Биографии Характеристики Анализ

Шкала излучения электромагнитных волн. Обобщающий урок "шкала электромагнитных излучений"

Электромагнитные волны классифицируются по длине волны λ или связанной с ней частотой волны f . Отметим также, что эти параметры характеризуют не только волновые, но и квантовые свойства электромагнитного поля. Соответственно в первом случае электромагнитная волна описывается классическими законами, изучаемыми в этом курсе.

Рассмотрим понятие спектра электромагнитных волн. Спектром электромагнитных волн называется полоса частот электромагнитных волн, существующих в природе.

Спектр электромагнитного излучения в порядке увеличения частоты составляют:

Различные участки электромагнитного спектра отличаются по способу излучения и приёма волн, принадлежащих тому или иному участку спектра. По этой причине, между различными участками электромагнитного спектра нет резких границ, но каждый диапазон обусловлен своими особенностями и превалированием своих законов, определяемых соотношениями линейных масштабов.


Радиоволны изучает классическая электродинамика. Инфракрасное световое и ультрафиолетовое излучение изучает как классическая оптика, так и квантовая физика. Рентгеновское и гамма излучение изучается в квантовой и ядерной физике.


Рассмотрим спектр электромагнитных волн более подробно.

Низкочастотные волны

Низкочастотные волны представляют собой электромагнитные волны, частота колебаний которых не превышает 100 КГц). Именно этот диапазон частот традиционно используется в электротехнике. В промышленной электроэнергетике используется частота 50 Гц, на которой осуществляется передача электрической энергии по линиям и преобразование напряжений трансформаторными устройствами. В авиации и наземном транспорте часто используется частота 400 Гц, которая дает преимущества по весу электрических машин и трансформаторов в 8 раз по сравнению с частотой 50 Гц. В импульсных источниках питания последних поколений используются частоты трансформирования переменного тока единицы и десятки кГц, что делает их компактными, энергонасышенными.
Коренным отличием низкочастотного диапазона от более высоких частот является падение скорости электромагнитных волн пропорционально корню квадратному их частоты от 300 тыс. км/с при 100 кГц до примерно 7 тыс км/с при 50 Гц.

Радиоволны

Радиоволны представляют собой электромагнитные волны, длины которых превосходят 1 мм (частота меньше 3 10 11 гц = 300 Ггц) и менее 3 км (выше 100 кГц).

Радиоволны делятся на:

1. Длинные волны в интервале длин от 3 км до 300 м(частота в диапазоне 10 5 гц - 10 6 гц= 1 МГц);


2. Средние волны в интервале длин от 300 м до 100 м (частота в диапазоне 10 6 гц -3*10 6 гц=3мгц);


3. Короткие волны в интервале длин волн от 100м до 10м (частота в диапазоне 310 6 гц-310 7 гц=30мгц);


4. Ультракороткие волны с длиной волны меньше 10м(частота больше 310 7 гц=30Мгц).


Ультракороткие волны в свою очередь делятся на:


А) метровые волны;


Б) сантиметровые волны;


В) миллиметровые волны;


Волны с длиной волны меньше, чем 1 м (частота меньше чем 300мгц) называются микроволнами или волнами сверхвысоких частот(СВЧ - волны).


Из-за больших значений длин волн радиодиапазона по сравнению с размерами атомов распространение радиоволн можно рассматривать без учета атомистического строения среды, т.е. феноменологически, как принято при построении теории Максвелла . Квантовые свойства радиоволн проявляются лишь для самых коротких волн, примыкающих к инфракрасному участку спектра и при распространении т.н. сверхкоротких импульсов с длительностью порядка 10 -12 сек- 10 -15 сек, сравнимой со временем колебаний электронов внутри атомов и молекул.
Коренным отличием радиоволн от более высоких частот является иное термодинамическое соотношение между длиной волны носителя волн (эфира), равной 1 мм (2,7°К), и электромагнитной волны, распространяющейся в этой среде.

Биологическое действие радиоволнового излучения

Страшный жертвенный опыт применения мощного радиоволнового излучения в радиолокационной технике показал специфичное действие радиоволн в зависимости от длины волны (частоты).

На человеческий организм разрушительное действие оказывает не столько средняя, сколько пиковая мощность излучения, при которой происходят необратимые явления в белковых структурах. К примеру, мощность непрерывного излучения магнетрона СВЧ-печи (микроволновки), составляющая 1 КВатт, воздействует лишь на пищу в малом замкнутом (экранированном) объеме печи, и почти безопасна для человека, находящегося рядом. Мощность радиолокационной станции (РЛС, радара) в 1 КВатт средней мощности, излучаемой короткими импульсами скважностью 1000:1 (отношение периода повторения к длительности импульса) и, соответственно, импульсной мощностью в 1 МВатт, очень опасна для здоровья и жизни человека на расстоянии до сотен метров от излучателя. В последнем, конечно, играет роль и направленность излучения РЛС, которая подчеркивает разрушительное действие именно импульсной, а не средней мощности.

Воздействие метровых волн

Метровые волны большой интенсивности, излучаемые импульсными генераторами метровых радиолокационных станций (РЛС), имеющих импульсную мощность более мегаватта (таких, например, как станция дальнего обнаружения П-16) и соизмеримые с протяженностью спинного мозга человека и животных, а таже длиной аксонов, нарушают проводимость этих структур, вызывая диэнцефальный синдром (СВЧ-болезнь). Последняя приводит к быстрому развитию (в течение от нескольких месяцев до нескольких лет) полному или частичному (в зависимости от полученной импульсной дозы излучения) необратимому параличу конечностей человека, а также нарушению иннервации кишечника и других внутренних органов.

Воздействие дециметровых волн

Дециметровые волны соизмеримы по длине волны с кровеносными сосудами, охватывающими такие органы человека и животных, как легкие, печень и почки. Это одна из причин, почему они вызывают развитие "доброкачественных" опухолей (кист) в этих органах. Развиваясь на поверхности кровеносных сосудов, эти опухоли приводят к остановке нормального кровообращения и нарушению работы органов. Если вовремя не удалить такие опухоли оперативным путем, то наступает гибель организма. Дециметровые волны опасных уровней интенсивности излучают магнетроны таких РЛС, как мобильная РЛС ПВО П-15, а также РЛС некоторых воздушных судов.

Воздействие сантиметровых волн

Мощные сантиметровые волны вызывают такое заболевание, как лейкемию - "белокровие", а также другие формы злокачественных опухолей человека и животных. Волны достаточной для возникновения этих заболеваний интенсивности генерируют РЛС сантиметрового диапазона П-35, П-37 и практически все РЛС воздушных судов.

Инфракрасное, световое и ультрафиолетовое излучения

Инфракрасное, световое, ультрафиолетовое излучения составляют оптическую область спектра электромагнитных волн в широком смысле этого слова. Этот спектр занимает диапазон длин электромагнитных волн в интервале от 2·10 -6 м = 2мкм до 10 -8 м = 10нм (по частоте от1,5·10 14 гц до 3·10 16 гц). Верхняя граница оптического диапазона определяется длинноволновой границей инфракрасного диапазона, а нижняя коротковолновой границей ультрафиолета (рис.2.14).

Близость участков спектра перечисленных волн обусловило сходство методов и приборов, применяющихся для их исследования и практического применения. Исторически для этих целей применяли линзы, дифракционные решетки, призмы, диафрагмы, оптически активные вещества, входящие в состав различных оптических приборов (интерферометров, поляризаторов, модуляторов и пр.).

С другой стороны излучение оптической области спектра имеет общие закономерности прохождения различных сред, которые могут быть получены с помощью геометрической оптики, широко используемой для расчетов и построения, как оптических приборов, так и каналов распространения оптических сигналов. Инфракрасное излучение является видимым для многих членистоногих (насекомых, пауков и пр.) и рептилий (змей, ящериц и пр.) , доступным для полупроводниковых датчиков (инфракрасных фотоматриц), но его не пропускает толща атмосферы Земли, что не позволяет наблюдать с поверхности Земли инфракрасные звезды - "коричневые карлики", которые составляют более 90% всех звёзд в Галактике.

Ширина оптического диапазона по частоте составляет примерно 18 октав, из которых на оптический диапазон приходится примерно одна октава (); на ультрафиолет - 5 октав (), на инфракрасное излучение - 11 октав (

В оптической части спектра становятся существенными явления, обусловленные атомистическим строением вещества. По этой причине наряду с волновыми свойствами оптического излучения проявляются квантовые свойства.

Свет

Свет, световое, видимое излучение - видимая глазами человека и приматов часть оптического спектра электромагнитного излучения, занимает диапазон длин электромагнитных волн в интервале от 400 нанометров до 780 нанометров, то есть менее одной октавы - двухкратного изменения частоты.

Рис. 1.14. Шкала электромагнитных волн

Словесный мем-запоминалка порядка следования цветов в световом спектре:
"К аждая О безьяна Ж елает З нать Г лавный С екрет Ф изики" -
"Красный , Оранжевый , Желтый , Зелёный , Голубой , Синий , Фиолетовый ".

Рентгеновское и гамма излучение

В области рентгеновского и гамма излучения на первый план выступают квантовые свойства излучения.


Рентгеновское излучение возникает при торможении быстрых заряженных частиц (электронов, протонов и пр.), а также в результате процессов, происходящих внутри электронных оболочек атомов.


Гамма излучение является следствием явлений, происходящих внутри атомных ядер, а также в результате ядерных реакций. Граница между рентгеновским и гамма излучением определяются условно по величине кванта энергии , соответствующего данной частоте излучения.


Рентгеновское излучение составляют электромагнитные волны с длиной от50 нм до 10 -3 нм, что соответствует энергии квантов от 20эв до 1Мэв.


Гамма излучение составляют электромагнитные волны с длиной волны меньше 10 -2 нм, что соответствует энергии квантов больше 0.1Мэв.

Электромагнитная природа света

Свет представляет собой видимый участок спектра электромагнитных волн, длины волн которых занимают интервал от 0.4мкм до 0.76мкм. Каждой спектральной составляющей оптического излучения может быть поставлен в соответствие определённый цвет. Окраска спектральных составляющих оптического излучения определяется их длиной волны. Цвет излучения изменяется по мере уменьшения его длины волны следующим образом: красный, оранжевый, желтый, зеленый, голубой, синий, фиолетовый.

Красный свет, соответствующий наибольшей длине волны, определяет красную границу спектра. Фиолетовый свет - соответствует фиолетовой границе.

Естественный (дневной, солнечный) свет не окрашен и представляет суперпозицию электромагнитных волн из всего видимого человеком спектра. Естественный свет появляется в результате испускания электромагнитных волн возбужденными атомами. Характер возбуждения может быть различным: тепловой, химический, электромагнитный и др. В результате возбуждения атомы излучают хаотическим образом электромагнитные волны примерно в течении 10 -8 сек. Поскольку энергетический спектр возбуждения атомов достаточно широкий, то излучаются электромагнитные волны из всего видимого спектра, начальная фаза, направление и поляризация которых имеет случайный характер. По этой причине естественный свет не поляризован. Это означает, что "плотность" спектральных составляющих электромагнитные волны естественного света, имеющих взаимно перпендикулярные поляризации одинаково.


Гармонические электромагнитные волны светового диапазона называются монохроматическими . Для световой монохроматической волны одной из главных характеристик является интенсивность. Интенсивность световой волны представляет собой среднее значение величины плотности потока энергии (1.25) переносимого волной:



Где - вектор Пойнтинга.


Расчет интенсивности световой, плоской, монохроматической волны с амплитудой электрического поля в однородной среде с диэлектрической и магнитной проницаемостями по формуле (1.35) с учетом (1.30) и (1.32) дает:




Традиционно оптические явления рассматриваются с помощью лучей. Описание оптических явлений с помощью лучей называется геометрооптическим . Правила нахождения траекторий лучей, разработанные в геометрической оптике, широко используются на практике для анализа оптических явлений и при построении различных оптических приборов.


Дадим определение луча, исходя из электромагнитного представления световых волн. Прежде всего, лучи - это линии, вдоль которых распространяются электромагнитные волны. По этой причине луч - это линия, в каждой точке которой усредненный вектор Пойнтинга электромагнитной волны направлен по касательной к этой линии.


В однородных изотропных средах направление среднего вектора Пойнтинга совпадает с нормалью к волновой поверхности (эквифазной поверхности), т.е. вдоль волнового вектора .


Таким образом, в однородных изотропных средах лучи перпендикулярны соответствующему волновому фронту электромагнитной волны.


Для примера рассмотрим лучи, испускаемые точечным монохроматическим источником света. С точки зрения геометрической оптики из точки источника исходит множество лучей в радиальном направлении. С позиции электромагнитной сущности света из точки источника распространяется сферическая электромагнитная волна. На достаточно большом расстоянии от источника кривизной волнового фронта можно пренебречь, считая локально сферическую волну плоской. Разбивая поверхность волнового фронта на большое количество локально плоских участков, можно через центр каждого участка провести нормаль, вдоль которого распространяется плоская волна, т.е. в геометрооптической интерпретации луч. Таким образом, оба подхода дают одинаковое описание рассмотренного примера.


Основная задача геометрической оптики состоит в нахождении направления луча (траектории). Уравнение траектории находится после решения вариационной задачи нахождения минимума т.н. действия на искомых траекториях. Не вдаваясь в подробности строгой формулировки и решения указанной задачи, можно полагать, что лучи представляют собой траектории с наименьшей суммарной оптической длиной. Данное утверждение является следствием принципа Ферма.

Вариационный подход определения траектории лучей может быть применен и к неоднородным средам, т.е. таким средам, у которых показатель преломления является функция координат точек среды. Если описать функцией форму поверхности волнового фронта в неоднородной среде, то её можно найти исходя из решения уравнения в частных производных, известного как уравнение эйконала, а в аналитической механике как уравнение Гамильтона - Якоби:

Таким образом, математическую основу геометрооптического приближения электромагнитной теории составляют различные методы определения полей электромагнитных волн на лучах, исходя из уравнения эйконала или каким - либо другим способом. Геометрооптическое приближение широко используется на практике в радиоэлектронике для расчета т.н. квазиоптических систем.


В заключение заметим, что возможность описать свет одновременно и с волновых позиций путем решения уравнений Максвелла и с помощью лучей, направление которых определяется из уравнений Гамильтона - Якоби, описывающих движение частиц, является одним из проявлений кажущегося дуализма света, приведшего, как известно, к формулировке логически противоречивых принципов квантовой механики.

На самом деле никакого дуализма в природе электромагнитных волн нет. Как показал Макс Планк в 1900 году в своей классической работе "О нормальном спектре излучения" , электромагнитные волны представляют собой отдельные квантованные колебания частотой v и энергией E=hv , где h =const , в эфире . Последний есть сверхтекучая среда, имеющая стабильное свойство разрывности мерой h - постоянная Планка. При воздействии на эфир энергией, превышающей hv во время излучения происходит образование квантованного "вихря". Точно такое же явление наблюдается во всех сверхтекучих средах и образование в них фононов - квантов звукового излучения.

За "copy-and-paste" совмещение открытия Макса Планка 1900 года с открытым еще в 1887 году Генрихом Герцем фотоэффектом, в 1921 году Нобелевский комитет присудил премию Альберту Эйнштейну

1) Октавой по определению называется диапазон частот между произвольной частотой w и её второй гармоникой, равной 2w.


Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com


Подписи к слайдам:

Шкала электромагнитных волн. Виды, свойства и применение.

Из истории открытий… 1831 – Майкл Фарадей установил, что любое изменение магнитного поля вызывает появление в окружающем пространстве индукционного (вихревого) электрического поля.

1864 – Джеймс - Клерк Максвелл высказал гипотезу о существовании электромагнитных волн, способных распространятся в вакууме и диэлектриках. Однажды начавшийся в некоторой точке процесс изменения электромагнитного поля будет непрерывно захватывать новые области пространства. Это и есть электромагнитная волна.

1887 - Генрих Герц опубликовал работу "О весьма быстрых электрических колебаниях", где описал свою экспериментальную установку - вибратор и резонатор, - и свои опыты. При электрических колебаниях в вибраторе в пространстве вокруг него возникает вихревое переменное электромагнитное поле, которое регистрируется резонатором.

Электромагнитные волны - электромагнитные колебания, распространяющиеся в пространстве с конечной скоростью.

Вся шкала электромагнитных волн является свидетельством того, что все излучения обладают одновременно квантовыми и волновыми свойствами. Волновые свойства ярче проявляются при малых частотах и менее ярко - при больших. И наоборот, квантовые свойства ярче проявляются при больших частотах и менее ярко - при малых. Чем меньше длина волны, тем ярче проявляются квантовые свойства, а чем больше длина волны, тем ярче проявляются волновые свойства.

Низкочастотные колебания Длина волны(м) 10 13 - 10 5 Частота(Гц) 3· 10 -3 - 3 ·10 3 Энергия(ЭВ) 1 – 1,24 ·10 -10 Источник Реостатный альтернатор, динамомашина, Вибратор Герца, Генераторы в электрических сетях (50 Гц) Машинные генераторы повышенной (промышленной) частоты (200 Гц) Телефонные сети (5000Гц) Звуковые генераторы (микрофоны, громкоговорители) Приемник Электрические приборы и двигатели История открытия Лодж (1893 г.), Тесла (1983) Применение Кино, радиовещание(микрофоны, громкоговорители)

Радиоволны Получаются с помощью колебательных контуров и макроскопических вибраторов. Свойства: радиоволны различных частот и с различными длинами волн по-разному поглощаются и отражаются средами. проявляют свойства дифракции и интерференции. Длины волн охватывают область от 1 мкм до 50 км

Применение: Радиосвязь, телевидение, радиолокация.

Инфракрасное излучение (тепловое) Излучается атомами или молекулами вещества. Инфракрасное излучение дают все тела при любой температуре. Свойства: проходит через некоторые непрозрачные тела, а также сквозь дождь, дымку, снег, туман; производит химическое действие (фототгластинки); поглощаясь веществом, нагревает его; невидимо; способно к явлениям интерференции и дифракции; регистрируется тепловыми методами.

Применение: Прибор ночного видения, криминалистика, физиотерапия, в промышленности для сушки изделий, древесины, фруктов

Видимое излучение Свойства: отражение, преломление, воздействует на глаз, способно к явлению дисперсии, интерференции, дифракции. Часть электромагнитного излучения, воспринимаемая глазом (от красного до фиолетового). Диапазон длин волн занимает небольшой интервал приблизительно от 390 до750 нм.

Ультрафиолетовое излучение Источники: газоразрядные лампы с кварцевыми трубками. Излучается всеми твердыми телами, у которых t 0> 1 ООО°С, а также светящимися парами ртути. Свойства: Высокая химическая активность, невидимо, большая проникающая способность, убивает микроорганизмы, в небольших дозах благоприятно влияет на организм человека (загар), но в больших дозах оказывает отрицательное воздействие, изменяет развитие клеток, обмен веществ.

Применение: в медицине, в промышленности.

Рентгеновские лучи Излучаются при больших ускорениях электронов. Свойства: интерференция, дифракция рентгеновских лучей на кристаллической решетке, большая проникающая способность. Облучение в больших дозах вызывает лучевую болезнь. Получают при помощи рентгеновской трубки: электроны в вакуумной трубке (р =3 атм) ускоряются электрическим полем при высоком напряжении, достигая анода, при соударении резко тормозятся. При торможении электроны движутся с ускорением и излучают электромагнитные волны с малой длиной (от 100 до 0,01 нм)

Применение: В медицине с целью диагностики заболеваний внутренних органов; в промышленности для контроля внутренней структуры различных изделий.

γ -излучение Источники: атомное ядро (ядерные реакции). Свойства: Имеет огромную проникающую способность, оказывает сильное биологическое воздействие. Длина волны менее 0,01 нм. Самое высокоэнергетическое излучение

Применение: В медицине, производстве (γ -дефектоскопия).

Воздействие ЭМВ на организм человека

Спасибо за внимание!


У того факта, что на свете не существует волн всех без исключения частот (от ν = 0 Г ц до ν = ∞ Г ц), есть объективные причины. Они заключаются в том, что световые волны обладают не только волновыми, но и корпускулярными свойствами, что накладывает на их длину определенные ограничения.

Ограничения длины волны

Согласно квантовой теории, испускание электромагнитного излучения происходит в виде порций энергии – квантов. Энергия квантов связана с их частотой.

Формула содержит постоянную Планка – h = 6 , 62 · 10 - 34 Д ж · c , а h = h 2 π = 1 , 05 · 10 - 34 Д ж · с – это постоянная Планка с чертой.

Из формулы можно сделать вывод о невозможности существования бесконечной частоты, поскольку квантов с бесконечной величиной энергии не бывает. Также данное выражение ограничивает и низкие частоты, поскольку энергия кванта имеет минимально возможное значение W 0 , следовательно, существует и минимальная частота, ниже которой волна иметь не может.

Замечание 1

Важно отметить, что пока не существует явных доказательств наличия нижней границы энергии у фотонов. В стабильных электромагнитных волнах между земной поверхностью и ионосферой отмечена минимальная частота, равная примерно 8 Г ц.

Шкала электромагнитных волн

На сегодняшний день известно несколько типов электромагнитных волн. Их основные характеристики приведены в таблице:

Шкала волн указывает на то, что каждый диапазон имеет свои индивидуальные особенности. Чем больше частота, тем сильнее проявляются корпускулярные свойства излучения.

В разных частях спектра электромагнитных излучений волны генерируются по-разному. Для изучения каждого типа волны существуют особые разделы физики. Различия между участками спектра заключаются не столько в физической природе волн, сколько в способах их приема и получения. Резкого перехода между ними, как правило, нет, возможно и перекрытие участков, поскольку границы условны.

Определение 1

Оптика изучает так называемый оптический диапазон электромагнитных волн – часть спектра с включением фрагментов зон инфракрасного и ультрафиолетового излучения, которая доступна человеческому глазу.

Определение 2

Кванты, которые присутствуют в видимой части излучения, называются фотонами .

Волны всего спектра электромагнитного излучения обладают как волновыми, так и квантовыми свойствами, однако те или иные свойства в зависимости от длины волн могут преобладать. Следовательно, для их изучения нужно пользоваться разными методами. Практическое применение у разных групп волн также различается в зависимости от длины.

Специфика различных видов электромагнитных волн

Оптический диапазон характеризуется слабым взаимодействием света и вещества, а также тем, что в нем выполняются законы геометрической оптики.

Замечание 2

На частоты ниже оптического диапазона законы геометрической оптики уже не распространяются, а высокочастотное электромагнитное поле либо пронизывает вещество насквозь, либо разрушает его.

Видимый свет очень важен для всего живого на Земле, особенно для процессов фотосинтеза. Радиоволны активно применяются в телевидении, радиолокационных процессах, радиосвязи, т.к. это самые длинные волны спектра, которые могут быть легко сгенерированы с помощью колебательного контура (сочетания индуктивности и емкости). Радиоволны могут испускаться атомами и молекулами – это свойство находит применение в радиоастрономии.

Можно сформулировать общее утверждение, согласно которому источником электромагнитных волн являются частицы в атомах и ядрах. Они заряжены и движутся ускоренно.

В 1800 г. В. Гершель изучил на практике инфракрасную область спектра. Он расположил термометр ближе к красному краю спектра и увидел, что температура начала расти, значит, термометр нагрелся излучением, невидимым глазу. Инфракрасное излучение можно перевести в видимую часть диапазона с помощью специальных приборов (например, на этом свойстве основаны приборы ночного видения). Любое нагретое тело является источником инфракрасного излучения.

Ультрафиолетовое излучение было открыто И. Риттером. Он нашел невидимые глазу лучи за фиолетовой частью спектра и обнаружил, что они могут воздействовать на определенные химические соединения и убивать некоторые виды бактерий. Это свойство нашло широкое применение в медицине. Являясь частью солнечных лучей, ультрафиолет оказывает воздействие на человеческую кожу, способствуя ее потемнению (появлению загара).

В. Рентген в 1895 г. обнаружил еще один вид излучения, который был позже назван в его честь. Рентгеновские лучи не видны глазу и могут проходить через толстые слои непрозрачного вещества без значительного поглощения. Они также могут воздействовать на фотопленку и вызывать свечение некоторых видов кристаллов. Рентгеновские лучи широко применяются в области медицинской диагностики, а их способность воздействовать на живые организмы весьма значительна.

Определение 3

Гамма-излучением называется излучение, возникающее при возбуждении атомных ядер и взаимодействии элементарных частиц.

Гамма-излучение имеет наименьшую длину волны, следовательно, корпускулярные свойства у него наиболее выражены. Его принято рассматривать в качестве потока гамма-квантов. Существует перекрытие рентгеновских и гамма-волн в области длин 10 - 10 - 10 - 14 м.

Пример 1

Условие: объясните, что выступает в качестве излучателя для разных видов электромагнитных волн.

Решение

Электромагнитные волны всегда излучаются движущимися заряженными частицами. Они движутся ускоренно в атомах и ядрах, значит, именно там будет находиться источник волн. Радиоволны испускаются молекулами и атомами (единственный вид излучения, который можно воссоздать искусственным путем). Инфракрасное – за счет колебаний атомов в молекулах (здесь имеют место тепловые колебания, усиливающиеся с ростом температуры). Видимый свет создается отдельными возбужденными атомами. Ультрафиолетовый свет также является атомарным. Рентгеновские лучи создаются за счет взаимодействия электронов с высокой кинетической энергией с ядрами атомов, а также за счет собственного возбуждения ядер. Гамма-лучи образуются за счет возбужденных ядер и взаимном превращении элементарных частиц.

Пример 2

Условие: вычислите частоты волн в видимом диапазоне.

Решение

К видимому диапазону относятся волны, воспринимаемые человеческим глазом. Границы зрения индивидуальны и находятся в пределе λ = 0 , 38 - 0 , 76 м к м.

В оптике используются два основных вида частот. Первая из них – круговая – может быть определена как ω = 2 π T (Т - период колебания волны). Вторая определяется как ν = 1 T .

Значит, мы можем связать одну частоту с другой при помощи следующего соотношения:

Зная, что скорость распространения электромагнитных волн в вакууме равна c = 3 · 10 8 м с, запишем:

λ = с T → T = λ c .

В этом случае для границ видимого диапазона получим:

ν = c λ , ω = 2 π c λ .

Поскольку мы не знаем длины волн видимого света, то:

ν 1 = 3 · 10 8 0 , 38 · 10 - 6 = 7 , 9 · 10 14 (Г ц) ; v 2 = 3 · 10 8 0 , 76 · 10 16 = 3 , 9 · 10 14 (Г ц) ; ω 1 = 2 · 3 , 14 · 7 , 9 · 10 14 = 5 · 10 15 (с - 1) ; ω 2 = 2 · 3 , 14 · 3 , 9 · 10 14 = 2 , 4 · 10 15 (с - 1) .

Ответ: 3 , 9 · 10 14 Г ц.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Удобная мобильная связь, яркий солнечный свет, вредное радиоактивное излучение, полезный в небольших дозах ультрафиолет, ласковое тепло печи, «видящие насквозь» рентгеновские лучи... Все это — электромагнитные волны, они имеют общую природу и распространяются в вакууме с одинаковой скоростью. Почему же их свойства такие разные? Имеют ли они какое-то принципиальное отличие? Как образуются разные виды электромагнитных волн и где их применяют? Попробуем разобраться.

Рассматриваем шкалу электромагнитных волн

Разные виды электромагнитных волн прежде всего отличаются частотой, а следовательно, длиной волны. Именно разные частоты — причина существенных отличий в некоторых свойствах электромагнитных волн.

Если расположить все известные электромагнитные волны в порядке увеличения их частоты (рис. 20.1), увидим, что частоты могут отличаться более чем в 10 16 раз! Согласитесь, это огромная разница. И поэтому нетрудно представить, насколько разными могут быть свойства электромагнитных волн.

Шкала электромагнитных волн на рис. 20.1 разделена на участки, соответствующие разным диапазонам длин и частот электромагнитных волн, то есть разным видам электромагнитных волн. У волн одного диапазона одинаковый способ излучения и похожие свойства.

Радиоволны — от сверхдлинных с длиной более 10 км до ультракоротких и микроволн с длиной менее 0,1 мм — создаются переменным электрическим током.

Электромагнитные волны оптического диапазона излучаются возбужденными атомами. В данном диапазоне различают:

Инфракрасное (тепловое) излучение (длина волны — от 780 нм до 1-2 мм);

Видимый свет (длина волны — 400-780 нм);

Ультрафиолетовое излучение (длина волны — 10-400 нм).

Рентгеновское излучение (длина волны — 0,01-10 нм) возникает вследствие быстрого (ударного) торможения электронов, а также в результате процессов внутри электронных оболочек атомов.

γ-излучение (длина волны менее 0,05 нм) испускается возбужденными атомными ядрами во время ядерных реакций, радиоактивных преобразований атомных ядер и преобразований элементарных частиц.

Рассмотрите шкалу электромагнитных волн (см. рис. 20.1). Почему, по вашему мнению, некоторые ее участки отнесены к двум разным видам электромагнитных волн?

Рис. 20.1. Шкала (спектр) электромагнитных волн — непрерывная последовательность частот и длин существующих в природе электромагнитных волн

Используем радиоволны

Из всего спектра наиболее естественным для организма человека является инфракрасное излучение. Волны, имеющие длины приблизительно 7-14 мкм, по частоте близки излучению человеческого тела и оказывают на организм человека чрезвычайно полезное воздействие. Самый известный естественный источник таких волн на Земле — это Солнце, а самый известный искусственный — дровяная печь, и каждый человек обязательно ощущал на себе их благотворное влияние.


В технике наиболее часто используются электромагнитные волны радиодиапазона. Их применяют в мобильной связи, радиовещании, телевидении, для обнаружения и распознавания различных объектов (радиолокация), определения местонахождения объектов (GPS-навигация, GPS-мониторинг и др.), для связи с космическими аппаратами и т. д. (рис. 20.2).

Радиоволны сделали жизнь человека намного комфортнее. Однако они влияют на общее состояние людей и животных, при этом чем короче волны, тем сильнее реагируют на них организмы.

Мощные электромагнитные волны негативно воздействуют на человека. Медики утверждают, что сотовый телефон — опасный источник электромагнитного излучения, тем более что он часто находится вблизи мозга и глаз человека. Поглощаясь тканями головного мозга, зрительными и слуховыми анализаторами, волны передают им энергию. Со временем это может привести к нарушениям нервной, эндокринной и сердечно-сосудистой систем.

Изучаем инфракрасное излучение

Между радиоволнами и видимым светом расположен участок инфракрасного (теплового) излучения. В промышленности это излучение используют для сушки лакокрасочных поверхностей, древесины, зерна и др. Инфракрасные лучи применяются в пультах дистанционного управления, системах автоматики, охранных системах и т. п. Эти лучи невидимые и не отвлекают внимания человека. Но существуют приборы, которые могут ощущать и преобразовывать невидимое инфракрасное изображение в видимое. Так работают тепловизоры — приборы ночного видения, «улавливающие» инфракрасные волны длиной 3-15 мкм. Такие волны излучают тела, которые имеют температуру от -50 до 500 °С.

Интересно, что многие представители фауны обладают своеобразными «приборами ночного видения», способными воспринимать инфракрасные лучи (рис. 20.3, 20.4).

Узнаём об ультрафиолетовом излучении

Рис. 20.5. Ультрафиолетовое излучение особо опасно для сетчатки глаза, поэтому высоко в горах, где ультрафиолетовые лучи меньше всего поглощаются атмосферой, нужно обязательно защищать глаза

Ультрафиолетовое излучение, в отличие от видимого света и инфракрасного излучения, имеет высокую химическую активность, поэтому его применяют для дезинфекции воздуха в больницах и местах большого скопления людей.

Основной источник естественного ультрафиолетового излучения — Солнце. Атмосфера Земли частично задерживает ультрафиолетовые волны: те, что короче 290 нм (жесткий ультрафиолет), задерживаются в верхних слоях атмосферы озоном, а волны длиной 290-400 нм (мягкий ультрафиолет) поглощаются углекислым газом, водяным паром и тем же озоном.

В больших дозах ультрафиолетовое излучение вредно для здоровья человека (рис. 20.5). Чтобы снизить вероятность солнечного ожога и заболеваний кожи, врачи рекомендуют не находиться летом на солнце между 10 и 13 часами, когда солнечное излучение наиболее интенсивно. Однако в небольших количествах ультрафиолет положительно влияет на человека, так как способствует выработке витамина D, укрепляет иммунную систему, стимулирует ряд важных жизненных функций.


Рентгеновское и γ-излучение

Чаще всего рентгеновское излучение используют в медицине, ведь оно имеет свойство проходить сквозь непрозрачные предметы, (например, тело человека). Костные ткани менее прозрачны для рентгеновского излучения, чем другие ткани организма, поэтому кости четко видны на рентгенограмме. Рентгеновскую съемку используют также в промышленности (для выявления дефектов), химии (для анализа соединений), физике (для исследования структуры кристаллов).

Рентгеновское излучение оказывает разрушительное воздействие на клетки организма, поэтому применять его следует чрезвычайно осторожно.

γ-излучение, которое имеет еще большую проникающую способность, используют в дефектоскопии (для выявления дефектов внутри деталей), сельском хозяйстве и пищевой

промышленности (для стерилизации продуктов). На организм человека γ-излучение оказывает негативное влияние, в то же время четко направленное и дозированное γ-излучение применяют при лечении онкологических заболеваний — для уничтожения раковых клеток (лучевая терапия).

Подводим итоги

Спектр (шкала) электромагнитных волн — непрерывная последовательность частот и длин электромагнитных волн, существующих в природе. По способу излучения различают радиоволны (создаются переменным электрическим током); электромагнитные волны оптического диапазона (инфракрасное излучение, видимый свет, ультрафиолетовое излучение — испускаются возбужденными атомами); рентгеновское излучение (возникает при быстром торможении электронов); γ-излучение (испускается возбужденными атомными ядрами). Электромагнитные волны разных диапазонов имеют разные свойства, поэтому не одинаково влияют на человека и применяются в разных областях.

Все виды электромагнитных волн распространяются в вакууме с одинаковой скоростью. С увеличением частоты волны (с уменьшением ее длины) увеличиваются проникающая способность и химическая активность электромагнитного излучения.

Контрольные вопросы

1. Назовите известные вам виды электромагнитных волн. 2. Что общего между всеми видами электромагнитных волн? В чем их отличие? 3. Как изменяются свойства электромагнитных волн с увеличением их частоты? 4. Приведите примеры применения разных видов электромагнитных волн. 5. Как избежать негативного влияния некоторых видов электромагнитного излучения?

Упражнение № 20

1. Расположите электромагнитные волны в порядке увеличения их длины: 1) видимый свет; 2) ультрафиолетовое излучение; 3) радиоволны; 4) рентгеновское излучение.

2. Установите соответствие между излучателем и электромагнитными волнами, которые он в основном излучает.

1 Мобильный телефон А γ-излучение

2 Батарея отопления Б Рентгеновское излучение

3 Светлячок В Инфракрасное излучение

4 Радиоактивный препарат Г Видимый свет

Д Радиоволны

3. Длина волны желтого света в вакууме — 570 нм. Определите частоту волны.

4. Какова длина электромагнитной волны в вакууме, если ее частота равна 3 · 10 12 Гц? К какому диапазону относится эта волна?

5. Воспользуйтесь дополнительными источниками информации и узнайте историю изобретения какого-либо устройства, действие которого основано на электромагнитном излучении.

6. Расстояние до препятствия, отражающего звук, равно 68 м. Через какое время человек услышит эхо, если звуковая волна распространяется в воздухе?

Это материал учебника