Биографии Характеристики Анализ

Применение графиков в решении уравнений. Изучение основных элементарных функций в школьном курсе математики

Вы знаете, что каждой упорядоченной паре чисел соответствует определенная точка на координатной плоскости. Поскольку каждое решение уравнения с двумя переменными х и у - это упорядоченная пара чисел, то все его решения можно изобразить точками па координатной плоскости. В этих точек абсцисса - это значение переменной х, а ордината - соответствующее значение переменной у. Следовательно, получим график уравнения с двумя переменными.

Запомните!

Графиком уравнения с двумя переменными называется изображение на координатной плоскости всех точек, координаты которых удовлетворяют данное уравнение.

Посмотрите на рисунки 64 и 65. Вы видите график уравнения 0,5 x - у = 2, где х - четное одноцифрове число (рис. 64), и график уравнения х 2 + у 2 = 4 (рис. 65). Первый график содержит всего четыре точки, поскольку переменные х и у могут принимать только четыре значения. Второй же график является линией на координатной плоскости. Он содержит множество точек, поскольку переменная х может принимать любые значения от -2 до 2 и таких чисел - множество. Соответствующих значений в тоже множество. Они изменяются от 2 до 2.

На рисунке 66 показан график уравнения х + у = 4. В отличие от графика уравнения х 2 + у 2 = 4 (см. рис. 65), каждой абсцисі точек данного графика соответствует единственная ордината. А это означает, что на рисунке 66 изображен график функции. Убедитесь самостоятельно, что график уравнения на рисунке 64 также является графиком функции.

Обратите внимание

не у каждого уравнение его график является графиком функции, однако каждый график функции является графиком некоторого уравнения.

Уравнение x + y = 4 является линейным уравнением с двумя переменными. Решив его относительно у, получим: у = -х + 4. Полученное равенство можно понимать как формулу, которая задает линейную функцию у = -х + 4. Графиком такой функции является прямая. Итак, графиком линейного уравнения х + у = 4, который изображен на рисунке 66, есть прямая.

Можно ли утверждать, что график любого линейного уравнения с двумя переменными является прямой? Нет. Например, линейное уравнение 0 ∙ х + 0 ∙ у = 0 удовлетворяет любая пара чисел, а потому график этого уравнения содержит все точки координатной плоскости.

Выясним, что является графиком линейного уравнения с двумя переменными ах + bу + с = 0 в зависимости от значений коэффициентов а, b и с. Возможны такие случаи.

Пусть a ≠ 0, b ≠ 0, с ≠ 0. Тогда уравнение ах + by + с = 0 можно представить в виде:

Получили равенство, задающее линейную функцию у(х). Ее графику, а значит, и графиком данного уравнения является прямая, не проходящая через начало координат (рис. 67).

2. Пусть а ≠ 0, b ≠ 0, с = 0. Тогда уравнение ах + by + с = 0 приобретает вид ах + by + 0 = 0, или у = х.

Получили равенство, что задает прямую пропорциональность у(х). Ее графику, а значит, и графиком данного уравнения является прямая, проходящая через начало координат (рис. 68).

3. Пусть a ≠ 0, b = 0, с ≠ 0. Тогда уравнение ах + by + с = 0 приобретает вид ах + 0 ∙ у + с = 0, или х = -.

Получили равенство не задает функцию y(). Это равенство удовлетворяют такие пары чисел (х; у), в которых х = , а у - любое число. На координатной плоскости эти точки лежат на прямой, параллельной оси OY. Итак, графиком данного уравнения является прямая, параллельная оси ординат (рис. 69).

4. Пусть a ≠ 0, b = 0, с = 0. Тогда уравнение ах + by + с = 0 приобретает вид ах + 0 ∙ у + 0 = 0, или х = 0.

Это равенство удовлетворяют такие пары чисел (x; у), в которых х = 0, а у - любое число. На координатной плоскости эти точки лежат на оси OY. Итак, графиком данного уравнения с прямая, совпадающая с осью ординат.

5. Пусть а ≠ 0, b ≠ 0, с ≠0. Тогда уравнение ах + bу + с = 0 приобретает вид 0 ∙ х + by + с = 0, или у = -. Это равенство задает функцию y(x), что приобретает тех же значений для любых значений x, то есть является постоянной. Ее графику, а значит, и графиком данного уравнения является прямая, параллельная оси абсцисс (рис. 70).

6. Пусть а = 0, b ≠ 0, с = 0. Тогда уравнение ах + by + с = 0 приобретает вид 0 ∙ х + by + 0 = 0, или в = 0. Получили постоянную функцию у(х), в которой каждая точка графика лежит на оси ОХ. Итак, графиком данного уравнения является прямая, совпадающая с осью абсцисс.

7. Пусть a = 0, b = 0, с ≠ 0. Тогда уравнение ах + by + с = 0 приобретает вид 0 ∙ х + 0 ∙ у + с = 0, или 0 ∙ х + 0 ∙ в = с. А такое линейное уравнение не имеет решений, поэтому его график не содержит ни одной точки координатной плоскости.

8. Пусть а = 0, b = 0, с = 0. Тогда уравнение ах + by + с = 0 приобретает вид 0 ∙ х + 0 ∙ y + 0 = 0, или 0 ∙ х + 0 ∙ у = 0. А такое линейное уравнение имеет множество решений, поэтому его с графиком-вся координатная плоскость.

Можем подытожить полученные результаты.

График линейного уравнения с двумя переменными ах + bу +с = 0:

Является прямой, если а ≠ 0 или b ≠ 0;

Является всей плоскостью, если а = 0, b = 0 и с = 0;

Не содержит ни одной точки координатной плоскости, если а = 0, b = 0 и с ≠ 0.

Задача. Постройте график уравнения 2х - у - 3 = 0

Решения. Уравнения 2х - у - 3 = 0 является линейным. Поэтому его графиком является прямая у = 2х - 3. Для ее построения достаточно задать две точки, принадлежащие этой прямой. Составим таблицу значений у для двух произвольных значений х, например, для х = 0 и х = 2(табл. 27).

Таблица 27

На координатной плоскости обозначим точки с координатами (0; -3) и (2; 1) и проведем через них прямую (рис. 70). Эта прямая - искомый график уравнения 2х - у - 3 = 0.

Можно ли отождествлять график линейного уравнения с двумя переменными и график уравнения первой степени с двумя переменными? Нет, поскольку существуют линейные уравнения не являются уравнениями первой степени. Например, таковыми являются уравнение 0 ∙ х + 0 ∙ у + с = 0, 0 ∙ х + 0 ∙ у + 0 = 0.

Обратите внимание:

График линейного уравнения с двумя переменными может быть прямой, всей плоскостью или не содержать ни одной точки координатной плоскости;

График уравнения первой степени с двумя переменными всегда является прямой.

Узнайте больше

1. Пусть а ≠ 0. Тогда общее решение уравнения можно представить еще и в таком виде: Х = - у -. Получили линейную функцию х(у). Ее графиком является прямая. Для построения такого графика надо по-другому состковать оси координат: первой координатной осью (независимой переменной) считать ось ОУ, а второй (зависимой переменной)

Ось ОХ. Тогда ось ОУ удобно расположить горизонтально, а ось ОХ

Вертикально (рис. 72). График уравнения в этом случае тоже будет по-разному размещаться на координатной плоскости в зависимости отмечаний коэффициентов b и с. Исследуйте это самостоятельно.

2. Николай Николаевич Боголюбов (1909-1992) - выдающийся отечественный математик и механик, физик-теоретик, основатель научных школ по нелинейной механике и теоретической физике, академик АН УССР (1948) и АН СССР (с 1953). Родился в г. Нижний Новгород Российской империи. В 1921 г. семья переехала в Киев. После окончания семилетней школы Боголюбов самостоятельно изучал физику и математику и с 14-ти лет уже принимал участие в семинаре кафедры математической физики Киевского университета под руководством академика Д. А. Граве. В 1924 г. в 15-летнем возрасте Боголюбов написал первую научную работу, а в следующем году был принят в аспирантуру АНУРСР к академикам. М. Крылова, которую закончил в 1929 г., получив в 20 лет степень доктора математических наук.

В 1929 p. М.М. Боголюбов стал научным сотрудником Украинской академии наук, в 1934 начал преподавать в Киевском университете (с 1936 г. - профессор). С конца 40-х годов XX века. одновременно работал в России. Был директором Объединенного института ядерных исследований, а впоследствии - директором Математического института имени. А. Стеклова в Москве, преподавал в Московском государственном университете имени Михаила Ломоносова. В 1966 г. стал первым директором созданного им Института теоретической физики АН УССР в Киеве, одновременно (1963-1988) он - академик - секретарь Отдела математики АН СССР.

М.М. Боголюбов -дважды Герой Социалистического Труда (1969,1979), награжден Ленинской премией (1958), Государственной премией СССР (1947.1953,1984), Золотой медалью им. М. В. Ломоносова АН СССР (1985).

21 сентября 2009 г. на фасаде Красного корпуса Киевского национального университета имени Тараса Шевченко была открыта мемориальная доска гениальному ученому-академику Николаю Боголюбову в честь столетия со дня его рождения.

В 1992 г. Национальной академией наук Украины была основана Премия НАН Украины имени Н. М. Боголюбова, которая вручается Отделением математики НАН Украины за выдающиеся научные работы в области математики и теоретической физики. В честь ученого была названа малая планета «22616 Боголюбов».

ВСПОМНИТЕ ГЛАВНОЕ

1. Что является графиком линейного уравнения с двумя переменными?

2. В любом случае графиком уравнения с двумя переменными является прямая; плоскость?

3. В каком случае график линейного уравнения с двумя переменными проходит через начало координат?

РЕШИТЕ ЗАДАЧИ

1078 . На каком из рисунков 73-74 изображен график линейного уравнения с двумя переменными? Ответ объясните.

1079 . При каких значений коэффициентов а, b и с прямая ах + bу + с =0.

1) проходит через начало координат;

2) параллельна оси абсцисс;

3) параллельна оси ординат;

4) совпадает с осью абсцисс;

5) совпадает с осью ординат?

1080 . Не выполняя построения, определите, принадлежит графику линейного уравнения с двумя переменными 6х - 2у + 1 = 0 точка:

1)А(-1;2,5); 2)В(0;3,5); 3) С(-2; 5,5); 4)D(1,5;5).

1081 . Не выполняя построения, определите, принадлежит графику линейного уравнения с двумя переменными 3х + 3у - 5 = 0 точка:

1) A (-1; ); 2) B (0; 1).

1082

1) 2х + у - 4 = 0, если х = 0; 3) 3х + 3у - 1 = 0, если х = 2;

2) 4х - 2y + 5 = 0, если х = 0; 4)-5х - у + 6 = 0, если х = 2.

1083 . Для данного линейного уравнения с двумя переменными найдите значение у, соответствующее заданному значению х:

1)3х - у + 2 = 0, если х = 0; 2) 6х - 5y - 7 = 0, если х = 2.

1084

1) 2х + у - 4 = 0; 4) -х + 2у + 8 = 0; 7) 5х - 10 = 0;

2) 6х - 2y + 12 = 0; 5)-х - 2у + 4 = 0; 8)-2у + 4 = 0;

3) 5х - 10y = 0; 6)х - у = 0; 9) х - у = 0.

1085 . Постройте график линейного уравнения с двумя переменными:

1) 4х + у - 3 = 0; 4) 10х - 5у - 1 = 0;

2) 9х - 3у + 12 = 0; 5) 2х + 6 = 0;

3)-4х - 8у = 0; 6) у - 3 = 0.

1086 . Найдите координаты точки пересечения графика линейного уравнения с двумя переменными 2х - 3у - 18 = 0 с осью:

1) оси; 2) оси.

1087 . Найдите координаты точки пересечения графика линейного уравнения с двумя переменными 5х + 4у - 20 = 0 с осью:

1) оси; 2) оси.

1088 . На прямой, которая является графиком уравнения 0,5 х + 2у - 4 = 0, обозначено точку. Найдите ординату этой точки, если ее абсцисса равна:

5) 4(х - у) = 4 - 4у;

6) 7х - 2у = 2(1 + 3,5 х).

1094 . График линейного уравнения с двумя переменными проходит через точку А(3; -2). Найдите неизвестный коэффициент уравнения:

1) ах + 3у - 3 = 0;

2) 2х - by + 8 = 0;

3)-х + 3у - с = 0.

1095 . Определите вид четырехугольника, вершинами которого являются точки пересечения графиков уравнений:

х - y + 4 = 0, х - у - 4 = 0, -х - у + 4 = 0, -х - у - 4 = 0

1096 . Постройте график уравнения:

1) а - 4b + 1 = 0; 3) 3a + 0 ∙ b - 12 = 0;

2) 0 ∙ а + 2b + 6 = 0; 4) 0 ∙ a + 0 ∙ b + 5 = 0.

ПРИМЕНИТЕ НА ПРАКТИКЕ

1097 . Составьте линейное уравнение с двумя переменными по следующим данным: 1) 3 кг конфет и 2 кг печенья стоят 120 грн; 2) 2 ручки дороже 5 карандашей на 20 грн. Постройте график составленного уравнения.

1098 . Постройте график уравнения к задаче о: 1) количество девушек и парней в вашем классе; 2) покупку тетрадей в линейку и в клеточку.

ЗАДАЧИ НА ПОВТОРЕНИЕ

1099. Турист прошел 12 км за час. За сколько часов турист преодолеет расстояние 20 км с такой же скоростью движения?

1100. Какой должна быть скорость поезда по новому расписанию, чтобы он мог проехать расстояние между двумя станциями за 2,5 ч, если согласно старого расписания, двигаясь со скоростью 100 км/ч он преодолевал ее за 3 ч?

Страница 2

Построить график уравнения х+у=3 и с помощью графика узнать несколько решений этого уравнения.

Далее внимание учащихся обращается на то, что график линейного уравнения с двумя переменными с двумя переменными проще строить, если уравнение преобразовано к виду y=kx+b, для которого употребляется термин «линейная функция». Позднее им сообщается, что существуют и другие функции, например у=х2 (ее изучению посвящена глава 7).

В учебнике вводятся теоремы без доказательства, например:

Теорема 2. Графиком линейной функции y=kx+b является прямая.

Теорема 4. Прямая, служащая графиком линейной функции y=kx+b, параллельна прямой, служащей графиком прямой пропорциональности y=kx.

С квадратичной функцией учащиеся в учебниках Ш.А. Алимова впервые сталкиваются в 8 классе.

В §35 учащиеся знакомятся с определением квадратичной функции. Даются примеры из жизни, где имеет место быть квадратичная функция. Например, зависимость площади квадрата от его стороны является примером функции y=x2.

В §36 предлагается рассмотреть функцию y=x2, т.е. квадратичную функцию y=ax2+bx+c при, а=1, b=0, с=0.

Для построения функции составляется таблица, а затем точки отмечаются на координатной плоскости и соединяются. График функции y=x2 называется параболой.

После чего выясняются некоторые свойства функции y=x2.

В §37 учащимся предлагается построить график функции y=ax2. Сравнивается графики функций y=ax2 и y=x2. Говорят, что график функции y=аx2 получается растяжением графика функции y=x2 от оси Ох вдоль оси Оу в а раз.

Рассматриваются свойства функции y=ax2, где а¹0

1) если а>0, то функция y=ax2 принимает положительные значения при х¹0;

если а<0, то функция y=ax2 принимает отрицательные значения при х¹0;

2) Парабола y=ax2 симметрична относительно оси ординат;

3) Если а>0, то функция y=ax2 возрастает при х³0 убывает и при х£0;

Если а<0, то функция y=ax2 убывает при х³0 и возрастает при х£0.

В §38 автор предлагает построить график квадратичной функции. Для этого предлагается использовать метод выделения полного квадрата (получили у=(х+т)2+п), а затем сравнить полученный график с графиком функции у=х2. Делается вывод что мы получаем параболу сдвинутую на т единиц по оси Ох и на п единиц по оси Оу.

В §39 приводится алгоритм построения графика любой квадратичной функции y=ax2+bx+c:

Построить вершину параболы (х0, у0), вычислив х0, у0 по формулам .

Провести через вершину параболы прямую параллельную оси ординат, - ось симметрии параболы.

Найти нули функции, если они есть, и построить на оси абсцисс соответствующие точки параболы.

Построить две какие-то точки параболы, симметричные относительно ее оси. Для этого надо взять две точки на оси, симметричные относительно точки х0 (х0 ¹ 0), и вычислить соответствующие значения функции (эти значения одинаковы). Например, можно построить точки параболы с абсциссами х=0 и х=2х0 (ординаты этих точек равны с)

Провести через построенные точки параболу.

При изучении темы формируются умения определять по графику промежутки возрастания функции, промежутки знакопостоянства, нули функции. Нахождение наибольшего и наименьшего значений функции и решение задач с их применением не входит в число обязательных.

В заключении, учащимся предоставляется возможность еще раз повторить решение систем двух уравнений, одно из которых первой, а другое второй степени.

В учебниках Ю.Н. Макарычева и др. с функцией y=x2 учащиеся впервые сталкиваются в 7 классе. Все сведения рассматриваются в этом параграфе аналогично учебнику Ш.А. Алимова за 8 класс.

Линейное уравнение с двумя переменными - любое уравнение, которое имеет следующий вид: a*x + b*y =с . Здесь x и y есть две переменные, a,b,c - некоторые числа.

Решением линейного уравнения a*x + b*y = с, называется любая пара чисел (x,y) которая удовлетворяет этому уравнению, то есть обращает уравнение с переменными x и y в верное числовое равенство. Линейное уравнение имеет бесконечное множество решений.

Если каждую пару чисел, которые являются решением линейного уравнения с двумя переменными, изобразить на координатной плоскости в виде точек, то все эти точки образуют график линейного уравнения с двумя переменными. Координатами точками будут служить наши значения x и у. При этом значение х будет являться абсциссой, а значение у - ординатой.

График линейного уравнения с двумя переменными

Графиком линейного уравнения с двумя переменными называется множество всевозможных точек координатной плоскости, координаты которых будут являться решениями этого линейного уравнения. Несложно догадаться, что график будет представлять собой прямую линию. Поэтому такие уравнения и называются линейными.

Алгоритм построения

Алгоритм построения графика линейного уравнения с двумя переменным.

1. Начертить координатные оси, подписать их и отметить единичный масштаб.

2. В линейном уравнении положить х = 0, и решить полученное уравнение относительно у. Отметить полученную точку на графике.

3. В линейном уравнении в качестве у взять число 0, и решить полученное уравнение относительно х. Отметить полученную точку на графике

4. При необходимости взять произвольное значение х, и решить полученное уравнение относительно у. Отметить полученную точку на графике.

5. Соединить полученные точки, продолжить график за них. Подписать получившуюся прямую.

Пример: Построить график уравнения 3*x - 2*y =6;

Положим х=0, тогда - 2*y =6; y= -3;

Положим y=0, тогда 3*x = 6; x=2;

Отмечаем полученные точки на графике, проводим через них прямую и подписываем её. Посмотрите на рисунок ниже, график должен получиться именно таким.

ЦЕЛЬ:1) Познакомить учащихся с понятием «уравнение с двумя переменными»;

2) Научить определять степень уравнения с двумя переменными;

3) Научить определять по заданной функции, какая фигура является графиком

данного уравнения;

4) Рассмотреть преобразования графиков с двумя переменными;

заданному уравнению с двумя переменными, используя программу Agrapher ;

6) Развивать логическое мышление учащихся.

I.Новый материал - объяснительная лекция с элементами беседы.

(лекцияпроводится с использованием авторских слайдов; построение графиков выполнено в программе Agrapher)

У: При изучении линий возникают две задачи:

По геометрическим свойствам данной линии найти её уравнение;

Обратная задача: по заданному уравнению линии исследовать её геометрические свойства.

Первую задачу мы рассматривали в курсе геометрии применительно к окружности и прямой.

Сегодня мы будем рассматривать обратную задачу.

Рассмотрим уравнения вида:

а) х(х-у)=4; б) 2у-х 2 =-2 ; в) х(х+у 2 ) = х +1 .

– это примеры уравнений с двумя переменными.

Уравнения с двумя переменными х и у имеет вид f(x,y)=(x,y) , где f и – выражения с переменными х и у.

Если в уравнении х(х-у)=4 подставить вместо переменной х её значение -1, а вместо у – значение 3, то получится верное равенство: 1*(-1-3)=4,

Пара (-1; 3) значений переменных х и у является решением уравнения х(х-у)=4 .

То есть решением уравнения с двумя переменными называют множество упорядоченных пар значений переменных, образующих это уравнение в верное равенство.

Уравнения с двумя переменными имеет, как правило, бесконечно много решений. Исключения составляют, например, такие уравнения, как х 2 +(у 2 - 4) 2 = 0 или

2х 2 + у 2 = 0 .

Первое из них имеет два решения (0; -2) и (0; 2), второе – одно решение (0;0).

Уравнение х 4 + у 4 +3 = 0 вообще не имеет решений. Представляет интерес, когда значениями переменных в уравнении служат целые числа. Решая такие уравнения с двумя переменными, находят пары целых чисел. В таких случаях говорят, что уравнения решено в целых числах.

Два уравнения, имеющие одно и тоже множество решений, называют равносильными уравнениями . Например, уравнение х(х + у 2) = х + 1 есть уравнение третьей степени, так как его можно преобразовать в уравнение ху 2 + х 2 - х-1 = 0, правая часть которого – многочлен стандартного вида третьей степени.

Степенью уравнения с двумя переменными, представленного в виде F(х, у) = 0, где F(х,у)-многочлен стандартного вида, называют степень многочлена F(х, у).

Если все решения уравнения с двумя переменными изобразить точками в координатной плоскости, то получится график уравнения с двумя переменными.

Графиком уравнения с двумя переменными называется множество точек, координаты которых служат решениями этого уравнения.

Так, график уравнения ax + by + c = 0 представляет собой прямую, если хотя бы один из коэффициентов a или b не равен нулю(рис.1) . Если a = b = c = 0 , то графиком этого уравнения является координатная плоскость(рис.2) , если же a = b = 0 , а c0 , то графиком является пустое множество(рис.3) .

График уравнения y = a х 2 + by + c представляет собой параболу(рис.4), график уравнения xy=k (k0) гиперболу(рис.5) . Графиком уравнения х 2 + у 2 = r , где x и y – переменные, r – положительное число, является окружность с центром в начале координат и радиусом равнымr (рис.6). Графиком уравнения является эллипс , где a и b – большая и малая полуоси эллипса (рис.7).

Построение графиков некоторых уравнений облегчается использованием их преобразований. Рассмотрим преобразования графиков уравнений с двумя переменными и сформулируем правила, по которым выполняются простейшие преобразования графиков уравнений

1) График уравнения F (-x, y) = 0 получается из графика уравнения F (x, y) = 0 с помощью симметрии относительно оси у.

2) График уравнения F (x, -y) = 0 получается из графика уравнения F (x, y) = 0 с помощью симметрии относительно оси х .

3) График уравнения F (-x, -y) = 0 получается из графика уравнения F (x, y) = 0 с помощью центральной симметрии относительно начала координат.

4) График уравнения F (x-а, y) = 0 получается из графика уравнения F (x, y) = 0 с помощью перемещения параллельно оси х на |a| единиц (вправо, если a > 0, и влево, если а < 0).

5) График уравнения F (x, y-b) = 0 получается из графика уравнения F (x, y) = 0 с помощью перемещения на |b| единиц параллельно оси у (вверх, если b > 0, и вниз, если b < 0).

6) График уравнения F (аx, y) = 0 получается из графика уравнения F (x, y) = 0 с помощью сжатия к оси у и а раз, если а > 1, и с помощью растяжения от оси у в раз, если 0 < а < 1.

7) График уравнения F (x, by) = 0 получается из графика уравнения F (x, y) = 0 с помощью с помощью сжатия к оси х в b раз, если b > 1, и с помощью растяжения от оси x в раз, если 0 < b < 1.

Если график некоторого уравнения повернуть на некоторый угол около начала координат, то новый график будет графиком другого уравнения. Важными являются частные случаи поворота на углы 90 0 и 45 0 .

8) График уравнения F (x, y) = 0 в результате поворота около начала координат на угол 90 0 по часовой стрелке переходит в график уравнения F (-y, x) = 0, а против часовой стрелки – в график уравнения F (y, -x) = 0.

9) График уравнения F (x, y) = 0 в результате поворота около начала координат на угол 45 0 по часовой стрелке переходит в график уравнения F = 0, а против часовой стрелки – в график уравнения F = 0.

Из рассмотренных нами правил преобразования графиков уравнений с двумя переменными легко получаются правила преобразования графиков функций.

Пример 1. Покажем, что графиком уравнения х 2 + у 2 + 2х – 8у + 8 = 0 является окружность (рис.17).

Преобразуем уравнение следующим образом:

1) сгруппируем слагаемые, содержащие переменную х и содержащие переменную у , и представим каждую группу слагаемых в виде полного квадрата трехчлена: (х 2 + 2х + 1) + (у 2 -2*4*у + 16) + 8 – 1 – 16 = 0;

2) запишем в виде квадрата суммы (разности) двух выражений полученные трехчлены: (х + 1) 2 + (у – 4) 2 - 9 = 0;

3) проанализируем, согласно правилам преобразования графиков уравнений с двумя переменными, уравнение (х + 1) 2 + (у – 4) 2 = 3 2: графиком данного уравнения является окружность с центром в точке (-1; 4) и радиусом 3 единицы.

Пример 2. Построим график уравнения х 2 + 4у 2 = 9 .

Представим 4у 2 в виде (2у) 2 , получим уравнение х 2 + (2у) 2 = 9, график которого можно получить из окружности х 2 + у 2 = 9 сжатием к оси х в 2 раза.

Начертим окружность с центром в начале координат и радиусом 3 единицы.

Уменьшим в 2 раза расстояние каждой её точки от оси Х, получим график уравнения

х 2 + (2у) 2 = 9.

Мы получили фигуру с помощью сжатия окружности к одному из её диаметров(к диаметру, который лежит на на оси Х). Такую фигуру называют эллипсом (рис.18).

Пример 3. Выясним, что представляет собой график уравнения х 2 - у 2 = 8.

Воспользуемся формулой F= 0.

Подставим в данное уравнение вместо Х и вместо У, получим:

У: Что представляет собой график уравнения у = ?

Д: Графиком уравнения у = является гипербола.

У: Мы преобразовали уравнение вида х 2 - у 2 = 8 в уравнение у = .

Какая линия будет являться графиком данного уравнения?

Д: Значит, и графиком уравнения х 2 - у 2 = 8 является гипербола.

У: Какие прямые являются асимптотами гиперболы у = .

Д: Асимптотами гиперболы у = являются прямые у = 0 и х = 0.

У: При выполненном повороте эти прямые перейдут в прямые = 0 и =0, т.е в прямые у = х и у = - х. (рис.19).

Пример 4: Выясним, какой вид примет уравнение у = х 2 параболы при повороте около начала координат на угол 90 0 по часовой стрелке.

Используя формулу F (-у; х) = 0, заменим в уравнении у = х 2 переменную х на – у, а переменную у на х. Получим уравнение х = (-у) 2 , т. е. х = у 2 (рис.20).

Мы рассмотрели примеры графиков уравнений второй степени с двумя переменными и выяснили, что графиками таких уравнений могут быть парабола, гипербола, эллипс (в частности окружность). Кроме того, графиком уравнения второй степени может являться пара прямых (пересекающихся или параллельных).Это так называемый вырожденный случай. Так графиком уравнения х 2 - у 2 = 0 является пара пересекающихся прямых (рис.21а), а графиком уравнения х 2 - 5х + 6 + 0у = 0- параллельных прямых.

II Закрепление.

(учащимся выдаются «Карточки-инструкции» по выполнению построений графиков уравнений с двумя переменными в программе Agrapher (Приложение 2) и карточки «Практическое задание» (Приложение 3) с формулировкой заданий 1-8 Графики уравнений к заданиям 4-5 учитель демонстрирует на слайдах).

Задание1. Какие из пар (5;4), (1;0), (-5;-4) и (-1; -) являются решениями уравнения:

а) х 2 - у 2 = 0, б) х 3 - 1 = х 2 у + 6у?

Решение:

Подставив в заданное уравнение, поочерёдно координаты данных точек убеждаемся, что ни одна данная пара не является решением уравнения х 2 - у 2 = 0, а решениями уравнения х 3 - 1 = х 2 у + 6у являются пары (5;4), (1;0) и (-1; -).

125 - 1 = 100 + 24 (И)

1 - 1= 0 + 0 (И)

125 – 1 =-100 – 24 (Л)

1 – 1 = - - (И)

Ответ: а); б) (5;4), (1; 0), (-1; -).

Задание 2. Найдите такие решения уравнения ху 2 - х 2 у = 12, в которых значение х равно 3.

Решение: 1)Подставим вместо Х в заданное уравнение значение 3.

2)Получим квадратное уравнение относительно переменной У, имеющее вид:

3у 2 - 9у = 12.

4) Решим это уравнение:

3у 2 - 9у – 12 = 0

Д = 81 + 144 = 225

Ответ: пары (3;4) и (3;-1) являются решениями уравнения ху 2 - х 2 у = 12

Задание3. Определите степень уравнения:

а) 2у 2 - 3х 3 + 4х = 2; в) (3 х 2 + х)(4х - у 2) = х;

б) 5у 2 - 3у 2 х 2 + 2х 3 = 0; г) (2у - х 2) 2 = х(х 2 + 4ху + 1).

Ответ: а) 3; б) 5; в) 4; г) 4.

Задание4. Какая фигура является графиком уравнения:

а) 2х = 5 + 3у; б) 6 х 2 - 5х = у – 1; в) 2(х + 1) = х 2 - у;

г) (х - 1,5)(х – 4) = 0; д) ху – 1,2 = 0; е) х 2 + у 2 = 9.

Задание5. Напишите уравнение, график которого симметричен графику уравнения х 2 - ху + 3 = 0 (рис.24) относительно: а) оси х ; б) оси у ; в)прямой у = х; г) прямой у = -х.

Задание6. Составьте уравнение, график которого получается растяжением графика уравнения у= х 2 -3 (рис.25):

а) от оси х в 2 раза; б) от оси у в 3 раза.

Проверьте с помощью программы Agrapher правильность выполнения задания.

Ответ: а)у - х 2 + 3 = 0 (рис.25а); б) у-(x) 2 + 3 = 0 (рис.25б).

б) прямые параллельны, перемещение параллельно оси х на 1 единицу вправо и параллельно оси у на 3 единицы вниз (рис.26б);

в) прямые пересекаются, симметричное отображение относительно оси х (рис.26в);

г) прямые пересекаются, симметричное отображение относительно оси у (рис.26г);

д) прямые параллельны, симметричное отображение относительно начала координат (рис.26д);

е) прямые пересекаются, поворот около начала координат на 90по часовой стрелке и симметричное отображение относительно оси х (рис.26е).

III. Самостоятельная работа обучающего характера.

(учащимся выдаются карточки «Самостоятельная работа» и «Отчётная таблица результатов самостоятельной работы», в которую учащиеся записывают свои ответы и после самопроверки, по предложенной схеме оценивают работу) Приложение 4 ..

I.вариант.

а) 5х 3 -3х 2 у 2 + 8 = 0; б) (х + у + 1) 2 -(х-у) 2 = 2(х+у).

а) х 3 + у 3 -5х 2 = 0; б) х 4 +4х 3 у +6х 2 у 2 + 4ху 3 + у 4 = 1.

х 4 + у 4 -8х 2 + 16 = 0.

а) (х + 1) 2 + (у-1) 2 = 4;

б) х 2 -у 2 = 1;

в) х - у 2 = 9.

х 2 - 2х + у 2 - 4у = 20.

Укажите координаты центра окружности и её радиус.

6. Как следует на координатной плоскости переместить гиперболу у = , чтобы её уравнение приняло вид х 2 - у 2 = 16 ?

Проверьте свой ответ, выполнив графическое построение, используя программу Agrapher.

7.Как следует на координатной плоскости переместить параболу у = х 2 , чтобы её уравнение приняло вид х = у 2 - 1

II вариант.

1.Определите степень уравнения:

а)3ху = (у-х 3)(х 2 +у); б) 2у 3 +5х 2 у 2 - 7 = 0.

2. Является ли пара чисел (-2;3) решением уравнения:

а) х 2 -у 2 -3х = 1; б) 8х 3 + 12х 2 у + 6ху 2 +у 3 =-1.

3. Найдите множество решений уравнения:

х 2 + у 2 -2х – 8у + 17 = 0.

4. Какой кривой (гиперболой, окружностью, параболой) является множество точек, если уравнение этой кривой имеет вид:

а) (х-2) 2 + (у + 2) 2 =9

б) у 2 - х 2 =1

в) х = у 2 - 1.

(проверьте с помощью программы Agrapher правильность выполнения задания)

5. Постройте, используя программуAgrapher, график уравнения:

х 2 + у 2 - 6х + 10у = 2.

6.Как следует на координатной плоскости переместить гиперболу у = , чтобы её уравнение приняло вид х 2 - у 2 = 28 ?

7.Как следует на координатной плоскости переместить параболу у = х 2 , чтобы её уравнение приняло вид х = у 2 + 9.

I ) Графическое решение квадратного уравнения:

Рассмотрим приведённое квадратное уравнение: x2+px+q=0;

Перепишем его так:x2=-px-q.(1)

Построим графики зависимостей:y=x2 и y=-px-q.

График первой зависимости нам известен, это есть парабола; вторая зависимость- линейная; её график есть прямая линия. Из уравнения (1) видно, что в том случае, когда х является его решением, рдинаты точек обоих графиков равны между собой. Значит, данному значению х соответствует одна и та же точка как на параболе, так и на прямой, то есть парабола и прямая пересекаются в точке с абциссой х.

Отсюда следующий графический способ решения квадратного уравнения:чертим параболу у=х2, чертим(по точкам) прямую у=-рх-q.

Если прямая и парабола пересекаются, то абциссы точек пересечения являются корнями квадратного уравнения. Этот способ удобен, если не требуется большой точности.

1.Решить уравнение:4x2-12x+7=0

Представим его в виде x2=3x-7/4.

Построим параболу y=x2 и прямую y=3x-7/4.

Рисунок 1.


Для построения прямой можно взять, например, точки(0;-7/4) и (2;17/4).Парабола и прямая пересекаются в двух точках с абциссами x1=0.8 и x2=2.2 (см. рисунок 1).

2.Решить уравнение: x2-x+1=0.

Запишем уравнение в виде: x2=x-1.

Построив параболу у=х2 и прямую у=х-1, увидим, что они не пересекаются(рисунок 2), значит уравнение не имеет корней.

Рисунок 2.



Проверим это. Вычислим дискриминант:

D=(-1)2-4=-3<0,

А поэтому уравнение не имеет корней.

3. Решить уравнение: x2-2x+1=0

Рисунок 3.

Если аккуратно начертить параболу у=х2 и прямую у=2х-1, то увидим, что они имеют одну общую точку(прямая касается параболы, см. рисунок 3), х=1, у=1;уравнение имеет один корень х=1(обязательно проверить это вычислением).



II ) Системы уравнений.

Графиком уравнения с двумя переменными называется множество точек координатной плоскости, координаты которых обращают уравнение в верное равенство. Графики уравнений с двумя переменными весьма разнообразны. Например, графиком уравнения 2х+3у=15 является прямая, уравнения у=0.5х2 –2 –парабола, уравнения х2 +у2=4 – окружность, и т.д..

Степень целого уравнения с двумя переменными определяется так же, как и степень целого уравнения с одной переменной. Если левая часть уравнения с двумя переменными представляет собой многочлен стандартного вида, а правая число 0, то степень уравнения считают равной степени многочлена. Для того чтобы выяснить, какова степень какого-либо уравнения с двумя переменными, его заменяют равносильным уравнением, левая часть которого – многочлен стандартного вида, а правая- нуль. Рассмотрим графический способ решения.

Пример1:решить систему ⌠ x2 +y2 =25 (1)

⌠y=-x2+2x+5 (2)

Построим в одной системе координат графики уравнений(Рисунок4):

Построим в одной системе координат графи)



х2 +у2=25 и у=-х2+2х+5

Координаты любой точки построенной окружности являются решением уравнения 1, а координаты любой точки параболы являются решением уравнения 2. Значит, координаты каждой из точек пересечения окружности и параболы удовлетворяют как первому уравнению системы, так и второму, т.е. являются решением рассматриваемой системы. Используя рисунок, находим приближённые значения координат точек пересечения графиков: А(-2,2; -4,5), В(0;5), С(2,2;4,5), D(4;-3).Следовательно, система уравнений имеет четыре решения:

х1≈-2,2 , у1≈-4,5; х2≈0, у2≈5;

х3≈2,2 , у3≈4,5; х4≈4, у4≈-3.

Подставив найденные значения в уравнения системы, можно убедиться, что второе и четвёртое из этих решений являются точными, а первое и третье – приближёнными.

III) Тригонометрические уравнения:

Тригонометрические уравнения решают как аналитически, так и графически. Рассмотрим графический способ решения на примере.

Рисунок5.

Пример1:sinx+cosx=1. Построим графики функций y=sinx u y=1-cosx.(рисунок 5)



Из графика видно, что уравнение имеет 2 решения: х=2πп,где пЄZ и х=π/2+2πk,где kЄZ(Обязательно проверить это вычислениями). Рисунок 6.

Пример2:Решить уравнение:tg2x+tgx=0. Решать это уравнение будем по принципу решения предыдущего. Сначала построим графики(См. рисунок 6)функций: y=tg2x u y=-tgx. По графику видно что уравнение имеет 2 решения: х=πп, пЄZ u x=2πk/3, где kЄZ.(Проверить это вычислениями)


Применение графиков в решении неравенств.

1)Неравенства с модулем.

Решить неравенство |x-1|+|x+1|<4.

На интеграле(-1;-∞) по определению модуля имеем |х-1|=-х+1,|х+1|=-х-1, и, следовательно, на этом интеграле неравенство равносиьно линейному неравенству –2х<4,которое справедливо при х>-2. Таким образом, в множество решений входит интеграл(-2;-1).На отрезке [-1,1] исходное неравенство равносильно верному числовому неравенству 2<4.Поэтому все значения переменной, принадлежащие этому отрезку, входят в множество решний.

На интеграле (1;+∞) опять получаем линейное неравенство 2х<4, справедливое при х<2. Поэтому интеграл (1;2) также входит в множество решений. Объединяя полученные результаты, делаем вывод: неравенству удовлетворяют все значения переменной из интеграла (-2;2) и только они.

Однако тот же самый результат можно получить из наглядных и в то же время строгих геометрических соображений. На рисунке 7 построены графики функций: y=f(x)=|x-1|+|x+1| и y=4.

Рисунок 7.



На интеграле (-2;2) график функции y=f(x) расположен под графиком функции у=4, а это означает, что неравенство f(x)<4 справедливо. Ответ:(-2;2)

II)Неравенства с параметрами.

Решение неравенств с одним или несколькими параметрами представляет собой, как правило, задачу более сложную по сравнению с задачей, в которой параметры отсутствуют.

Например, неравенство√а+х+√а-х>4, содержащее параметр а, естественно, требует, для своего решения гораздо больше усилий, чем неравенство √1+х + √1-х>1.

Что значит решить первое из этих неравенств? Это, по существу, означает решить не одно неравенство, а целый класс, целое множество неравенств, которые получаются, если придавать параметру а конкретные числовые значения. Второе же из выписанных неравенств является частным случаем первого, так как получается из него при значении а=1.

Таким образом, решить неравенство, содержащее параметры, это значит определить, при каких значениях параметров неравенство имеет решения и для всех таких значений параметров найти все решения.

Решить неравенство|х-а|+|х+а|0.

Для решения данного неравенства с двумя параметрами aub воспользуемся геометрическими соображениями. На рисунке 8 и 9 построены графики функций.

Y=f(x)=|x-a|+|x+a| uy=b.

Очевидно, что при b<=2|a| прямая y=b проходит не выше горизонтального отрезка кривой y=|x-a|+|x+a| и, следовательно, неравенство в этом случае не имеет решений (рисунок 8). Если же b>2|a|, то прямая y=b пересекает график функции y=f(x) в двух точках (-b/2;b) u (b/2;b)(рисунок 6) и неравенство в этом случае справедливо при –b/2

Ответ:Если b<=2|a| , то решений нет,

Если b>2|a|, то x €(-b/2;b/2).

III ) Тригонометрические неравенства:

При решении неравенств с тригонометрическими функциями существенно используется периодичность этих функций и их монотонность на соответствующих промежутках. Простейшие тригонометрические неравенства. Функция sinx имеет положительный период 2π. Поэтому неравенства вида: sinx>a, sinx>=a,

sin x

Достаточно решить сначала на каком-либо отрезке лдины 2π. Множество всех решений получим, прибавив к каждому из найденных на этом отрезке решений числа вида 2πп, пЄZ.

Пример 1: Решить неравенство sinx>-1/2.(рисунок 10)

Сначала решим это неравенство на отрезке[-π/2;3π/2]. Рассмотрим его левую часть – отрезок [-π/2;3π/2].Здесь уравнение sinx=-1/2 имеет одно решение х=-π/6; а функция sinx монотонно возрастает. Значит, если –π/2<=x<= -π/6, то sinx<=sin(-π/6)=-1/2, т.е. эти значения х решениями неравенства не являются. Если же –π/6<х<=π/2 то sinx>sin(-π/6) = –1/2. Все эти значения х не являются решениями неравенства.

На оставшемся отрезке [π/2;3π/2] функция sinx монотонно убывает и уравнение sinx = -1/2 имеет одно решение х=7π/6. Следовательно, если π/2<=x<7π/, то sinx>sin(7π/6)=-1/2, т.е. все эти значения х являются решениями неравенства. Для x Є имеем sinx<= sin(7π/6)=-1/2, эти значения х решениями не являются. Таким образом, множество всех решений данного неравенства на отрезке [-π/2;3π/2] есть интеграл (-π/6;7π/6).

В силу периодичности функции sinx с периодом 2π значения х из любого интеграла вида: (-π/6+2πn;7π/6 +2πn),nЄZ, также являются решениями неравенства. Никакие другие значения х решениями этого неравенства не являются.

Ответ: -π/6+2πn

Рисунок 10.