взвешенном состоянии находятся рибосомы, микротельца, глобулины и различные продукты метаболизма.
Вязкость ядерного сока примерно такая же, как вязкость основного вещества цитоплазмы. Кислотность ядерного сока, определенная путем микроинъекции индикаторов в ядро, оказалась несколько выше, чем у цитоплазмы.
Кроме того, в ядерном соке содержатся ферменты, участвующие в синтезе нуклеиновых кислот в ядре и рибосомы. Ядерный сок не окрашивается основными красителями, поэтому его называют ахроматиновым веществом, или кариолимфой, в отличие от участков, способных окрашиваться, - хроматина.

1.6. ХРОМАТИН

Термин «хромосома» используется по отношению к молекуле нуклеиновой кислоты, которая представляет собой хранилище генетической информации вируса, прокариота или эукариотической клетки. Однако первоначально слово «хромосома» (т. е. «окрашенное тело») использовалось в другом смысле, - для обозначения густо окрашенных образований в эукариотических ядрах, которые можно было наблюдать в световой микроскоп после обработки клеток красителем.
Эукариотические хромосомы, в изначальном смысле этого слова, выглядят как резко очерченные структуры только непосредственно до и во время митоза - процесса деления ядра в соматических клетках. В покоящихся, неделящихся эукариотических клетках хромосомный материал, называемый хроматином, выглядит нечетко и как бы беспорядочно распределен по всему ядру. Однако, когда клетка готовится к делению, хроматин уплотняется и собирается в свойственное данному виду число хорошо различимых хромосом.
Хроматин был выделен из ядер и проанализирован. Он состоит из очень тонких волокон, которые содержат 60 % белка, 35 % ДНК и, вероятно, 5 % РНК. Хроматиновые волокна в хромосоме свернуты и образуют множество узелков и петель. ДНК в хроматине очень прочно связана с белками, называемыми гистонами, функция которых состоит в упаковке и упорядочении ДНК в структурные единицы - нуклеосомы. В хроматине содержится также ряд негистоновых белков. В отличие от эукариотических, бактериальные хромосомы не содержат гистонов; в их состав входит лишь небольшое количество белков, способствующих образованию петель и конденсации (уплотнению) ДНК.

Глава 2. КЛЕТОЧНОЕ ЯДРО - ЦЕНТР УПРАВЛЕНИЯ ЖИЗНЕДЕЯТЕЛЬНОСТЬЮ КЛЕТКИ

2.1. ЯДРО - НЕЗАМЕНИМЫЙ КОМПОНЕНТ КЛЕТКИ

Еще в конце прошлого века было доказано, что лишенные ядра фрагменты, отрезанные от амебы или инфузории, через более или менее короткое время погибают. Более детальные опыты показали, что энуклеированные амебы живут, но вскоре после операции перестают питаться, двигаться и через несколько дней (до одной недели) погибают. Если пересадить ядро в ранее энуклеированную клетку, то процессы нормальной жизнедеятельности восстанавливаются и через некоторое время амеба начинает делиться.
Яйцеклетки морского ежа, лишенные ядра, при стимуляции к партеногенетическому развитию делятся, но тоже в конце концов погибают. Особенно интересные опыты были проведены на крупной одноклеточной водоросли ацетабулярии. После удаления ядра водоросль не только живет, но и в течение определенного периода может восстанавливать безъядерные участки. Следовательно, при отсутствии ядра прежде всего нарушается способность к размножению, и, хотя жизнеспособность на какое-то время сохраняется, в конце концов такая клетка неизбежно погибает.
содержание ядерного и лишенного ядра фрагмента в среде с радиоактивным предшественником РНК - 3Н-уридином показало, что синтез РНК в безъядерном фрагменте отсутствует. Белковый же синтез продолжается некоторое время за счет информационных РНК и рибосом, сформированных ранее, до удаления ядра. Пожалуй, наиболее яркую иллюстрацию роли ядра дают безъядерные эритроциты млекопитающих. Это эксперимент, поставленный самой природой.
Созревая, эритроциты накапливают гемоглобин, затем выбрасывают ядро и в таком состоянии живут и функционируют в течение 120 дней. Они не способны размножаться и в конце концов погибают. Однако клетки, только что выбросившие ядро, так называемые ретикулоциты, еще продолжают синтез белка, но уже не синтезируют РНК. Следовательно, удаление ядра влечет за собой прекращение поступления в цитоплазму новых РНК, которые синтезируются на молекулах ДНК, локализованных в хромосомах ядра. Однако это не мешает уже существующей в цитоплазме информационной РНК продолжать синтезировать белок, что и наблюдается в ретикулоцитах. Затем, когда РНК распадается, синтез белка прекращается, но эритроцит еще продолжает жить долгое время, выполняя свою функцию, которая не связана с интенсивным расходованием белка.
Лишенные ядра яйцеклетки морского ежа продолжают жить и могут делиться благодаря тому, что во время овогенеза запасли значительное количество РНК, которая и продолжает функционировать. Информационная РНК у бактерий функционирует минуты, но в ряде специализированных клеток млекопитающих она сохраняется сутки и больше.
Несколько особняком стоят данные, полученные на ацетобулярии. Оказалось, что морфогенез удаленной части определяется ядром, но жизнь кусочка обеспечивается ДНК, которую содержат хлоропласты. На этой ДНК синтезируется информационная РНК, которая, в свою очередь, обеспечивает синтез белка.

2.2. ФУНКЦИОНАЛЬНАЯ СТРУКТУРА ЯДРА

В изучении структурно-биохимической организации ядерного аппарата различных клеток большую роль играют сравнительно-цитологические исследования, в которых применяются как традиционный эволюционно-исторический подход, так и широкие сравнительно-цитологические сопоставления организации ядерного аппарата различных разновидностей клеток. Эволюционно-историческое направление в этих исследованиях имеет особое значение, поскольку ядерный аппарат представляет собой наиболее консервативную клеточную структуру - структуру, ответственную за хранение и передачу генетической информации.
Широкое сравнительно-цитологическое изучение ядерного аппарата у тех клеток, которые как бы резко уклоняются от обычного (типичного) уровня организации (ооциты, сперматозоиды, ядерные эритроциты, инфузории и т. д.), и использование данных, полученных с помощью молекулярно-биологических и цитологических методов в специальных науках, занимающихся клеточным уровнем организации (частная цитология, протозоология и т. д.), позволили выявить массу интересных особенностей организации ядерного аппарата, имеющих общецитологическое значение.
В составе ядерного аппарата эукариотных клеток можно выделить ряд субсистем, центральное место среди которых занимает совокупность интерфазных хромосом, или ДНК ядра. В них сосредоточена вся ДНК ядра, находящаяся в весьма сложных взаимоотношениях с белками хроматина, которые, в свою очередь, подразделяются на структурные, функциональные и регуляторные белки.
Второй и весьма важной субсистемой ядерного аппарата является ядерный матрикс, представляющий собой систему фибриллярных белков, выполняющих как структурную (скелетную) функцию в топографической организации всех ядерных компонентов, так и регуляторную функцию в организации процессов репликации, транскрипции, в созревании (процессинге) и перемещении продуктов транскрипции внутри ядра и за его пределы. По-видимому, белковый матрикс имеет двоякую природу: какие-то одни его компоненты обеспечивают в основном скелетную функцию, другие - регуляторную и транспортную.
Вместе с определенными участками ДНК хроматина белки ядерного матрикса (функционального и структурного) образуют основу ядрышка. Белки структурного матрикса принимают участие и в формировании поверхностного аппарата ядра. Поверхностный аппарат ядра занимает и в структурном, и в функциональном отношениях промежуточное положение между метаболическим аппаратом цитоплазмы и ядром. Мембраны и цистерны ядерной оболочки являются по сути дела специализированной частью общей мембранной системы цитоплазмы.
Специфическими структурами поверхностного аппарата ядра, играющими важную роль в реализации его основной функции - обеспечении взаимодействия ядра и цитоплазмы выступают поровые комплексы и субмембранная плотная пластинка, которые образуются с помощью белков ядерного матрикса. Наконец, последней субсистемой ядерного аппарата является кариоплазма. Это аналогичная гиалоплазме внешне бесструктурная фаза ядерного аппарата, которая создает специфическое для ядерных структур микроокружение, что обеспечивает возможность их нормального функционирования.
Кариоплазма находится в постоянном взаимодействии с гиалоплазмой через систему поровых комплексов и мембран ядерной оболочки.

2.3. РОЛЬ ЯДЕРНЫХ СТРУКТУР В ЖИЗНЕДЕЯТЕЛЬНОСТИ КЛЕТКИ

Основные процессы, связанные с синтезом белка, в принципе одинаковы у всех форм живого, указывают на особое значение клеточного ядра. Ядро осуществляет две группы общих функций: одну, направленную на собственно хранение генетической информации, другую - на ее реализацию, на обеспечение синтеза белка. Иными словами, первую группу составляют процессы поддержания наследственной информации в виде неизменной структуры ДНК. Эти процессы обусловлены наличием так называемых репарационных ферментов, ликвидирующих спонтанные повреждения молекул ДНК (разрыв одной из цепей ДНК, часть радиационных повреждений), что сохраняет строение молекул ДНК практически неизменными в ряду поколений клеток или организмов.
Далее в ядре происходит воспроизведение, или редупликация, молекул ДНК, что дает возможность двум клеткам получить совершенно одинаковые и в качественном, и в количественном смысле объемы генетической информации. В ядрах происходят процессы изменения и рекомбинации генетического материала, что наблюдается во время мейоза (кроссинговер). Наконец, ядра непосредственно участвуют в процессах распределения молекул ДНК при делении клеток.
Другой группой клеточных процессов, обеспечивающихся активностью ядра, является создание собственно аппарата белкового синтеза. Это не только синтез, транскрипция на молекулах ДНК разных информационных РНК, но транскрипция всех видов трансферных РНК и рибосомных РНК. В ядре эукариотов происходит также образование субъединиц рибосом путем комплексирования синтезированных в ядрышке рибосомных РНК с рибосомными белками, которые синтезируются в цитоплазме и переносятся в ядро. Таким образом, ядро представляет собой не только вместилище генетического материала, но и место, где этот материал функционирует и воспроизводится. Поэтому выпадение или нарушение любой из перечисленных выше функций гибельно для клетки в целом.
Так, нарушение репарационных процессов будет приводить к изменению первичной структуры ДНК и автоматически - к изменению структуры белков, что непременно скажется на их специфической активности, которая может просто исчезнуть или измениться так, что не сможет обеспечивать клеточные функции, в результате чего клетка погибает. Нарушения редупликации ДНК приведут к остановке размножения клеток или к появлению клеток с неполноценным набором генетической информации, что тоже гибельно для них. К такому же результату приведет нарушение процессов распределения генетического материала (молекул ДНК) при делении клеток.
Выпадение в результате поражения ядра или в случаях нарушений каких-либо регуляторных процессов синтеза любой формы РНК автоматически приведет к остановке синтеза белка в клетке или к грубым его нарушениям. Все это указывает на ведущее значение ядерных структур в процессах, связанных с синтезом нуклеиновых кислот и белков, главных функционеров в жизнедеятельности клетки.
Ядро осуществляет сложную координацию и регуляцию процессов синтеза РНК. Как указывалось, все три типа РНК образуются на ДНК. Радиографическими методами показано, что синтез РНК начинается в ядре (хроматине и ядрышке), и уже синтезированная РНК перемещается в цитоплазму. Таким образом мы видим, что ядро программирует синтез белка, который осуществляется в цитоплазме. Однако само ядро также испытывает влияние цитоплазмы, т. к. синтезируемые в ней ферменты поступают в ядро и необходимы для его нормального функционирования. Например, в цитоплазме синтезируется ДНК-полимераза, без которой не может происходить авторепродукция молекул ДНК. Поэтому следует говорить о взаимном влиянии ядра и цитоплазмы, при котором главенствующая роль все же принадлежит ядру как хранителю наследственной информации, которая передается при делении от одной клетки к другой.

2.4. ВЕДУЩЕЕ ЗНАЧЕНИЕ ДНК

Основное биологическое значение ядерного аппарата определяется его главным компонентом - гигантскими молекулами ДНК, способными к репликации и транскрипции. Эти два свойства ДНК и лежат в основе двух важнейших функций ядерного аппарата любой клетки:

а) удвоения наследственной информации и передачи ее в ряду клеточных поколений;
б) регулируемой транскрипции участков молекул ДНК и транспорта синтезируемых РНК в цитоплазму клеток.

По характеру организации ядерного аппарата все клетки делятся на три группы: прокариотные, мезокариотные и эукариотные.
Клеткам прокариот свойственны отсутствие ядерной оболочки, укладка ДНК без участия гистонов, унирепликонный тип репликации ДНК, моноцистронный принцип организации транскрипции и ее регуляция преимущественно по принципу положительной и отрицательной обратной связи.
Клетки эукариот, напротив, отличаются наличием ядерной оболочки, точнее говоря, даже сложного поверхностного аппарата ядра и мультирепликонным типом репликации молекул ДНК, образующих набор хромосом. Упаковка этих молекул происходит с помощью комплекса белков. Характер упаковки подвергается циклическим изменениям, связанным с прохождением клетками закономерных фаз цикла репродукции. Процессы транскрипции ДНК и ее регуляции у эукариот значительно отличаются от таковых у прокариот.
Мезокариотные клетки по организации ядерного аппарата занимают как бы промежуточное положение между эукариотными и прокариотными клетками. У мезокариот, как и у эукариот, имеется хорошо развитый поверхностный аппарат ядра. Укладка в хромосомы молекул ДНК существенно отличается от организации ДНП в эукариотных клетках. Механизмы репликации и транскрипции ДНК у мезокариот выяснены слабо. Таким образом в клеточном ядре протекают важнейшие процессы, связанные с наследственным статусом организма, - peпликация (биосинтез ДНК) и транскрипция.
Кроме того, ядро является источником отдельных белков и ферментов, необходимых для жизнедеятельности дифференцированных тканей. Одновременно с потоком информации в клетку для обеспечения синтеза белков осуществляется обратная связь: цитоплазма - ядро, т. е. ядро функционирует в тесном взаимодействии с другими частями клетки, объединяя процессы ядерно-цитоплазматического транспорта и регуляторного взаимодействия с цитоплазмой клетки.

Ядро клетки - это одна из основных составных частей всех растительных и животных клеток, неразрывно связанная с обменом, передачей наследственной информации и др.

Форма ядра клетки варьирует в зависимости от типа клетки. Имеются овальные, шаровидные и неправильной формы - подковообразные или многолопастные ядро клетки (у лейкоцитов), четковидные ядра клетки (у некоторых инфузорий), разветвленные ядра клетки (в железистых клетках насекомых) и др. Величина ядра клетки различна, но обычно связана с объемом цитоплазмы. Нарушение этого соотношения в процессе роста клетки приводит к клеточному делению. Количество ядер клетки также неодинаково - большинство клеток имеет одно ядро, хотя встречаются двуядерные и многоядерные клетки (например, некоторые клетки печени и костного мозга). Положение ядра в клетке является характерным для клеток каждого типа. В зародышевых клетках ядро обычно находится в центре клетки, но может смещаться по мере развития клетки и образования в цитоплазме специализированных участков или отложения в ней резервных веществ.

В ядре клетки различают основные структуры: 1) ядерную оболочку (ядерную мембрану), через поры которой осуществляется обмен между ядром клетки и цитоплазмой [имеются данные, указывающие на то, что ядерная мембрана (состоящая из двух слоев) без перерыва переходит в мембраны эндоплазматической сети (см. ) и комплекса Гольджи]; 2) ядерный сок, или кариоплазму,- полужидкую, слабо окрашиваемую плазматическую массу, заполняющую все ядра клетки и содержащую в себе остальные компоненты ядра; 3) (см.), которые в неделящемся ядре видны только с помощью специальных методов микроскопии (на окрашенном срезе неделящейся клетки хромосомы обычно имеют вид неправильной сети из темных тяжей и зернышек, в совокупности называемых ); 4) одно или несколько сферических телец - ядрышек, являющихся специализированной частью ядра клетки и связанных с синтезом рибонуклеиновой кислоты и белков.

Ядро клетки обладает сложной химической организацией, в которой важнейшую роль играют нуклеопротеиды - продукт соединения с белками. В жизни клетки имеются два основных периода: интерфазный, или метаболический, и митотический, или период деления. Оба периода характеризуются главным образом изменениями в строении ядра клетки. В интерфазе ядро клетки находится в покоящемся состоянии и участвует в синтезе белков, регуляции формообразования, процессах секреции и других жизненных отправлениях клетки. В период деления в ядре клетки происходят изменения, приводящие к перераспределению хромосом и образованию дочерних ядер клетки; наследственная информация передается, таким образом, через ядерные структуры новому поколению клеток.

Ядра клетки размножаются только делением, при этом в большинстве случаев делятся и сами клетки. Обычно различают: прямое деление ядра клетки путем перешнуровки - амитоз и самый распространенный способ деления ядер клетки- типичное непрямое деление, или митоз (см.).

Действие ионизирующей радиации и некоторых других факторов способно изменять заключенную в ядре клетки генетическую информацию, приводя к различным изменениям ядерного аппарата, что иногда может приводить к гибели самих клеток или служить причиной наследственных аномалий у потомства (см. Наследственность), Поэтому изучение структуры и функций ядра клетки, особенно связей между хромосомными соотношениями и наследованием признаков, которыми занимается цитогенетика, имеет существенное практическое значение для медицины (см. ).

См. также Клетка.

Ядро клетки - важнейшая составная часть всех растительных и животных клеток.

Клетка, лишенная ядра или с поврежденным ядром, не способна нормально выполнять свои функции. Ядро клетки, точнее, организованная в его хромосомах (см.) дезоксирибонуклеиновая кислота (ДНК),- носитель наследственной информации, определяющей все особенности клетки, тканей и целого организма, его онтогенез и свойственные организму нормы реагирования на воздействия среды. Заключенная в ядре наследственная информация закодирована в составляющих хромосомы молекулах ДНК последовательностью четырех азотистых оснований: аденина, тимина, гуанина и цитозина. Эта последовательность является матрицей, определяющей структуру синтезируемых в клетке белков.

Даже самые незначительные нарушения структуры ядра клетки ведут к необратимым изменениям свойств клетки или к ее гибели. Опасность ионизирующих излучений и многих химических веществ для наследственности (см.) и для нормального развития плода имеет в своей основе повреждения ядер в половых клетках взрослого организма или в соматических клетках развивающегося эмбриона. В основе преобразования нормальной клетки в злокачественную также лежат определенные нарушения структуры ядра клетки.

Размеры и форма ядра клетки и соотношение его объема и объема всей клетки характерны для различных тканей. Одним из главных признаков, отличающих элементы белой и красной крови, являются форма и размер их ядер. Ядра лейкоцитов могут быть неправильной формы: изогнуто-колбасовидной, лапчатой или четковидной; в последнем случае каждый участок ядра соединен с соседним тонкой перемычкой. В зрелых мужских половых клетках (сперматозоидах) ядро клетки составляет подавляющую часть всего объема клетки.

Зрелые эритроциты (см.) человека и млекопитающих не имеют ядра, так как они теряют его в процессе дифференцировки. Они имеют ограниченный срок жизни и не способны размножаться. В клетках бактерий и сине-зеленых водорослей отсутствует резко очерченное ядро. Однако в них содержатся все характерные для ядра клетки химические вещества, распределяющиеся при делении по дочерним клеткам с такой же правильностью, как и в клетках высших многоклеточных организмов. У вирусов и фагов ядро представлено единственной молекулой ДНК.

При рассмотрении покоящейся (неделящейся) клетки в световом микроскопе ядро клетки может иметь вид бесструктурного пузырька с одним или несколькими ядрышками. Ядро клетки хорошо красится специальными ядерными красками (гематоксилин, метиленовый синий, сафранин и др.), которые обычно используют в лабораторной практике. При помощи фазово-контрастного устройства ядро клетки можно исследовать и прижизненно. В последние годы для изучения процессов, протекающих в ядре клетки, широко используют микрокинематографию, меченые атомы С14 и Н3 (ауторадиография) и микроспектрофотометрию. Последний метод особенно успешно применяют для изучения количественных изменений ДНК в ядре в процессе жизненного цикла клетки. Электронный микроскоп позволяет выявить детали тонкой структуры ядра покоящейся клетки, необнаруживаемые в оптическом микроскопе (рис. 1).

Рис. 1. Современная схема строения клетки, основанная на наблюдениях в электронном микроскопе: 1 - цитоплазма; 2 - аппарат Гольджи; 3 - центросомы; 4 - эндоплазматический ретикулум; 5 - митохондрии; 6 - оболочка клетки; 7 - оболочка ядра; 8 - ядрышко; 9 - ядро.


При делении клеток - кариокинезе или митозе (см.) - ядро клетки претерпевает ряд сложных преобразований (рис. 2), во время которых становятся отчетливо видимыми его хромосомы. Перед делением клетки каждая хромосома ядра синтезирует из веществ, присутствующих в ядерном соке, себе подобную, после чего материнская и дочерняя хромосомы расходятся к противоположным полюсам делящейся клетки. В результате каждая дочерняя клетка получает такой же хромосомный набор, какой был у материнской клетки, а вместе с ним и заключенную в нем наследственную информацию. Митоз обеспечивает идеально правильное разделение всех хромосом ядра на две равнозначные части.

Митоз и мейоз (см.) являются важнейшими механизмами, обеспечивающими закономерности явлений наследственности. У некоторых простейших организмов, а также в патологических случаях в клетках млекопитающих и человека ядра клетки делятся путем простой перетяжки, или амитоза. В последние годы показано, что и при амитозе происходят процессы, обеспечивающие разделение ядра клетки на две равнозначные части.

Набор хромосом в ядре клетки особи называют кариотипом (см.). Кариотип во всех клетках данной особи, как правило, одинаков. Многие врожденные аномалии и уродства (синдромы Дауна, Клайнфелтера, Тернера-Шерешевского и др.) обусловлены различными нарушениями кариотипа, возникшими либо на ранних стадиях эмбриогенеза, либо при созревании половой клетки, из которой возникла аномальная особь. Аномалии развития, связанные с видимыми нарушениями хромосомных структур ядра клетки, называют хромосомными болезнями (см. Наследственные болезни). Различные повреждения хромосом могут быть вызваны действием физических или химических мутагенов (рис. 3). В настоящее время методы, позволяющие быстро и точно устанавливать кариотип человека, используют для ранней диагностики хромосомных болезней и для уточнения этиологии некоторых заболеваний.


Рис. 2. Стадии митоза в клетках культуры ткани человека (перевиваемый штамм НЕр-2): 1 - ранняя профаза; 2 - поздняя профаза (исчезновение ядерной оболочки); 3 - метафаза (стадия материнской звезды), вид сверху; 4 - метафаза, вид сбоку; 5 - анафаза, начало расхождения хромосом; 6 - анафаза, хромосомы разошлись; 7 - телофаза, стадия дочерних клубков; 8 - телофаза и разделение клеточного тела.


Рис. 3. Повреждения хромосом, вызываемые ионизирующей радиацией и химическими мутагенами: 1 - нормальная телофаза; 2-4 - телофазы с мостами и фрагментами в эмбриональных фибробластах человека, облученных рентгеновыми лучами в дозе 10 р; 5 и 6 - то же в кроветворных клетках морской свинки; 7 - хромосомный мост в эпителии роговицы мыши, облученной дозой в 25 р; 8 - фрагментация хромосом в эмбриональных фибробластах человека в результате воздействия нитрозоэтилмочевиной.

Важный органоид ядра клетки - ядрышко - является продуктом жизнедеятельности хромосом. Оно продуцирует рибонуклеиновую кислоту (РНК), являющуюся обязательным промежуточным звеном в синтезе белка, вырабатываемого каждой клеткой.

Ядро клетки отделено от окружающей цитоплазмы (см.) оболочкой, толщина которой 60-70 Å.

Через поры в оболочке вещества, синтезируемые в ядре, поступают в цитоплазму. Пространство между оболочкой ядра и всеми его органоидами заполнено кариоплазмой, состоящей из основных и кислых белков, ферментов, нуклеотидов, неорганических солей и других низкомолекулярных соединений, необходимых для синтеза дочерних хромосом при делении ядра клетки.

Ядро клетки - центральный органоид, один из самых важных. Наличие его в клетке является признаком высокой организации организма. Клетка, имеющая оформленное ядро, называется эукариотической. Прокариоты - это организмы, состоящие из клетки, не имеющей оформленного ядра. Если подробно рассмотреть все его составляющие, то можно понять, какую функцию выполняет ядро клетки.

Структура ядра

  1. Ядерная оболочка.
  2. Хроматин.
  3. Ядрышки.
  4. Ядерный матрикс и ядерный сок.

Структура и функции ядра клетки зависят от типа клеток и их предназначения.

Ядерная оболочка

Ядерная оболочка имеет две мембраны - внешнюю и внутреннюю. Они разделены между собой перинуклеарным пространством. Оболочка имеет поры. Ядерные поры необходимы для того, чтобы различные крупные частицы и молекулы могли перемещаться из цитоплазмы в ядро и обратно.

Ядерные поры образуются в результате слияния внутренней и наружной мембраны. Поры представляют собой округлые отверстия, имеющие комплексы, в которые входят:

  1. Тонкая диафрагма, закрывающая отверстие. Она пронизана цилиндрическими каналами.
  2. Белковые гранулы. Они находятся с двух сторон от диафрагмы.
  3. Центральная белковая гранула. Она связана с периферическими гранулами фибриллами.

Количество пор в ядерной оболочке зависит от того, насколько интенсивно в клетке проходят синтетические процессы.

Ядерная оболочка состоит из внешней и внутренней мембран. Внешняя переходит в шероховатый ЭПР (эндоплазматический ретикулум).

Хроматин

Хроматин - важнейшее вещество, входящее в ядро клетки. Функции его - это хранение генетической информации. Он представлен эухроматином и гетерохроматином. Весь хроматин - это совокупность хромосом.

Эухроматин - это части хромосом, которые активно принимают участие в транскрипции. Такие хромосомы находятся в диффузном состоянии.

Неактивные отделы и целые хромосомы представляют собой конденсированные глыбки. Это и есть гетерохроматин. При изменении состояния клетки гетерохроматин может переходить в эухроматин, и наоборот. Чем больше в ядре гетерохроматина, тем ниже скорость синтеза рибонуклеиновой кислоты (РНК) и тем меньше функциональная активность ядра.

Хромосомы

Хромосомы - это особые образования, которые возникают в ядре только во время деления. Хромосома состоит из двух плеч и центромеры. По форме их делят на:

  • Палочкообразные. Такие хромосомы имеют одно большое плечо, а другое маленькое.
  • Равноплечные. Имеют относительно одинаковые плечи.
  • Разноплечные. Плечи хромосомы зрительно отличаются между собой.
  • С вторичными перетяжками. У такой хромосомы имеется нецентромерная перетяжка, которая отделяет спутничный элемент от основной части.

У каждого вида количество хромосом всегда одинаково, но стоит отметить, что от их количества не зависит уровень организации организма. Так, у человека имеется 46 хромосом, у курицы - 78, у ежа - 96, а у березы - 84. Наибольшее число хромосом имеет папоротник Ophioglossum reticulatum. У него 1260 хромосом на каждую клетку. Наименьшее число хромосом имеет самец-муравей вида Myrmecia pilosula. У него только 1 хромосома.

Именно изучив хромосомы, ученые поняли, каковы функции ядра клетки.

В состав хромосом входят гены.

Ген

Гены - это участки молекул дезоксирибонуклеиновой кислоты (ДНК), в которых закодированы определенные составы молекул белка. В результате этого у организма проявляется тот или иной признак. Ген передается по наследству. Так, ядро в клетке выполняет функцию передачи генетического материала следующим поколениям клеток.

Ядрышки

Нуклеола - это самая плотная часть, которая входит в ядро клетки. Функции, которые она выполняет, очень важны для всей клетки. Обычно имеет округлую форму. Количество ядрышек варьируется в разных клетках - их может быть два, три либо вооще не быть. Так, в клетках дробящихся яиц нуклеолы нет.

Структура ядрышка:

  1. Гранулярный компонент. Это гранулы, которые находятся на периферии ядрышка. Их размер варьируется от 15 нм до 20 нм. В некоторых клетках ГК может быть равномерно распределен по всему ядрышку.
  2. Фибриллярный компонент (ФК). Это тонкие фибриллы, размером от 3 нм до 5 нм. Фк представляет собой диффузную часть ядрышка.

Фибриллярные центры (ФЦ) - это участки фибрилл, имеющие низкую плотность, которые, в свою очередь, окружены фибриллами с высокой плотностью. Химический состав и строение ФЦ почти такие же, как и у ядрышковых организаторов митотических хромосом. В их состав входят фибриллы толщиной до 10 нм, в которых есть РНК-полимераза I. Это подтверждается тем, что фибриллы окрашиваются солями серебра.

Структурные типы ядрышек

  1. Нуклеолонемный или ретикулярный тип. Характеризуется большим количеством гранул и плотного фибриллярного материала. Данный тип структуры ядрышка характерен для большинства клеток. Его можно наблюдать как в животных клетках, так в растительных.
  2. Компактный тип. Характеризуется небольшой выраженностью нуклеономы, большим количеством фибриллярных центров. Встречается в растительных и животных клетках, в которых активно происходит процесс синтеза белка и РНК. Этот тип ядрышек характерен для клеток, активно размножающихся (клетки культуры ткани, клетки растительных меристем и др.).
  3. Кольцевидный тип. В световой микроскоп данный тип виден как кольцо со светлым центром - фибриллярный центр. Размер таких ядрышек в среднем 1 мкм. Данный тип характерен только для животных клеток (эндотелиоциты, лимфоциты и др.). В клетках с таким типом ядрышек довольно низкий уровень транскрипции.
  4. Остаточный тип. В клетках этого типа ядрышек не происходит синтез РНК. При определенных условиях данный тип может переходить в ретикулярный или компактный, т. е. активироваться. Такие ядрышки характерны для клеток шиповатого слоя кожного эпителия, нормобласта и др.
  5. Сегрегированный тип. В клетках с этим типом ядрышек не происходит синтез рРНК (рибосомной рибонуклеиновой кислоты). Это происходит, если клетка обработана каким-либо антибиотиком или химическим веществом. Слово «сегрегация» в данном случае обозначает «разделение» или «обособление», так как все компоненты ядрышек разделяются, что приводит к его уменьшению.

Почти 60% сухого веса ядрышек приходится на белки. Их количество очень велико и может достигать нескольких сотен.

Главная функция ядрышек - это синтез рРНК. Зародыши рибосом попадают в кариоплазму, затем через поры ядра просачиваются в цитоплазму и на ЭПС.

Ядерный матрикс и ядерный сок

Ядерный матрикс занимает почти все ядро клетки. Функции его специфичны. Он растворяет и равномерно распределяет все нуклеиновые кислоты в состоянии интерфазы.

Ядерный матрикс, или кариоплазма, - это раствор, в состав которого входят углеводы, соли, белки и другие неорганические и органические вещества. В нем содержатся нуклеиновые кислоты: ДНК, тРНК, рРНК, иРНК.

В состоянии деления клетки ядерная оболочка растворяется, образуются хромосомы, а кариоплазма смешивается с цитоплазмой.

Основные функции ядра в клетке

  1. Информативная функция. Именно в ядре находится вся информация о наследственности организма.
  2. Функция наследования. Благодаря генам, которые расположены в хромосомах, организм может передавать свои признаки из поколения в поколение.
  3. Функция объединения. Все органоиды клетки объединены в одно целое именно в ядре.
  4. Функция регуляции. Все биохимические реакции в клетке, физиологические процессы регулируются и согласуются ядром.

Один из самых важных органоидов - ядро клетки. Функции его важны для нормальной жизнедеятельности всего организма.

Ядро (латин. nucleus) -это один из структурных компонентов эукариотической клетки, содержащий генетическую информацию (молекулы ДНК), и выполняющий функции:

1)хранения и воспроизведения генетической информации

2)регуляции процессов обмена веществ, протекающих в клетке

Форма ядра зависит большей частью от формы клетки, она может быть и совершенно неправильной. Различают ядра шаровидные, многолопастные. Впячивания и выросты ядерной оболочки значительно увеличивают поверхность ядра и тем самым усиливают связь ядерных и цитоплазматических структур и веществ.

Строение ядра

Ядро окружено оболочкой, которая состоит из двух мембран, имеющих типичное строение. Наружная ядерная мембрана с поверхности,обращенной в цитоплазму, покрыта рибосомами, внутренняя мембрана гладкая.

Ядерная оболочка-часть мембранной системы клетки. Выросты внешней ядерной мембраны соединяются с каналами эндоплазматической сети,образуя единую систему сообщающихся каналов. Обмен веществ между ядром и цитоплазмой осуществляется двумя основными путями. Во-первых, ядерная оболочка пронизана многочисленными порами, через которые происходит обмен молекулами между ядром и цитоплазмой. Во-вторых, вещества из ядра в цитоплазму и обратно могут попадать вследствии отшнуровывания впячиваний и выростов ядерной оболочки. Несмотря на активный обмен веществами между ядром и цитоплазмой, ядерная оболочка ограничивает ядерное содержимое от цитоплазмы,обеспечивая тем самым различия в химическом составе ядерного сока и цитоплазмы.Это необходимо для нормального функционирования ядерных структур.

Содержимое ядра подразделяют на ядерный сок, хроматин и ядрышко.

В живой клетке ядерный сок выглядит бесструктурной массой, заполняющей промежутки между структурами ядра. В состав ядерного сока входят различные белки,в том числе большинство ферментов ядра, белки хроматина и рибосомальные белки.В ядерном соке находятся также свободные нуклеотиды, необходимые для построения молекул ДНК и РНК,аминокислоты, все виды РНК, а также продукты деятельности ядрышка и хроматина, транспортируемые затем из ядра в цитоплазму.

Хроматином (то греч.chroma-окраска,цвет)называют глыбки, гранулы и сетевидные структуры ядра, интенсивно окрашивающиеся некоторыми красителями и отличаются по форме от ядрышка. Хроматин содержит ДНК и белки и представляет собой спирализованные и уплотненные участки хромосом Спирализованные участки хромосом в генетическом отношении неактивны.

Свою специфическую роль-передачу генетической информации-могут осуществлять только деспирализованные-раскрученные участки хромосом, которые в силу своей малой толщины не видны в световой микроскоп.

Третья характерная для клетки структура – ядрышко. Оно представляет собой плотное округлое тельце, погруженное в ядерный сок. В ядрах разных клеток, а также в ядре одной и той же клетки в зависимости от её функционального состояния число ядрышек может колебаться от 1 до 5-7 и более. Количество ядрышек может превышать число хромосом в наборе; это происходит за счет избирательной редупликации генов, отвечающих за синтез р-РНК. Ядрышки есть только в неделящихся ядрах, во время митоза они исчезают вследствие спирализации хромосом и выхода всех ранее образованных рибосом в цитоплазму, а после завершения деления возникают вновь.

Ядрышко не является самостоятельной структурой ядра. Оно образуется вокруг участка хромосомы, в котором закодирована структура р-РНК. Этот участок хромосомы-ген-носит название ядрышкового организатора(ЯО), и на нем происходит синтез р-РНК.

Кроме накопления р-РНК, в ядрышке формируются субъединицы рибосом, которые потом перемещаются в цитоплазму и, объединяясь при участии катионов Ca2+, формируют целостные рибосомы, способные принимать участие в биосинтезе белка.

Таким образом, ядрышко – это скопление р-РНК и рибосом на разных этапах формирования, в основе которого лежит участок хромосомы, несущий ген – ядрышковый организатор, заключающий наследственную информацию о структуре р –РНК.

Ядро представляет собой обязательную часть клетки у многих одноклеточных и всех многоклеточных организмов.

Рис. 1.

Оно содержит ядерные гены, и соответственно выполняет 2 главные функции:

1. Хранение и воспроизведение генетической информации;

2. Регуляция процессов обмена веществ, протекающих в клетке.

По наличию или отсутствию в клетках оформленного ядра все организмы делятся на прокариотические и эукариотические. Основное отличие заключается в степени обособления генетического материала (ДНК) от цитоплазмы и в образовании у эукариот сложных ДНК-содержащих структур-хромосом. Клетки эукариот содержат оформленные ядра. Клетки прокариот не имеют морфологически оформленного ядра.

Путем реализации заключенной в генах наследственной информации ядро управляет белковыми синтезами, физиологическими и морфологическими процессами в клетке. Функции ядра осуществляются в тесном взаимодействии с цитоплазмой.

Впервые ядро наблюдал Я. Пуркине (1825) в яйцеклетке курицы. Ядра растительных клеток были описаны Р. Броуном (1831-33), который наблюдал в них шарообразные структуры. Ядра животных клеток были описано Т. Шванном (1838-39 гг.)

Размеры ядра колеблются от 1 мкм (у некоторых простейших) до 1 мм (в яйцах некоторых рыб и земноводных). В состав большинства эукариотических клеток входит одно ядро. Однако, встречаются и многоядерные клетки (поперечнополосатые мышечные волокна и т.д.). В состав клеток инфузории, например, входит 2 ядра (макронуклеус и микронуклеус). Встречаются и полиплоидные клетки, в которых произошло увеличение наборов хромосом.

Форма ядра может быть различной (сферической, эллипсовидной, неправильной и т.д.) и зависит от формы клетки.

Между объемом ядра и объемом цитоплазмы существует взаимосвязь. Более молодые клетки обычно имеют более крупные ядра. Положение ядра в клетке может меняться по мере дифференцировки или накопления питательных веществ.

Ядро окружено ядерной мембраной, которая является двухслойной и содержит ядерные поры, расположенные на равном расстоянии друг от друга.

В состав интерфазного ядра входят кариоплазма, хроматин, ядрышки, а также синтезируемые в ядре структуры (перихроматиновые фибриллы, перихроматиноые гранулы, интерхроматиновые гранулы). Во время активных фаз деления ядра происходит спирализация хроматина и образование хромосом.

Структура ядра неоднородна. Имеются более спирализованные гетерохроматиновые участки (ложные или хроматиновые ядрышки). Остальные участки - эухроматиновые. Удельный вес ядра выше, чем у остальной цитоплазмы. Среди ядерных структур наибольшим весом обладает ядрышко. Вязкость ядра выше, чем вязкость цитоплазмы. Если ядерная оболочка разрывается и кариоплазма выходит наружу, происходит спадание ядра без всяких признаков реконструкции.

Рис. 2.


Рис. 3.

Ядерная оболочка состоит из двух мембран, причем наружная является продолжением мембраны эндоплазматического ретикулума. Липидный бислой внутренней и наружной ядерных мембран соединяются в ядерных порах. Две сети нитевидных промежуточных фибрилл (цветные линии) обеспечивают механическую прочность ядерной оболочки.Фибриллы внутри ядра образуют подстилающую ядерную ламину (по Альбертсу).

Ядерная оболочка непосредственно связана с эндоплазматическим ретикулумом. С обеих сторон к ней прилегают сетеподобные структуры, состоящие из промежуточных филаментов. Сетеподобная структура, которая выстилает внутреннюю ядерную мембрану называется ядерной ламиной.


Рис. 4.

Ядерная оболочка

Эта структура характерна для всех эукариотических клеток. Ядерная оболочка состоит из внешней и внутренней липопротеидных мембран, толщина которых составляет 7-8 нм. Липопротеидные мембраны разделены перинуклеарным пространством шириной от 20 до 60 нм. Ядерная оболочка ограничивает ядро от цитоплазмы.

Ядерная оболочка пронизана порами, диаметр которых составляет 60-100 нм. По краю каждой поры находится плотное вещество (аннулус). По границе округлого отверстия в ядерной оболочке располагаются три ряда гранул, по 8 штук в каждом: один ряд лежит со стороны ядра, другой - со стороны цитоплазмы, третий расположен в центральной части пор. Размер гранул около 25 нм. От этих гранул отходят фибриллярные отростки, в просвете поры имеется центральный элемент диаметром 15-20 нм, соединенный с аннулусом радиальными фибриллами. Вместе эти структуры образуют поровый комплекс, который регулирует прохождение макромолекул через поры.

Внешняя ядерная мембрана может переходить в мембраны эндоплазматической сети. На внешней ядерной мембране обычно располагается большое количество рибосом. У большинства животных и растительных клеток внешняя мембрана ядерной оболочки не представляет собой идеально ровную поверхность - она может образовывать различной величины выпячивания или выросты в сторону цитоплазмы.

Число ядерных пор зависит от метаболической активности клеток: чем выше синтетические процессы в клетках, тем больше пор на единицу поверхности клеточного ядра.

С химической точки зрения, в состав ядерной оболочки входит ДНК (0-8%), РНК (3-9%), липиды (13-35%) и белки (50-75%).

Что касается липидного состава ядерной мембраны, то он сходен с химическим составом мембран ЭПС (эндоплазматической сети). В ядерных мембранах наблюдается низкое содержание холестерина и высокое содержание фосфолипидов.

Белковый состав мембранных фракций очень сложен. Среди белков обнаружен ряд ферментов, общих с ЭР (например, глюкозо-6-фосфатаза, Mg-зависимая АТФаза, глютамат-дегидрогеназа и др.) не обнаружена РНК-полимераза. Тут выявлены активности многих окислительных ферментов (цитохромоксидазы, НАДН-цитохром-с-редуктазы) и различных цитохромов.

Среди белковых фракций ядерных мембран встречаются основные белки типа гистонов, что объясняется связью участков хроматина с ядерной оболочкой.

Ядерная оболочка проницаема для ионов, веществ с малым молекулярным весом (сахара, аминокислоты, нуклеотиды). Из ядра в цитоплазму происходит транспорт РНК.

Ядерная оболочка является барьером, ограничивающим содержимое ядра от цитоплазмы и препятствующим свободному доступу в ядро крупных биополимеров.

Рис. 5. Ядерная оболочка отделяет ядро от цитоплазматических органелл. На этой электронной микрофотографии представлен тонкий срез ооцита морского ежа, ядро которого окрашивается необычайно равномерно, а цитоплазма плотно забита органеллами. (По Альбертсу)

Кариоплазма

Кариоплазма или ядерный сок - это содержимое клеточного ядра, в которое погружены хроматин, ядрышки, внутриядерные гранулы. После экстракции хроматина химическими агентами в кариоплазме сохраняется так называемый ядерный матрикс. Этот комплекс не представляет собой какую-то чистую фракцию, сюда входят компоненты и ядерной оболочки, и ядрышка, и кариоплазмы. С ядерным матриксом оказались связаны как гетерогенная РНК, так и часть ДНК. Матрикс ядра играет важную роль не только в поддержании общей структуры интерфазного ядра, но и может участвовать в регуляции синтеза нуклеиновых кислот.

Хроматин

Клеточное ядро является вместилищем почти всей генетической информации клетки, поэтому основное содержимое клеточного ядра -- это хроматин: комплекс дезоксирибонуклеиновой кислоты (ДНК) и различных белков. В ядре и, особенно, в митотических хромосомах, ДНК хроматина многократно свернута, упакована особым образом для достижения высокой степени компактизации.

Ведь все длинные нити ДНК необходимо уложить в клеточное ядро, диаметр которого всего несколько микрометров. Эта задача решается последовательной упаковкой ДНК в хроматине с помощью специальных белков. Основная масса белков хроматина -- это белки гистоны, входящие в состав глобулярных субъединиц хроматина, называемых нуклеосомами. Хроматин представляет собой нуклеопротеидные нити, входящие в состав хромосом. Термин «хроматин» был введен В.Флеммингом (1880). Хроматин - это дисперсное состояние хромосом в интерфазе клеточного цикла. Основными структурными компонентами хроматина являются: ДНК (30-45%), гистоны (30-50%), негистоновые белки (4-33%). Существует 5 типов белков-гистонов, входящих в состав хроматина (Н1, Н2А, Н2В, Н3 и Н4). Белок Н1 слабо связан с хроматином.

По своей морфологии хроматин напоминает структуру «бус», состоящих из нуклеосом (частиц диаметром около 10 нм). Нуклеосома- это сегмент ДНК длиной 200 пар оснований, навитый на белковую сердцевину, которая состоит из 8 молекул белков-гистонов (Н2А, Н2В, Н3 и Н4). Каждая нуклеосома маскирует 146 пар оснований. Нуклеосома представляет собой цилиндрическую частицу, состоящую из 8 молекул гистонов, диаметром около 10 нм, на которую «намотано» чуть менее двух витков нити молекулы ДНК. Все белки-гистоны, кроме Н1, входя в состав сердцевины нуклеосомы. Белок Н1 вместе с ДНК связывает отдельные нуклеосомы между собой (этот участок называется линкерная ДНК). В электронном микроскопе такой искусственно деконденсированный хроматин выглядит как «бусины на нитке». В живом ядре клетки нуклеосомы плотно объединены между собой с помощью еще одного линкерного гистонового белка, образуя так называемую элементарную хроматиновую фибриллу, диаметром 30 нм. Другие белки, негистоновой природы, входящие в состав хроматина обеспечивают дальнейшую компактизацию, т. е. укладку, фибрилл хроматина, которая достигает своих максимальнах значений при делении клетки в митотических или мейотических хромосомах. В ядре клетки хроматин присутствует как в виде плотного конденсированного хроматина, в котором 30 нм элементарные фибриллы упакованы плотно, так и в виде гомогенного диффузного хроматина. Количественное соотношение этих двух видов хроматина зависит от характера метаболической активности клетки, степени ее дифференцированности. Так, например, ядра эритроцитов птиц, в которых не происходит активных процессов репликации и транскрипции, содержат практически только плотный конденсированный хроматин. Некоторая часть хроматина сохраняет свое компактное, конденсированное состояние в течение всего клеточного цикла -- такой хроматин называется гетерохроматином и отличается от эухроматина рядом свойств.

Спирализованные участки хромосом инертны в генетическом отношении. Передачу генетической информации осуществляют деспирализованные участки хромосом, которые в силу своей малой толщины не видны в световой микроскоп. В делящихся клетках все хромосомы сильно спирализуются, укорачиваются и приобретают компактные размеры и форму.

Хроматин интерфазных ядер представляет собой несущие ДНК тельца (хромосомы), которые теряют в это время свою компактную форму, разрыхляются, деконденсируются. Степень такой деконденсации хромосом может быть различной в ядрах разных клеток. Когда хромосома или ее участок полностью деконденсирован, тогда эти зоны называют диффузным хроматином. При неполном разрыхлении хромосом в интерфазном ядре видны участки конденсированного хроматина (иногда называемого гетерохроматин). Показано, что степень деконденсации хромосомного материала в интерфазе может отражать функциональную нагрузку этой структуры. Чем более диффузен хроматин интерфазного ядра, тем выше в нем синтетические процессы. Падение синтеза РНК в клетках обычно сопровождается увеличением зон конденсированного хроматина.

Максимально конденсирован хроматин во время митотического деления клеток, когда он обнаруживается в виде плотных телец - хромосом. В этот период хромосомы не несут никаких синтетических нагрузок, в них не происходит включение предшественников ДНК и РНК.

Рис. 6.

Нуклеосомные частицы состоят из двух полных витков ДНК (83 нуклеотидных пары на виток), закрученных вокруг кора, представляющего собой гистоновый октамер, и соединяются между собой линкерной ДНК. Нуклеосом-ная частица выделена из хроматина путем ограниченного гидролиза линкерных участков ДНК микрококковой нуклеазой. В каждой нуклеосомнои частице фрагмент двойной спирали ДНК, имеющий в длину 146 пар оснований, закручен вокруг гистонового кора. Этот белковый кор содержит по две молекулы каждого из гистонов Н2А, Н2В, НЗ и Н4. Полипептидные цепи гистонов насчитывают от 102 до 135 аминокислотных остатков, а общий вес октамера составляет приблизительно 100000 Да. В деконденсированной форме хроматина каждая «бусина» связана с соседней частицей нитевидным участком линкерной ДНК (по Альбертсу).

Рис. 7.


Рис. 8.

Показаны три нити хроматина, на одной из которых две молекулы РНК-полимеразы транскрибируют ДНК. Большая часть хроматина в ядре высших эукариот не содержит активных генов, и, следовательно, свободна от РНК-транскриптов. Следует отметить, что нуклеосомы имеются как в транскрибируемых, так и в нетранскрибируемых областях, и что они связаны с ДНК непосредственно перед и сразу же за движущимися молекулами РНК-полимераз. (по Альбертсу) .


Рис. 9.

А. Вид сверху. Б. Вид сбоку.

При таком типе упаковки на нуклеосому приходится одна молекула гистона Н1 (не указано). Хотя место прикрепления гистона Н1 к нуклеосоме определено, расположение молекул Н1 на этой фибрилле неизвестно (по Альбертсу).

Белки хроматина

Гистоны - сильноосновные белки. Их щелочность связана с их обогащенностью основными аминокислотами (главным образом лизином и аргинином). Эти белки не содержат триптофана. Препарат суммарных гистонов можно разделить на 5 фракций:

Н 1 (от английского histone) - богатый лизином гистон, мол. Масса 2100;

Н 2а - умеренно богатый лизином гистон, масса 13 700;

Н 2б - умеренно богатый лизином гистон, масса 14 500;

Н 4 - богатый аргинином гистон, масса 11 300;

Н 3 - богатый аргинином гистон, масса 15 300.

В препаратах хроматина эти фракции гистонов обнаруживаются в приблизительно равных количествах, кроме Н 1 , которого примерно в 2 раза меньше любой из других фракций.

Для молекул гистонов характерно неравномерное распределение основных аминокислот в цепи: обогащенные положительно заряженными аминогруппами наблюдается на концах белковых цепей. Эти участки гистонов связываются с фосфатными группировками на ДНК, в то время как сравнительно менее заряженные центральные участки молекул обеспечивают их взаимодействие между собой. Таким образом, взаимодействие между гистонами и ДНК, приводящее к образованию дезоксирибонуклеопротеинового комплекса, носит ионный характер.

Гистоны синтезируются на полисомах в цитоплазме, этот синтез начинается несколько раньше редупликации ДНК. Синтезированные гистоны мигрируют из цитоплазмы в ядро, где и связываются с участками ДНК.

Функциональная роль гистонов не вполне ясна. Одно время считалось, что гистоны являются специфическими регуляторами активности ДНК хроматина, но одинаковость строения основной массы гистонов говорит о малой вероятности этого. Более очевидна структурная роль гистонов, которая обеспечивает не только специфическую укладку хромосомной ДНК, но и играет роль в регуляции транскрипции.

Рис. 10.

Нуклеосомные частицы состоят из двух полных витков ДНК (83 нуклеотидных пары на виток), закрученных вокруг кора, представляющего собой гистоновый октамер, и соединяются между собой линкерной ДНК. Нуклеосом-ная частица выделена из хроматина путем ограниченного гидролиза линкерных участков ДНК микрококковой нуклеазой. В каждой нуклеосомнои частице фрагмент двойной спирали ДНК, имеющий в длину 146 пар оснований, закручен вокруг гистонового кора. Этот белковый кор содержит по две молекулы каждого из гистонов Н2А, Н2В, НЗ и Н4. Полипептидные цепи гистонов насчитывают от 102 до 135 аминокислотных остатков, а общий вес октамера составляет приблизительно 100000 Да. В деконденсированной форме хроматина каждая «бусина» связана с соседней частицей нитевидным участком линкерной ДНК.

Негистоновые белки - наиболее плохо охарактеризованная фракция хроматина. Кроме ферментов, непосредственно связанных с хроматином (ферменты, ответственные за репарацию, редубликацию, транскрипцию и модификации ДНК, ферменты модификации гистонов и других белков), в эту фракцию входит множество других белков. Весьма вероятно, что часть негистоновых белков представляет собой специфические белки - регуляторы, узнающие определенные нуклеотидные последовательности в ДНК.

РНК хроматина составляет от 0,2 до 0,5% от содержания ДНК. Эта РНК представляет собой все известные клеточные типы РНК, находящиеся в процессе синтеза или созревания в связи с ДНК хроматина.

В составе хроматина могут быть обнаружены липиды до 1 % от весового содержания ДНК, их роль в структуре и функционировании хромосом остается неясной.

В химическом отношении препараты хроматина представляют собой сложные комплексы дезоксирибонуклеопротеидов, в состав которых входит ДНК и специальные хромосомные белки - гистоны. В составе хроматина обнаружено также РНК. В количественном отношении ДНК, белок и РНК находятся как 1:1,3:0,2. О значении РНК в составе хроматина еще нет достаточно однозначных данных. Возможно, что эта РНК представляет собой сопутствующую препарату функцию синтезирующейся РНК и поэтому частично связанной с ДНК или это особый вид РНК, характерный для структуры хроматина.

ДНК хроматина

В препарате хроматина на долю ДНК приходится обычно 30-40%. Эта ДНК представляет собой двухцепочечную спиральную молекулу. ДНК хроматина обладает молекулярной массой 7-9*10 6 . Такую сравнительно малую массу ДНК из препаратов можно объяснить механическими повреждениями ДНК в процессе выделения хроматина.

Общее количество ДНК, входящее в ядерные структуры клеток, в геном организмов, колеблется от вида к виду. Сравнивая количество ДНК на клетку у эукариотических организмов, трудно уловить какие-либо корреляции между степенью сложности организма и количеством ДНК на ядро. Примерно одинаковое количество ДНК имеют различные организмы, как лен, морской еж, окунь (1,4-1,9 пг) или рыба голец и бык (6,4 и 7 пг).

У некоторых амфибий в ядрах количество ДНК больше, чем в ядрах человека, в 10-30 раз, хотя генетическая конституция человека несравненно сложнее, чем у лягушек. Следовательно, можно предполагать, что избыточное количество ДНК у более низко организованных организмов либо не связано с выполнением генетической роли, либо число генов повторяется то или иное число раз.

Сателлитная ДНК, или фракция ДНК с часто повторяющимися последовательностями, может участвовать в узнавании гомологичных районов хромосом при мейозе. По другим предположениям, эти участки играют роль разделителей (спейсеров) между различными функциональными единицами хромосомной ДНК.

Как оказалось, фракция умеренно повторяющихся (от 10 2 до 10 5 раз) последовательностей принадлежит к пестрому классу участков ДНК, играющих важную роль в обменных процессах. В эту фракцию входят гены рибосомных ДНК, многократно повторенные участки для синтеза всех тРНК. Более того, некоторые структурные гены, ответственные за синтез определенных белков, также могут быть многократно повторены, представлены многими копиями (гены для белков хроматина - гистонов).

Ядрышко

Ядрышко (нуклеола) - это плотное тельце внутри ядра большинства клеток эукариот. Состоит из рибонуклеопротеидов - предшественников рибосом. Обычно в клетке одно ядрышко, реже много. В ядрышке выделяют зону внутриядрышкового хроматина, зону фибрилл и зону гранул. Ядрышко-это не постоянная структура в клетках эукариот. При активном митозе ядрышки распадаются, а затем синтезируются вновь. Основная функция ядрышек-синтез РНК и субъединиц рибосом.

В ядрышке выделяют зону внутриядрышкового хроматина, зону фибрилл и зону гранул. Ядрышко не является самостоятельным органоидом клетки, лишено мембраны и образуется вокруг участка хромосомы, в котором закодирована структура рРНК (ядрышковый организатор), на нем синтезируется рРНК; кроме накопления рРНК в ядрышке формируются рибосомы, которые затем перемещаются в цитоплазму. Т.о. ядрышко - это скопление рРНК и рибосом на разных этапах формирования.

Основной функцией ядрышка является синтез рибосом (в этом процессе принимает участие РНК-полимераза I)