Биографии Характеристики Анализ

Сообщение резонанс. Резонанс — бывает вредный, а бывает полезный

«Механические колебания и волны» - Содержание. Свободные Вынужденные Автоколебания. Механические колебания. Законы отражения. Волны. Распространение колебаний от точки к точке (от частицы к частице) в пространстве с течением времени. Циклическая частота и период колебаний равны, соответственно: Материальная точка, закрепленная на абсолютно упругой пружине.

«Частота колебаний» - Что называется чистым тоном? Скорость звука. Чаще всего таким веществом оказывается воздух. Ультразвук применяется для обнаружения в литых деталях различных дефектов. Каждый из нас знаком с таким звуковым явлением, как эхо. Скорость звука зависит от свойств среды, в которой распространяется звук. Инфразвук.

«Свободные колебания» - Из закона Ома для участка цепи переменного тока: Магнитный поток Ф сквозь плоскость рамки: Уравнение изменения заряда q на обкладках конденсатора во времени: Затухающие электромагнитные колебания. Циклическая частота свободных электромагнитных колебаний в контуре: Свободные электромагнитные колебания.

«Механические колебания» - Механические колебания и волны. Длина волны (?) – расстояние между ближайшими частицами, колеблющимися в одинаковой фазе. Продольные. Вынужденные. График гармонических колебаний. Волны - распространение колебаний в пространстве с течением времени. Частота колебаний- число полных колебаний, совершаемых в единицу времени.

«Физика Колебания и волны» - Рис 53. Обобщение темы Литература для работы: 1.Физика-9 – учебник 2.Физика -8 .автор Громов 3. Физика, человек, окружающая среда. (приложение к учебнику). Изучив тему.Колевания и волны, ты должен... Колебания и волны. Знать: уравнение гармонического колебания и определения характеристик колебания: амплитуды, периода, частоты колебаний; определения механической, поперечной и продольной волн; характеристики волны: длину, скорость; примеры использования звуковых волн в технике.

«Гармонические колебания» - A1 – амплитуда 1-го колебания. Биения. Геометрическая и волновая оптика. Кузнецов Сергей Иванович доцент кафедры ОФ ЕНМФ ТПУ. (2.2.4). Рисунок 5. Амплитуда А результирующего колебания зависит от разности начальных фаз. Колебания в противофазе. (2.2.5). Графический; геометрический, с помощью вектора амплитуды (метод векторных диаграмм).

Всего в теме 14 презентаций

Определение понятия резонанса (отклика) в физике возлагается на специальных техников, которые обладают графиками статистики, часто сталкивающихся с этим явлением. На сегодняшний день резонанс представляет собой частотно-избирательный отклик, где вибрационная система или резкое возрастание внешней силы вынуждает другую систему осциллировать с большей амплитудой на определенных частотах.

Принцип действия

Это явление наблюдается , когда система способна хранить и легко переносить энергию между двумя или более разными режимами хранения, такими как кинетическая и потенциальная энергия. Однако есть некоторые потери от цикла к циклу, называемые затуханием. Когда затухание незначительно, резонансная частота приблизительно равна собственной частоте системы, которая представляет собой частоту невынужденных колебаний.

Эти явления происходят со всеми типами колебаний или волн: механические, акустические, электромагнитные, ядерные магнитные (ЯМР), электронные спиновые (ЭПР) и резонанс квантовых волновых функций. Такие системы могут использоваться для генерации вибраций определенной частоты (например, музыкальных инструментов).

Термин «резонанс» (от латинской resonantia, «эхо») происходит от поля акустики, особенно наблюдаемого в музыкальных инструментах, например, когда струны начинают вибрировать и воспроизводить звук без прямого воздействия игроком.

Толчок человека на качелях является распространенным примером этого явления. Загруженные качели, маятник имеют собственную частоту колебаний и резонансную частоту, которая сопротивляется толканию быстрее или медленнее.

Примером является колебание снарядов на детской площадке, которое действует как маятник. Нажатие человека во время качания с естественным интервалом колебания приводит к тому, что качели идут все выше и выше (максимальная амплитуда), в то время как попытки делать качание с более быстрым или медленным темпом создают меньшие дуги. Это связано с тем, что энергия, поглощаемая колебаниями, увеличивается, когда толчки соответствуют естественным колебаниям.

Отклик широко встречается в природе и используется во многих искусственных устройствах. Это механизм, посредством которого генерируются практически все синусоидальные волны и вибрации. Многие звуки, которые мы слышим, например, когда ударяются жесткие предметы из металла, стекла или дерева, вызваны короткими колебаниями в объекте. Легкое и другое коротковолновое электромагнитное излучение создается резонансом в атомном масштабе, таким как электроны в атомах. Другие условия, в которых могут применяться полезные свойства этого явления:

  • Механизмы хронометража современных часов, колесо баланса в механических часах и кварцевый кристалл в часах.
  • Приливной отклик залива Фанди.
  • Акустические резонансы музыкальных инструментов и человеческого голосового тракта.
  • Разрушение хрустального бокала под воздействием музыкального правого тона.
  • Фрикционные идиофоны, такие как изготовление стеклянного предмета (стекла, бутылки, вазы), вибрируют, при потирании вокруг его края кончиком пальца.
  • Электрический отклик настроенных схем в радиостанциях и телевизорах, которые позволяют избирательно принимать радиочастоты.
  • Создание когерентного света оптическим резонансом в лазерной полости.
  • Орбитальный отклик, примером которого являются некоторые луны газовых гигантов Солнечной системы.

Материальные резонансы в атомном масштабе являются основой нескольких спектроскопических методов, которые используются в физике конденсированных сред, например:

  • Электронный спиновой.
  • Эффект Мёссбауэра.
  • Ядерный магнитный.

Типы явления

В описании резонанса Г. Галилей как раз обратил внимание на самое существенное - на способность механической колебательной системы (тяжелого маятника) накапливать энергию, которая подводится от внешнего источника с определенной частотой. Проявления резонанса имеют определенные особенности в различных системах и поэтому выделяют разные его типы.

Механический и акустический

Это тенденция механической системы поглощать больше энергии, когда частота ее колебаний соответствует собственной частоте вибрации системы. Это может привести к сильным колебаниям движения и даже катастрофическому провалу в недостроенных конструкциях, включая мосты, здания, поезда и самолеты. При проектировании объектов инженеры должны обеспечить безопасность, чтобы механические резонансные частоты составных частей не соответствовали колебательным частотам двигателей или других осциллирующих частей во избежание явлений, известных как резонансное бедствие.

Электрический резонанс

Возникает в электрической цепи на определенной резонансной частоте, когда импеданс схемы минимален в последовательной цепи или максимум в параллельном контуре. Резонанс в схемах используется для передачи и приема беспроводной связи, такой как телевидение, сотовая или радиосвязь.

Оптический резонанс

Оптическая полость, также называемая оптическим резонатором, представляет собой особое расположение зеркал, которое образует резонатор стоячей волны для световых волн . Оптические полости являются основным компонентом лазеров, окружающих среду усиления и обеспечивающих обратную связь лазерного излучения. Они также используются в оптических параметрических генераторах и некоторых интерферометрах.

Свет, ограниченный в полости, многократно воспроизводит стоячие волны для определенных резонансных частот. Полученные паттерны стоячей волны называются «режимами». Продольные моды отличаются только частотой, в то время как поперечные различаются для разных частот и имеют разные рисунки интенсивности поперек сечения пучка. Кольцевые резонаторы и шепчущие галереи являются примерами оптических резонаторов, которые не образуют стоячих волн.

Орбитальные колебания

В космической механике возникает орбитальный отклик , когда два орбитальных тела оказывают регулярное, периодическое гравитационное влияние друг на друга. Обычно это происходит из-за того, что их орбитальные периоды связаны отношением двух небольших целых чисел. Орбитальные резонансы значительно усиливают взаимное гравитационное влияние тел. В большинстве случаев это приводит к нестабильному взаимодействию, в котором тела обмениваются импульсом и смещением, пока резонанс больше не существует.

При некоторых обстоятельствах резонансная система может быть устойчивой и самокорректирующей, чтобы тела оставались в резонансе. Примерами является резонанс 1: 2: 4 лун Юпитера Ганимед, Европа и Ио и резонанс 2: 3 между Плутоном и Нептуном. Неустойчивые резонансы с внутренними лунами Сатурна порождают щели в кольцах Сатурна. Частный случай резонанса 1: 1 (между телами с аналогичными орбитальными радиусами) заставляет крупные тела Солнечной системы очищать окрестности вокруг своих орбит, выталкивая почти все остальное вокруг них.

Атомный, частичный и молекулярный

Ядерный магнитный резонанс (ЯМР) - это имя, определяемое физическим резонансным явлением, связанным с наблюдением конкретных квантовомеханических магнитных свойств атомного ядра, если присутствует внешнее магнитное поле. Многие научные методы используют ЯМР-феномены для изучения молекулярной физики, кристаллов и некристаллических материалов. ЯМР также обычно используется в современных медицинских методах визуализации, таких как магнитно-резонансная томография (МРТ).

Польза и вред резонанса

Для того чтобы сделать некий вывод о плюсах и минусах резонанса, необходимо рассмотреть, в каких случаях он может проявляться наиболее активно и заметно для человеческой деятельности.

Положительный эффект

Явление отклика широко используется в науке и технике . Например, работа многих радиотехнических схем и устройств основывается на этом явлении.

Отрицательное воздействие

Однако не всегда явление полезно . Часто можно встретить ссылки на случаи, когда навесные мосты ломались при прохождении по ним солдат «в ногу». При этом ссылаются на проявление резонансного эффекта воздействия резонанса, и борьба с ним приобретает масштабный характер.

Борьба с резонансом

Но несмотря на иногда губительные последствия эффекта отклика с ним вполне можно и нужно бороться. Чтобы избежать нежелательного возникновения этого явления, обычно используют два способа одновременного применения резонанса и борьбы с ним:

  1. Производится «разобщение» частот, которые в случае совпадения приведут к нежелательным последствиям. Для этого повышают трение различных механизмов или меняют собственную частоту колебаний системы.
  2. Увеличивают затухание колебаний, например, ставят двигатель на резиновую подкладку или пружины.

В нашей жизни происходит много удивительных и порой непонятных явлений. Однако объяснение многих из них может быть достаточно простым, но сразу не бросающимся в глаза. Например, одна из любимейших детских забав – качание на качелях. Казалось бы, что тут сложного – все ясно и понятно. Но задумывались ли вы, почему, если правильно действовать на качели, то размах качаний будет становиться все больше и больше? Все дело в том, что действовать нужно строго в определенные моменты времени и в определенном направлении, иначе результатом действия может быть не раскачивание, а полная остановка качелей. Чтобы этого не произошло, нужно, чтобы частота внешнего воздействия совпадала с частотой колебаний самих качелей, в этом случае размах качания будет увеличиваться. Это явление называется резонансом. Давайте попробуем разобраться, что такое резонанс, где он встречается в нашей жизни и что об этом явлении нужно знать.

С точки зрения физики «резонанс» – это резкое увеличение амплитуды вынужденных колебаний при совпадении собственной частоты колебательной системы с частотой внешней вынуждающей силы. Это только внешнее проявление резонанса. Внутренняя причина заключается в том, что увеличение амплитуды колебаний свидетельствует об увеличении энергии колебательной системы. Это может происходить только в том случае, если физической системе сообщается энергия извне согласно закону сохранения и изменения энергии. Следовательно, внешняя сила должна совершать положительную работу, увеличивая энергию системы. Это возможно только, когда внешняя сила является периодически изменяющейся с частотой, равной собственной частоте колебательной системы. Самый простой вариант – вариант с качелями, который мы уже описали, и который возникает во всех маятниковых системах и устройствах. Но это далеко не единственный случай применения человеком эффекта резонанса.

Резонанс, как и любое другое физическое явление, имеет как положительные, так и отрицательные последствия. Среди положительных можно выделить использование резонанса в музыкальных инструментах. Особенная форма скрипки, виолончели, контрабаса, гитары способствует резонансу стоячих звуковых волн внутри корпуса инструмента, составляющих гармонику, и музыкальный инструмент дарит любителям музыки необыкновенное звучание. Известнейшие мастера музыкальных инструментов, такие как Николо Амати, Антонио Страдивари и Андреа Гварнери, совершенствовали форму, подбирали редкие породы древесины и изготавливали специальный лак, чтобы усилить резонирующий эффект, сохранив при этом мягкость и нежность тембра. Именно поэтому каждый такой инструмент имеет свой особенный, неповторимый звук.

Помимо этого, известен способ резонансного разрушения при дроблении и измельчении горных пород и материалов. Это происходит так. При движении дробимого материала с ускорением силы инерции будут вызывать напряжения и деформации, периодически меняющие свой знак, – так называемые вынужденные колебания. Совпадение соответствующих частот вызовет резонанс, а силы трения и сопротивления воздуха будет сдерживать рост амплитуды колебаний, однако все равно она может достичь величины, значительно превышающей деформации при ускорениях, не меняющих знак. Резонанс сделает дробление и измельчение горных пород и материалов существенно эффективнее. Такую же роль резонанс играет при сверлении отверстий в бетонных стенах при помощи электрической дрели с перфоратором.

Явление резонанса мы также используем в различных устройствах, использующих радиоволны, таких как телевизоры, радиоприемники, мобильные телефоны и так далее. Радио- или телесигнал, транслируемый передающей станцией, имеет очень маленькую амплитуду. Поэтому, чтобы увидеть изображение или услышать звук, необходимо их усилить и, вместе с тем, понизить уровень шума. Это и достигается при помощи явления резонанса. Для этого нужно настроить собственную частоту приемника, в основе представляющего собой электромагнитный колебательный контур, на частоту передающей станции. При совпадении частот наступит резонанс, и амплитуда радио- или телесигнала существенно вырастет, а сопутствующие ему шумы останутся практически без изменений. Это обеспечит достаточно качественную трансляцию.

Один из видов магнитного резонанса, электронный парамагнитный резонанс, открытый в 1944 году русским физиком Е.К. Завойским, применяется при исследовании кристаллической структуры элементов, химии живых клеток, химических связей в веществах и т. д. Электроны в веществах ведут себя как микроскопические магниты. В разных веществах они переориентируются по-разному, если поместить вещество в постоянное внешнее магнитное поле и воздействовать на него радиочастотным полем. Возврат электронов к исходной ориентации сопровождается радиочастотным сигналом, который несет информацию о свойствах электронов и их окружении. Этот метод представляет собой один из видов спектроскопии.

Несмотря на все преимущества, которые можно получить при помощи резонанса, не следует забывать и об опасности, которую он способен принести. Землетрясения или сейсмические волны, а также работа сильно вибрирующих технических устройств могут вызвать разрушения части зданий или даже зданий целиком. Кроме того, землетрясения могут привести к образованию огромных резонансных волн – цунами с очень большой разрушительной силой.

Также резонанс может стать причиной разрушения мостов. Существует версия, что один из деревянных мостов Санкт-Петербурга (сейчас он каменный) действительно был разрушен воинским соединением. Как сообщали газеты того времени, подразделение двигалось на лошадях, которых пришлось впоследствии извлекать из воды. Естественно, что лошади гвардейцев двигались строем, а не как попало. Еще один мост – Такомский – висячий мост через пролив Такома-Нэрроуз в США был разрушен 7 ноября 1940 года. Причиной обрушения центрального пролета стал ветер со скоростью около 65 км/ч.


В наше время резонансные колебания, вызванные ветром, чуть не стали причиной обрушения волгоградского моста, теперь неофициально называемого «Танцующим мостом». 20 мая 2010 года ветер и волны раскачали его до такой степени, что его пришлось закрыть. При этом был слышен оглушающий скрежет многотонных металлических конструкций. Дорожное покрытие моста через Волгу в течение часа было похоже на развивающееся на ветру полотнище. Бетонные волны, по словам очевидцев, были высотой около метра. Когда мост "затанцевал", по нему ехало несколько десятков автомашин. К счастью, мост устоял, и никто не пострадал.

Таким образом, резонанс – это очень эффективный инструмент для решения многих практических задач, но и одновременно может быть причиной серьёзных разрушений, вреда здоровью и других негативных последствий.

Матвеева Е.В., учитель физики

ГБОУ Школа № 2095 «Покровский квартал»

Отличительной особенностью вынужденных колебаний является зависимость их амплитуды А от частоты ν изменения внешней силы. Для изучения этой зависимости можно воспользоваться уже знакомой нам установкой, изображенной на рисунке 36. Если вращать ручку кривошипа очень медленно, то груз вместе с пружиной будет перемещаться вверх и вниз так же, как и точка подвеса О. Амплитуда вынужденных колебаний при этом будет невелика. При более быстром вращении груз начнет колебаться сильнее, и при частоте вращения, равной собственной частоте пружинного маятника (ν= ν соб), амплитуда его колебаний достигнет максимума. При дальнейшем увеличении частоты вращения ручки амплитуда вынужденных колебаний груза опять станет меньше. А очень быстрое вращение ручки оставит груз почти неподвижным: из-за своей инертности пружинный маятник, не успевая следовать изменениям внешней силы, будет просто «дрожать на месте».

Резкое возрастание амплитуды вынужденных колебаний при ν = ν coб называется резонансом .

График зависимости амплитуды вынужденных колебаний от частоты изменения внешней силы изображен на рисунке 38. Этот график называют резонансной кривой . Максимум этой кривой приходится на частоту ν, равную собственной частоте колебаний ν соб.

Явление резонанса можно продемонстрировать и с нитяными маятниками. Подвесим на рейке массивный шар 1 и несколько легких маятников, имеющих нити разной длины (рис. 39). Каждый из этих маятников имеет свою собственную частоту колебаний, которую можно определить, зная длину нити и ускорение свободного падения.

Теперь, не трогая легких маятников, выведем шар 1 из положения равновесия и отпустим. Качания массивного шара вызовут периодические изгибания рейки, вследствие которых на каждый из легких маятников начнет действовать периодически изменяющаяся сила упругости. Частота ее изменений будет равна частоте колебаний шара. Под действием этой силы маятники начнут совершать вынужденные колебания. При этом мы увидим, что маятники 2 и 3 останутся почти неподвижными. Маятники 4 и 5 будут колебаться с немного большей амплитудой. А у маятника 6, имеющего такую же длину нити и, следовательно, собственную частоту колебаний, как у шара 1, амплитуда окажется максимальной. Это и есть резонанс.


Резонанс можно наблюдать и с помощью установки, изображенной на рисунке 40. Основание маятника метронома 1 соединяют нитью 3 с нитью маятника 2. Маятник в этом опыте качается с наибольшей амплитудой тогда, когда частота колебаний метронома («дергающего» за нить маятника) совпадает с частотой свободных колебаний этого маятника.

Резонанс возникает из-за того, что внешняя сила, действуя в такт со свободными колебаниями тела, все время совершает положительную работу. За счет этой работы энергия колеблющегося тела увеличивается и амплитуда колебаний возрастает.

Явление резонанса может играть как полезную, так и вредную роль.

Известно, например, что тяжелый язык большого колокола может раскачать даже ребенок, но лишь тогда, когда будет действовать на веревку в такт со свободными колебаниями языка.

На применении резонанса основано действие язычкового частотомера . Этот прибор представляет собой набор укрепленных на общем основании упругих пластин различной длины. Собственная частота каждой пластины известна. При контакте частотомера с колебательной системой, частоту которой нужно определить, с наибольшей амплитудой начинает колебаться та пластина, частота которой совпадает с измеряемой частотой. Заметив, какая пластина вошла в резонанс, мы определим частоту колебаний системы.

С резонансом можно встретиться и тогда, когда это совершенно нежелательно. Так, например, в 1750 г. близ города Анжера во Франции через цепной мост длиной 102 м шел в ногу отряд солдат. Частота их шагов совпала с частотой свободных колебаний моста. Из-за этого размахи колебаний моста резко увеличились (наступил резонанс), и цепи оборвались. Мост обрушился в реку.

В 1830 г. по той же причине обрушился подвесной мост около Манчестера в Англии, когда по нему маршировал военный отряд.

В 1906 г. из-за резонанса разрушился и так называемый Египетский мост в Петербурге, по которому проходил кавалерийский эскадрон.

Теперь для предотвращения подобных случаев войсковым частям при переходе через мост приказывают «сбить ногу» и идти не строевым, а вольным шагом.

Если же через мост переезжает поезд, то, чтобы избежать резонанса, он проходит его либо на медленном ходу, либо, наоборот, на максимальной скорости (чтобы частота ударов колес о стыки рельсов не оказалась равной собственной частоте моста).

Собственной частотой обладает и сам вагон (колеблющийся на своих рессорах). Когда частота ударов его колес на стыках рельсов оказывается ей равной, вагон начинает сильно раскачиваться.

С резонансом можно встретиться не только на суше, но и в море и даже в воздухе. Так, например, при некоторых частотах вращения гребного вала в резонанс входили целые корабли. А на заре развития авиации некоторые авиационные двигатели вызывали столь сильные резонансные колебания частей самолета, что он разваливался в воздухе.

1. Что такое резонанс? При каком условии он возникает? 2. Опишите опыты, в которых можно наблюдать явление резонанса. 3. Какую роль - полезную или вредную - играет резонанс в жизни людей? Приведите примеры.

Определение понятия резонанса (отклика) в физике возлагается на специальных техников, которые обладают графиками статистики, часто сталкивающихся с этим явлением. На сегодняшний день резонанс представляет собой частотно-избирательный отклик, где вибрационная система или резкое возрастание внешней силы вынуждает другую систему осциллировать с большей амплитудой на определенных частотах.

Принцип действия

Это явление наблюдается , когда система способна хранить и легко переносить энергию между двумя или более разными режимами хранения, такими как кинетическая и потенциальная энергия. Однако есть некоторые потери от цикла к циклу, называемые затуханием. Когда затухание незначительно, резонансная частота приблизительно равна собственной частоте системы, которая представляет собой частоту невынужденных колебаний.

Эти явления происходят со всеми типами колебаний или волн: механические, акустические, электромагнитные, ядерные магнитные (ЯМР), электронные спиновые (ЭПР) и резонанс квантовых волновых функций. Такие системы могут использоваться для генерации вибраций определенной частоты (например, музыкальных инструментов).

Термин «резонанс» (от латинской resonantia, «эхо») происходит от поля акустики, особенно наблюдаемого в музыкальных инструментах, например, когда струны начинают вибрировать и воспроизводить звук без прямого воздействия игроком.

Толчок человека на качелях является распространенным примером этого явления. Загруженные качели, маятник имеют собственную частоту колебаний и резонансную частоту, которая сопротивляется толканию быстрее или медленнее.

Примером является колебание снарядов на детской площадке, которое действует как маятник. Нажатие человека во время качания с естественным интервалом колебания приводит к тому, что качели идут все выше и выше (максимальная амплитуда), в то время как попытки делать качание с более быстрым или медленным темпом создают меньшие дуги. Это связано с тем, что энергия, поглощаемая колебаниями, увеличивается, когда толчки соответствуют естественным колебаниям.

Отклик широко встречается в природе и используется во многих искусственных устройствах. Это механизм, посредством которого генерируются практически все синусоидальные волны и вибрации. Многие звуки, которые мы слышим, например, когда ударяются жесткие предметы из металла, стекла или дерева, вызваны короткими колебаниями в объекте. Легкое и другое коротковолновое электромагнитное излучение создается резонансом в атомном масштабе, таким как электроны в атомах. Другие условия, в которых могут применяться полезные свойства этого явления:

  • Механизмы хронометража современных часов, колесо баланса в механических часах и кварцевый кристалл в часах.
  • Приливной отклик залива Фанди.
  • Акустические резонансы музыкальных инструментов и человеческого голосового тракта.
  • Разрушение хрустального бокала под воздействием музыкального правого тона.
  • Фрикционные идиофоны, такие как изготовление стеклянного предмета (стекла, бутылки, вазы), вибрируют, при потирании вокруг его края кончиком пальца.
  • Электрический отклик настроенных схем в радиостанциях и телевизорах, которые позволяют избирательно принимать радиочастоты.
  • Создание когерентного света оптическим резонансом в лазерной полости.
  • Орбитальный отклик, примером которого являются некоторые луны газовых гигантов Солнечной системы.

Материальные резонансы в атомном масштабе являются основой нескольких спектроскопических методов, которые используются в физике конденсированных сред, например:

  • Электронный спиновой.
  • Эффект Мёссбауэра.
  • Ядерный магнитный.

Типы явления

В описании резонанса Г. Галилей как раз обратил внимание на самое существенное - на способность механической колебательной системы (тяжелого маятника) накапливать энергию, которая подводится от внешнего источника с определенной частотой. Проявления резонанса имеют определенные особенности в различных системах и поэтому выделяют разные его типы.

Механический и акустический

Это тенденция механической системы поглощать больше энергии, когда частота ее колебаний соответствует собственной частоте вибрации системы. Это может привести к сильным колебаниям движения и даже катастрофическому провалу в недостроенных конструкциях, включая мосты, здания, поезда и самолеты. При проектировании объектов инженеры должны обеспечить безопасность, чтобы механические резонансные частоты составных частей не соответствовали колебательным частотам двигателей или других осциллирующих частей во избежание явлений, известных как резонансное бедствие.

Электрический резонанс

Возникает в электрической цепи на определенной резонансной частоте, когда импеданс схемы минимален в последовательной цепи или максимум в параллельном контуре. Резонанс в схемах используется для передачи и приема беспроводной связи, такой как телевидение, сотовая или радиосвязь.

Оптический резонанс

Оптическая полость, также называемая оптическим резонатором, представляет собой особое расположение зеркал, которое образует резонатор стоячей волны для световых волн . Оптические полости являются основным компонентом лазеров, окружающих среду усиления и обеспечивающих обратную связь лазерного излучения. Они также используются в оптических параметрических генераторах и некоторых интерферометрах.

Свет, ограниченный в полости, многократно воспроизводит стоячие волны для определенных резонансных частот. Полученные паттерны стоячей волны называются «режимами». Продольные моды отличаются только частотой, в то время как поперечные различаются для разных частот и имеют разные рисунки интенсивности поперек сечения пучка. Кольцевые резонаторы и шепчущие галереи являются примерами оптических резонаторов, которые не образуют стоячих волн.

Орбитальные колебания

В космической механике возникает орбитальный отклик , когда два орбитальных тела оказывают регулярное, периодическое гравитационное влияние друг на друга. Обычно это происходит из-за того, что их орбитальные периоды связаны отношением двух небольших целых чисел. Орбитальные резонансы значительно усиливают взаимное гравитационное влияние тел. В большинстве случаев это приводит к нестабильному взаимодействию, в котором тела обмениваются импульсом и смещением, пока резонанс больше не существует.

При некоторых обстоятельствах резонансная система может быть устойчивой и самокорректирующей, чтобы тела оставались в резонансе. Примерами является резонанс 1: 2: 4 лун Юпитера Ганимед, Европа и Ио и резонанс 2: 3 между Плутоном и Нептуном. Неустойчивые резонансы с внутренними лунами Сатурна порождают щели в кольцах Сатурна. Частный случай резонанса 1: 1 (между телами с аналогичными орбитальными радиусами) заставляет крупные тела Солнечной системы очищать окрестности вокруг своих орбит, выталкивая почти все остальное вокруг них.

Атомный, частичный и молекулярный

Ядерный магнитный резонанс (ЯМР) - это имя, определяемое физическим резонансным явлением, связанным с наблюдением конкретных квантовомеханических магнитных свойств атомного ядра, если присутствует внешнее магнитное поле. Многие научные методы используют ЯМР-феномены для изучения молекулярной физики, кристаллов и некристаллических материалов. ЯМР также обычно используется в современных медицинских методах визуализации, таких как магнитно-резонансная томография (МРТ).

Польза и вред резонанса

Для того чтобы сделать некий вывод о плюсах и минусах резонанса, необходимо рассмотреть, в каких случаях он может проявляться наиболее активно и заметно для человеческой деятельности.

Положительный эффект

Явление отклика широко используется в науке и технике . Например, работа многих радиотехнических схем и устройств основывается на этом явлении.

Отрицательное воздействие

Однако не всегда явление полезно . Часто можно встретить ссылки на случаи, когда навесные мосты ломались при прохождении по ним солдат «в ногу». При этом ссылаются на проявление резонансного эффекта воздействия резонанса, и борьба с ним приобретает масштабный характер.

Борьба с резонансом

Но несмотря на иногда губительные последствия эффекта отклика с ним вполне можно и нужно бороться. Чтобы избежать нежелательного возникновения этого явления, обычно используют два способа одновременного применения резонанса и борьбы с ним:

  1. Производится «разобщение» частот, которые в случае совпадения приведут к нежелательным последствиям. Для этого повышают трение различных механизмов или меняют собственную частоту колебаний системы.
  2. Увеличивают затухание колебаний, например, ставят двигатель на резиновую подкладку или пружины.