Биографии Характеристики Анализ

Общие теоремы механической системы. Теоретическая механика

Рассмотрим движение некоторой системы материальных томен относительно неподвижной системы координат Когда система несвободна, то ее можно рассматривать как свободную, если отбросить наложенные на систему связи и заменить их действие соответствующими реакциями.

Разобьем все силы, приложенные к системе, на внешние и внутренние; в те и другие могут входить реакции отброшенных

связей. Через и обозначим главный вектор и главный момент внешних сил относительно точки А.

1. Теорема об изменении количества движения. Если - количество движения системы, то (см. )

т. е. справедлива теорема: производная по времени от количества движения системы равняется главному вектору всех внешних сил.

Заменяя вектор через его выражение где - масса-системы, - скорость центра масс, уравнению (4.1) можно придать другую форму:

Это равенство означает, что центр масс системы движется, как материальная точкащ масса которой равна массе системы и к которой приложена сила, геометрически равная главному вектору всех внешних сил системы. Последнее утверждение называют теоремой о движении центра масс (центра инерции) системы.

Если то из (4.1) следует, что вектор количества движения постоянен по величине и направлению. Проектируя его на оси координат, получим три скалярных первых интеграла, дифференциальных уравнений двнзкепня системы:

Эти интегралы носят назвапие интегралов количества движения. При скорость центра масс постоянна, т. е. он движется равномерно и прямолинейно.

Если проекция главного вектора внешних сил на какую-либо одну ось, например на ось равна нулю, то имеем один первый интеграл или если же равны нулю» две проекции главного вектора, то существует два интеграла количества движения.

2. Теорема об изменении кинетического момента. Пусть А - некоторая произвольная точка пространства (движущаяся или неподвижная), которая не обязательно совпадает с какой-либо определенной материальной точкой системы во все время движения. Ее скорость в неподвижной спстеме координат обозначим через Теорема об изменении кинетического момента материальной системы относительно точки А имеет вид

Если точка А неподвижна, то и равенство (4.3) принимает более простой вид:

Это равенство выражает теорему об пзмепении кинетического момента системы относительно неподвижной точки: производная по времени от кинетического момента системы, вычисленного относительно некоторой неподвижной точки, равняется главному моменту всех внешних сил относительно этой точки.

Если то согласно (4.4) вектор кинетического момента постоянен по величине и направлению. Проектируя его на оси координат, получим скалярных первых интеграла дифференциальных уравнений двпжеиия системы:

Эти интегралы посят название интегралов кинетического момента или интегралов площадей.

Если точка А совпадает с центром масс системы, то Тогда первое слагаемое в правой части равенства (4.3) обращается в нуль и теорема об изменении кинетического момента имеет ту же форму записи (4.4), что и в случае неподвижной точки А. Отметим (см. п. 4 § 3), что в рассматриваемом случае абсолютный кинетический момент системы в левой части равенства (4.4) может быть заменен равный ему кинетический момент системы в ее движении относительно центра масс.

Пусть - некоторая неизменная ось пли ось неизменного направления, проходящая через центр масс системы, а - кинетический момент системы относительно этой оси. Из (4.4) следует, что

где - момент внешних сил относительно оси . Если во все время движения то имеем первый интеграл

В работах С. А. Чаплыгина получено несколько обобщений теоремы об изменении кинетического момента, которые применены затем при решении ряда задач о качении шаров. Дальнейшие обобщения теоремы об изменении кпнетпческога момента и их приложения в задачах дннамики твердого тела содержатся в работах . Основные результаты этих работ связаны с теоремой об изменении кинетического момента относительно подвижной , постоянно проходящей через некоторую движущуюся точку А. Пусть - единичный вектор, направленный вдоль этой оси. Умножив скалярно на обе части равенства (4.3) и добавив к его обепм частям слагаемое получим

При выполнении кинематического условия

из (4.7) следует уравнение (4.5). И если во все время движения и выполняется условие (4.8), то существует первый интеграл (4.6).

Если связи системы идеальны и допускают в числе виртуальных перемещений вращения системы как твердого тела вокруг оси и, то главный момент реакций относительно оси и равен нулю , и тогда величина в правой части уравнения (4.5) представляет собой главный момент всех внешних активных сил относительно оси и. Равенство нулю этого момента и выполнимость соотношения (4.8) будут в рассматриваемом случае достаточными условиями для существования интеграла (4.6).

Если направление оси и неизменно то условие (4.8) запишется в виде

Это равенство означает, что проекции скорости центра масс и скорости точки А оси и на плоскость, перпендикулярную этой являются параллельными. В работе С. А. Чаплыгина вместо (4.9) требуется выполнение менее общего условия где X - произвольная постоянная величина.

Заметим, что условие (4.8) не зависит от выбора точки на . Действительно , пусть Р - произвольная точка на оси . Тогда

и, следовательно,

В заключение отметим геометрическую интерпретацию Резаля уравнений (4.1) и (4.4): векторы абсолютных скоростей концов векторов и равны соогвегственно главному вектору и главному моменту всех внешних сил относительно точки А.

Использование ОЗМС при решении задач связано с определенными трудностями. Поэтому обычно устанавливают дополнительные соотношения между характеристиками движения и сил, которые более удобны для практического применения. Такими соотношениями являются общие теоремы динамики. Они, являясь следствиями ОЗМС, устанавливают зависимости между быстротой изменения некоторых специально введенных мер движения и характеристиками внешних сил.

Теорема об изменении количества движения. Введем понятие вектора количества движения (Р. Декарт) материальной точки (рис. 3.4):

Я і = т V г (3.9)

Рис. 3.4.

Для системы вводим понятие главного вектора количества движения системы как геометрической суммы:

Q = Y, m " V r

В соответствии с ОЗМС: Хю,-^=я) , или X

R (E) .

С учетом, того /w, = const получим: -Ym,!" = R (E) ,

или в окончательном виде

дО/ді = А (Е (3.11)

т.е. первая производная по времени главного вектора количества движения системы равна главному вектору внешних сил.

Теорема о движении центра масс. Центром масс системы называют геометрическую точку, положение которой зависит от т, и т.е. от распределения масс /г/, в системе и определяется выражением радиуса-вектора центра масс (рис. 3.5):

где г с - радиус-вектор центра масс.

Рис. 3.5.

Назовем = т с массой системы. После умножения выраже-

ния (3.12) на знаменатель и дифференцирования обеих частей полу-

ценного равенства будем иметь: г с т с = ^т.У. = 0, или 0 = т с У с.

Таким образом, главный вектор количества движения системы равен произведению массы системы и скорости центра масс. Используя теорему об изменении количества движения (3.11), получим:

т с дУ с /ді = А (Е) , или

Формула (3.13) выражает теорему о движении центра масс: центр масс системы движется как материальная точка, обладающая массой системы, на которую действует главный вектор внешних сил.

Теорема об изменении момента количества движения. Введем понятие момента количества движения материальной точки как векторное произведение ее радиуса-вектора и количества движения:

к о, = бл х т, У , (3.14)

где к ОІ - момент количества движения материальной точки относительно неподвижной точки О (рис. 3.6).

Теперь определим момент количества движения механической системы как геометрическую сумму:

К() = X ко, = ЩУ, ? О-15>

Продифференцировав (3.15), получим:

Ґ сік --- х т і У. + г ю х т і

Учитывая, что = У Г У і х т і У і = 0, и формулу (3.2), получим:

сіК а /с1ї - ї 0 .

На основании второго выражения в (3.6) окончательно будем иметь теорему об изменении момента количества движения системы:

Первая производная по времени от момента количества движения механической системы относительно неподвижного центра О равна главному моменту внешних сил, действующих на эту систему, относительно того же центра.

При выводе соотношения (3.16) предполагалось, что О - неподвижная точка. Однако можно показать, что и в ряде других случаев вид соотношения (3.16) не изменится, в частности, если при плоском движении моментную точку выбрать в центре масс, мгновенном центре скоростей или ускорений. Кроме этого, если точка О совпадает с движущейся материальной точкой, равенство (3.16), записанное для этой точки обратится в тождество 0 = 0.

Теорема об изменении кинетической энергии. При движении механической системы изменяется как «внешняя», так и внутренняя энергия системы. Если характеристики внутренних сил, главный вектор и главный момент, не сказываются на изменении главного вектора и главного момента количества ускорений, то внутренние силы могут входить в оценки процессов энергетического состояния системы. Поэтому при рассмотрении изменений энергии системы приходится рассматривать движения отдельных точек, к которым приложены также и внутренние силы.

Кинетическую энергию материальной точки определяют как величину

Т^туЦг. (3.17)

Кинетическая энергия механической системы равна сумме кинетических энергий материальных точек системы:

Заметим, что Т > 0.

Определим мощность силы, как скалярное произведение вектора силы на вектор скорости:

МИНИСТЕРСТВО СЕЛЬСКОГО ХОЗЯЙСТВА И ПРОДОВОЛЬСТВИЯ РЕСПУБЛИКИ БЕЛАРУСЬ

Учреждение образования «БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ АГРАРНЫЙ

ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Кафедра теоретической механики и теории механизмов и машин

ТЕОРЕТИЧЕСКАЯ МЕХАНИКА

методического комплекса для студентов группы специальностей

74 06 Агроинженери я

В 2-х частях Часть 1

УДК 531.3(07) ББК 22.213я7 Т 33

Составители:

кандидат физико-математических наук, доцентЮ. С. Биза , кандидат технических наук, доцентН. Л. Ракова , старший преподавательИ. А. Тарасевич

Рецензенты:

кафедра теоретической механики Учреждения образования «Белорусский национальный технический университет» (заведующий

кафедрой теоретической механики БНТУ доктор физико-математических наук, профессорА. В. Чигарев );

ведущий научный сотрудник лаборатории «Виброзащита механических систем» ГНУ «Объединенный институт машиностроения

НАН Беларуси», кандидат технических наук, доцент А. М. Гоман

Теоретическая механика. Раздел «Динамика» : учебно-

Т33 метод. комплекс. В 2-х ч. Ч. 1 / сост.: Ю. С. Биза, Н. Л. Ракова, И. А. Тарасевич. – Минск: БГАТУ, 2013. – 120 с.

ISBN 978-985-519-616-8.

В учебно-методическом комплексе представлены материалы по изучению раздела «Динамика», часть 1, входящего в состав дисциплины «Теоретическая механика». Включает курс лекций, основные материалы по выполнению практических занятий, задания и образцы выполнения заданий для самостоятельной работы и контроля учебной деятельности студентов очной и заочной форм обучения.

УДК 531.3(07) ББК 22.213я7

ВВЕДЕНИЕ..........................................................................................

1. НАУЧНО-ТЕОРЕТИЧЕСКОЕ СОДЕРЖАНИЕ УЧЕБНО-

МЕТОДИЧЕСКОГО КОМПЛЕКСА..................................................

1.1. Глоссарий.................................................................................

1.2. Темы лекций и их содержание...............................................

Глава 1. Введение в динамику. Основные понятия

классической механики....................................................................

Тема 1. Динамика материальной точки...........................................

1.1. Законы динамики материальной точки

(законы Галилея – Ньютона) ......................................................

1.2. Дифференциальные уравнения движения

1.3. Две основные задачи динамики..........................................

Тема 2. Динамика относительного движения

материальной точки..........................................................................

Вопросы для повторения............................................................

Тема 3. Динамика механической системы.....................................

3.1. Геометрия масс. Центр масс механической системы......

3.2. Внутренние силы..................................................................

Вопросы для повторения............................................................

Тема 4. Моменты инерции твердого тела.......................................

4.1. Моменты инерции твердого тела

относительно оси и полюса...................................................

4.2. Теорема о моментах инерции твердого тела

относительно параллельных осей

(теорема Гюйгенса – Штейнера) ................................................

4.3. Центробежные моменты инерции.......................................

Вопросы для повторения...........................................................

Глава 2. Общие теоремы динамики материальной точки

Тема 5. Теорема о движении центра масс системы.......................

Вопросы для повторения............................................................

Задачи для самостоятельного изучения....................................

Тема 6. Количество движения материальной точки

и механической системы..................................................................

6.1. Количество движения материальной точки 43

6.2. Импульс силы.......................................................................

6.3. Теорема об изменении количества движения

материальной точки....................................................................

6.4. Теорема об изменении главного вектора

количества движения механической системы..........................

Вопросы для повторения............................................................

Задачи для самостоятельного изучения....................................

Тема 7. Момент количества движения материальной точки

и механической системы относительно центра и оси..................

7.1. Момент количества движения материальной точки

относительно центра и оси.........................................................

7.2. Теорема об изменении момента количества движения

материальной точки относительно центра и оси......................

7.3. Теорема об изменении кинетического момента

механической системы относительно центра и оси.................

Вопросы для повторения............................................................

Задачи для самостоятельного изучения....................................

Тема 8. Работа и мощность сил.......................................................

Вопросы для повторения............................................................

Задачи для самостоятельного изучения....................................

Тема 9. Кинетическая энергия материальной точки

и механической системы..................................................................

9.1. Кинетическая энергия материальной точки

и механической системы. Теорема Кенига...............................

9.2. Кинетическая энергия твердого тела

при различном движении............................................................

9.3. Теорема об изменении кинетической энергии

материальной точки....................................................................

9.4. Теорема об изменении кинетической энергии

механической системы................................................................

Вопросы для повторения............................................................

Задачи для самостоятельного изучения....................................

Тема 10. Потенциальное силовое поле

и потенциальная энергия.................................................................

Вопросы для повторения............................................................

Тема 11. Динамика твердого тела...................................................

Вопросы для повторения............................................................

2. МАТЕРИАЛЫ ДЛЯ ПРОВЕДЕНИЯ КОНТРОЛЯ

ПО МОДУЛЮ...................................................................................

САМОСТОЯТЕЛЬНОЙ РАБОТЫ СТУДЕНТОВ.........................

4. ТРЕБОВАНИЯ К ОФОРМЛЕНИЮ КОНТРОЛЬНЫХ

РАБОТ ДЛЯ CТУДЕНТОВ ОЧНОЙ И ЗАОЧНОЙ

ФОРМ ОБУЧЕНИЯ........................................................................

5. ПЕРЕЧЕНЬ ВОПРОСОВ ДЛЯ ПОДГОТОВКИ

К ЭКЗАМЕНУ (ЗАЧЕТУ) СТУДЕНТОВ

ОЧНОЙ И ЗАОЧНОЙ ФОРМ ОБУЧЕНИЯ.................................

6. СПИСОК ЛИТЕРАТУРЫ..........................................................

ВВЕДЕНИЕ

Теоретическая механика – наука об общих законах механического движения, равновесия и взаимодействия материальных тел.

Это одна из фундаментальных общенаучных физико-математи- ческих дисциплин. Она является теоретической основой современной техники.

Изучение теоретической механики, наряду с другими физикоматематическими дисциплинами, способствует расширению научного кругозора, формирует способности к конкретному и абстрактному мышлению и способствует повышению общей технической культуры будущего специалиста.

Теоретическая механика, являясь научной базой всех технических дисциплин, способствует развитию навыков рациональных решений инженерных задач, связанных с эксплуатацией, ремонтом и конструированием сельскохозяйственных и мелиоративных машин и оборудования.

По характеру рассматриваемых задач механику разделяют на статику, кинематику и динамику. Динамика – раздел теоретической механики, в котором изучается движение материальных тел под действием приложенных сил.

В учебно-методическом комплексе (УМК) представлены материалы по изучению раздела «Динамика», который включает курс лекций, основные материалы для проведения практических работ, задания и образцы выполнения для самостоятельных работ и контроля учебной деятельности студентов очнойи заочной форм обучения.

В результате изучения раздела «Динамика» студент должен усвоить теоретические основы динамики и овладеть основными методами решения задач динамики:

Знать методы решения задач динамики, общие теоремы динамики, принципы механики;

Уметь определять законы движения тела в зависимости от действующих на него сил; применять законы и теоремы механики для решения задач; определять статические и динамические реакции связей, ограничивающих движение тел.

Учебной программой дисциплины «Теоретическая механика» предусмотрено общее количество аудиторных часов – 136, в т. ч. на изучение раздела «Динамика» – 36 часов.

1. НАУЧНО-ТЕОРЕТИЧЕСКОЕ СОДЕРЖАНИЕ УЧЕБНО-МЕТОДИЧЕСКОГО КОМПЛЕКСА

1.1. Глоссарий

Статика – раздел механики, в котором излагается общее учение о силах, изучается приведение сложных систем сил к простейшему виду и устанавливаются условия равновесия различных систем сил.

Кинематика – это раздел теоретической механики, в котором изучают движение материальных объектов вне зависимости от причин, вызывающих это движение, т. е. вне зависимости от сил, действующих на эти объекты.

Динамика – раздел теоретической механики, в котором изучается движение материальных тел (точек) под действием приложенных сил.

Материальная точка – материальное тело, различие в движении точек которого является несущественным.

Масса тела – это скалярная положительная величина, зависящая от количества вещества, содержащегося в данном теле, и определяющая его меру инертности при поступательном движении.

Система отсчета – система координат, связанная с телом, по отношению к которому изучается движение другого тела.

Инерциальная система – система, в которой выполняются первый и второй законы динамики.

Импульс силы – векторная мера действия силы в течение некоторого времени.

Количество движения материальной точки – векторная мера ее движения, равная произведению массы точки на вектор ее скорости.

Кинетическаяэнергия – скалярная мерамеханического движения.

Элементарная работа силы – это бесконечно малая скалярная величина, равная скалярному произведению вектора силы на вектор бесконечного малого перемещения точки приложения силы.

Кинетическая энергия – скалярная мера механического движения.

Кинетическая энергия материальной точки – скалярная по-

ложительная величина, равная половине произведения массы точки на квадрат ее скорости.

Кинетическая энергия механической системы – арифме-

тическая сумма кинетических энергий всех материальных точек этой системы.

Сила – мера механического взаимодействия тел, характеризующая его интенсивность и направленность.

1.2. Темы лекций и их содержание

Раздел 1. Введение в динамику. Основные понятия

классической механики

Тема 1. Динамика материальной точки

Законы динамики материальной точки (законы Галилея – Ньютона). Дифференциальные уравнения движения материальной точки. Две основные задачи динамики для материальной точки. Решение второй задачи динамики; постоянные интегрирования и их определение по начальным условиям.

Литература:, стр. 180-196, , стр. 12-26.

Тема 2. Динамика относительного движения материальной

Относительное движение материальной точки. Дифференциальные уравнения относительного движения точки; переносная и кориолисова силы инерции. Принцип относительности в классической механике. Случай относительного покоя.

Литература: , стр. 180-196, , стр. 127-155.

Тема 3. Геометрия масс. Центр масс механической системы

Масса системы. Центр масс системы и его координаты.

Литература: , стр. 86-93, стр. 264-265

Тема 4. Моменты инерции твердого тела

Моменты инерции твердого тела относительно оси и полюса. Радиус инерции. Теорема о моментах инерции относительно параллельных осей. Осевые моменты инерции некоторых тел.

Центробежные моменты инерции как характеристика асимметрии тела.

Литература: , стр. 265-271, , стр. 155-173.

Раздел 2. Общие теоремы динамики материальной точки

и механической системы

Тема 5. Теорема о движении центра масс системы

Теорема о движении центра масс системы. Следствия из теоремы о движении центра масс системы.

Литература: , стр. 274-277, , стр. 175-192.

Тема 6. Количество движения материальной точки

и механической системы

Количество движения материальной точки и механической системы. Элементарный импульс и импульс силы за конечный промежуток времени. Теорема об изменении количества движения точки и системы в дифференциальной и интегральной формах. Закон сохранения количества движения.

Литература: , стр.280-284, , стр. 192-207.

Тема 7. Момент количества движения материальной точки

и механической системы относительно центра и оси

Момент количества движения точки относительно центра и оси. Теорема об изменении момента количества движения точки. Кинетический момент механической системы относительно центра и оси.

Кинетический момент вращающегося твердого тела относительно оси вращения. Теорема об изменении кинетического момента системы. Закон сохранения кинетического момента.

Литература: , стр. 292-298, , стр. 207-258.

Тема 8. Работа и мощность сил

Элементарная работа силы, ее аналитическое выражение. Работа силы на конечном пути. Работа силы тяжести, силы упругости. Равенство нулю суммы работ внутренних сил, действующих в твердом теле. Работа сил, приложенных к твердому телу, вращающемуся вокруг неподвижной оси. Мощность. Коэффициент полезного действия.

Литература: , стр. 208-213, , стр. 280-290.

Тема 9. Кинетическая энергия материальной точки

и механической системы

Кинетическая энергия материальной точки и механической системы. Вычисление кинетической энергии твердого тела в различных случаях его движения. Теорема Кенига. Теорема об изменении кинетической энергии точки в дифференциальной и интегральной формах. Теорема об изменении кинетической энергии механической системы в дифференциальной и интегральной формах.

Литература: , стр. 301-310, , стр. 290-344.

Тема 10. Потенциальное силовое поле и потенциальная

Понятие о силовом поле. Потенциальное силовое поле и силовая функция. Работа силы на конечном перемещении точки в потенциальном силовом поле. Потенциальная энергия.

Литература: , стр. 317-320, , стр. 344-347.

Тема 11. Динамика твердого тела

Дифференциальные уравнения поступательного движения твердого тела. Дифференциальное уравнение вращательного движения твердого тела вокруг неподвижной оси. Физический маятник. Дифференциальные уравнения плоского движения твердого тела.

Литература: , стр. 323-334, , стр. 157-173.

Раздел 1. В ведение в динамику. Основные понятия

классической механики

Динамика – раздел теоретической механики, в котором изучается движение материальных тел (точек) под действием приложенных сил.

Материальноетело – тело, имеющеемассу.

Материальная точка – материальное тело, различие в движении точек которого является несущественным. Это может быть как тело, размерами которого при его движении можно пренебречь, так и тело конечных размеров, если оно движется поступательно.

Материальными точками называют также частицы, на которые мысленно разбивается твердое тело при определении некоторых его динамических характеристик. Примеры материальных точек (рис. 1):а – движение Земли вокруг Солнца. Земля – материальная точка;б – поступательное движение твердого тела. Твердое тело – матери-

альная точка, т. к. V B = V A ; a B = a A ; в – вращение тела вокруг оси.

Частица тела – материальная точка.

Инертность – свойство материальных тел быстрее или медленнее изменять скорость своего движения под действием приложенных сил.

Масса тела – это скалярная положительная величина, зависящая от количества вещества, содержащегося в данном теле, и определяющая его меру инертности при поступательном движении. В классической механике масса– величина постоянная.

Сила – количественная мера механического взаимодействия между телами или между телом (точкой) и полем (электрическим, магнитным и т. д.).

Сила – векторная величина, характеризующаяся величиной, точкой приложения и направлением (линией действия) (рис. 2: А – точка приложения;АВ – линия действия силы).

Рис. 2

В динамике наряду с постоянными силами имеют место и переменные силы, которые могут зависеть от времени t , скоростиϑ , расстоянияr или от совокупности этих величин, т. е.

F = const;

F = F(t) ;

F = F(ϑ ) ;

F = F(r) ;

F = F(t, r, ϑ ) .

Примеры таких сил приведены на рис. 3: a −

– вес тела;

(ϑ) – сила сопротивления воздуха;б −

Т =

– сила тяги

электровоза; в − F = F (r ) – сила отталкивания от центраO или притяженияк нему.

Система отсчета – система координат, связанная с телом, по отношению к которому изучается движение другого тела.

Инерциальная с истема – система, в которой выполняются первый и второй законы динамики. Это неподвижная система координат либо система, движущаяся равномерно ипрямолинейнопоступательно.

Движение в механике – это изменение положения тела в пространстве и во времени по отношению к другим телам.

Пространство в классической механике трехмерное, подчиняющееся эвклидовой геометрии.

Время – скалярная величина, одинаково протекающая в любых системахотсчета.

Система единиц – это совокупность единиц измерения физических величин. Для измерения всех механических величин достаточно трех основных единиц: единицы длины, времени, массы или силы.

Механическая

Размерность

Обозначения

Размерность

Обозначения

величина

сантиметр

килограмм-

Все остальные единицы измерения механических величин – производные от этих. Применяются два типа систем единиц: международная система единиц СИ (или более мелкая – СГС) и техническаясистемаединиц– МКГСС.

Тема1. Динамикаматериальнойточки

1.1. Законы динамики материальной точки (законы Галилея – Ньютона)

Первыйзакон (законинерции).

Изолированная от внешних воздействий материальная точка сохраняет свое состояние покоя или движется равномерно и прямолинейно до тех пор, пока приложенные силы не заставят ее изменить это состояние.

Движение, совершаемое точкой при отсутствии сил или под действием уравновешенной системы сил, называется движением по инерции.

Например , движение тела по гладкой (сила трения равна нулю) го-

ризонтальной поверхности (рис. 4: G – вес тела;N - нормальная реакция плоскости).

Так как G = − N , тоG + N = 0.

При ϑ 0 ≠ 0 тело движется с той же скоростью; приϑ 0 = 0 тело покоится (ϑ 0 – начальная скорость).

Второй закон (основной закон динамики).

Произведение массы точки на ускорение, которое она получает под действием данной силы, равно по модулю этой силе, а ее направление совпадает с направлением ускорения.

а б

Математически этот закон выражается векторным равенством

При F = const,

a = const – движение точки равнопеременное. Ес-

ли a ≠ const, α

– движение замедленное (рис. 5, а );

a ≠ const,

a –

– движение ускоренное (рис. 5, б );m – масса точки;

вектор ускорения;

– векторсилы; ϑ 0 – вектор скорости).

При F = 0,a 0 = 0 = ϑ 0 = const – точка движется равномерно и прямолинейно либо приϑ 0 = 0 – покоится (закон инерции). Второй

закон позволяет установить связь между массой m тела, находящегося вблизи земной поверхности, и его весомG .G = mg , гдеg –

ускорение свободного падения.

Третий закон (закон равенства действия и противодействия). Две материальные точки действуют друг на друга с силами, равными по величине и направленными вдоль прямой, соединяющей

эти точки, в противополо жные стороны.

Так ка к силыF 1 = − F 2 приложены к разным точкам, то система сил(F 1 , F 2 ) не является уравновешенной, т. е.(F 1 , F 2 )≈ 0 (рис. 6).

В свою очередь

m a = m a

– отношение

масс взаимодействующих точек обратно пропорционально их ускорениям.

Четвертый закон (закон независимости действия сил). Ускорение, получаемое точкой при действии на нее одновремен-

но нескольких сил, равно геометрической сумме тех ускорений, которые получила бы точка при действии на нее каждой силы в отдельности.

Пояснение(рис. 7).

т а n

а 1 а кF n

Равнодействующая R сил(F 1 ,...F k ,...F n ) .

Так как ma = R ,F 1 = ma 1 , ...,F k = ma k , ...,F n = ma n , то

a = a 1 + ...+ a k + ...+ a n = ∑ a k , т. е. четвертый закон эквивалентен

k = 1

правилу сложения сил.

1.2. Дифференциальные уравнения движения материальной точки

Пусть на материальную точку действуют одновременно несколько сил, среди которых есть как постоянные, так и переменные.

Запишем второй закон динамики в виде

= ∑

(t ,

k = 1

, ϑ=

r – радиус-вектор движущейся

точки, то (1.2) содержит производные от r и представляет собой дифференциальное уравнение движения материальной точки в векторной форме или основное уравнение динамики материальной точки.

Проекции векторного равенства (1.2): - наосидекартовыхкоординат(рис. 8, а )

max = md

= ∑ F kx;

k = 1

may = md

= ∑ F ky;

(1.3)

k = 1

maz = m

= ∑ F kz;

k = 1

Наестественнойоси(рис. 8, б )

maτ

= ∑ F k τ ,

k = 1

= ∑ F k n ;

k = 1

mab = m0 = ∑ Fk b

k = 1

M t oM oa

b on o

Уравнения (1.3) и (1.4) являются дифференциальными уравнениями движения материальной точки соответственно в декартовых осях координат и естественных осях, т. е. естественными дифференциальными уравнениями, которые обычно применяются при криволинейном движении точки, если траектория точки и ее радиус кривизны известны.

1.3. Две основные задачи динамики для материальной точки и их решение

Первая(прямая) задача.

Зная закон движения и массу точки, определить силу, действующуюнаточку.

Для решения этой задачи необходимо знать ускорение точки. В задачах этого типа оно может быть задано непосредственно либо задан закон движения точки, в соответствии с которым оно может бытьопределено.

1. Так, если движение точки задано в декартовых координатах

x = f 1 (t ) , y = f 2 (t ) иz = f 3 (t ) , то определяются проекции ускоре-

ния на оси координатx =

d 2 x

d 2 y

d 2 z

А затем – проек-

ции F x ,F y иF z силы на эти оси:

,k ) = F F z . (1.6)

2. Если точка совершает криволинейное движение и известен закон движения s = f (t ) , траектория точки и ее радиус кривизны ρ, то

удобно пользоваться естественными осями, а проекции ускорения на эти оси определяются по известным формулам:

Накасательнуюось

a τ = d ϑ = d 2 2 s – касательное ускорение;dt dt

Наглавнуюнормаль

ds 2

a n = ϑ 2 = dt – нормальное ускорение.

Проекция ускорения на бинормаль равна нулю. Тогда проекции силынаестественныеоси

F = m

F = m

Модульинаправлениесилыопределяютсяпоформулам:

F =F τ 2 +F n 2 ; cos (

; cos(

Вторая(обратная) задача.

Зная действующие на точку силы, ее массу и начальные условия движения, определить закон движения точки или какие-либо другие ее кинематические характеристики.

Начальные условия движения точки в декартовых осях – это координаты точки x 0 , y 0 , z 0 и проекции начальной скоростиϑ 0 на эти

оси ϑ 0 x = x 0 , ϑ 0 y = y 0 иϑ 0 z = z 0 в момент времени, соответствую-

щий началу движения точки и принимаемый равным нулю. Решение задач этого типа сводится к составлению диффе-

ренциальных уравнений (или одного уравнения) движения материальной точки и их последующему решению путем непосредственного интегрирования или с использованием теории дифференциальных уравнений.

Вопросы на повторение

1. Что изучает динамика?

2. Какое движение называется движением по инерции?

3. При каком условии материальная точка будет покоиться или двигаться равномерно и прямолинейно?

4. В чем суть первой основной задачи динамики материальной точки? Второй задачи?

5. Запишите естественные дифференциальные уравнения движения материальной точки.

Задачи для самостоятельного изучения

1. Точка массой m = 4 кг движется по горизонтальной прямой с ускорениемa = 0,3 t . Определить модуль силы, действующей на точку в направлении ее движения в момент времениt = 3 c .

2. Деталь массой m = 0,5 кг скользит вниз по лотку. Под каким углом к горизонтальной плоскости должен располагаться лоток, чтобы деталь двигалась с ускорениемa = 2 м/с 2 ? Угол выразить

в градусах.

3. Точка массойm = 14 кг движется по осиОх c ускорениемa х = 2 t . Определить модуль силы, действующей на точку в направлении движения в момент времениt = 5 c .

Общие теоремы динамики системы тел. Теоремы о движении центра масс, об изменении количества движения, об изменении главного момента количества движения, об изменении кинетической энергии. Принципы Даламбера, и возможных перемещений. Общее уравнение динамики. Уравнения Лагранжа.

Общие теоремы динамики твердого тела и системы тел

Общие теоремы динамики - это теорема о движении центра масс механической системы, теорема об изменении количества движения, теорема об изменении главного момента количества движения (кинетического момента) и теорема об изменении кинетической энергии механической системы.

Теорема о движении центра масс механической системы

Теорема о движении центра масс.
Произведение массы системы на ускорение ее центра масс равно векторной сумме всех действующих на систему внешних сил:
.

Здесь M - масса системы:
;
a C - ускорение центра масс системы:
;
v C - скорость центра масс системы:
;
r C - радиус вектор (координаты) центра масс системы:
;
- координаты (относительно неподвижного центра) и массы точек, из которых состоит система.

Теорема об изменении количества движения (импульса)

Количество движения (импульс) системы равно произведению массы всей системы на скорость ее центра масс или сумме количества движения (сумме импульсов) отдельных точек или частей, составляющих систему:
.

Теорема об изменении количества движения в дифференциальной форме.
Производная по времени от количества движения (импульса) системы равна векторной сумме всех действующих на систему внешних сил:
.

Теорема об изменении количества движения в интегральной форме.
Изменение количества движения (импульса) системы за некоторый промежуток времени равно сумме импульсов внешних сил за тот же промежуток времени:
.

Закон сохранения количества движения (импульса).
Если сумма всех внешних сил, действующих на систему, равна нулю, то вектор количества движения системы будет постоянным. То есть все его проекции на оси координат будут сохранять постоянные значения.

Если сумма проекций внешних сил на какую либо ось равна нулю, то проекция количества движения системы на эту ось будет постоянной.

Теорема об изменении главного момента количества движения (теорема моментов)

Главным моментом количества движения системы относительно данного центра O называется величина , равная векторной сумме моментов количеств движения всех точек системы относительно этого центра:
.
Здесь квадратные скобки обозначают векторное произведение.

Закрепленные системы

Следующая ниже теорема относится к случаю, когда механическая система имеет неподвижную точку или ось, которая закреплена относительно инерциальной системы отсчета. Например тело, закрепленное сферическим подшипником. Или система тел, совершающая движение вокруг неподвижного центра. Это также может быть неподвижная ось, вокруг которой вращается тело или система тел. В этом случае, под моментами следует понимать моменты импульса и сил относительно закрепленной оси.

Теорема об изменении главного момента количества движения (теорема моментов)
Производная по времени от главного момента количества движения системы относительно некоторого неподвижного центра O равна сумме моментов всех внешних сил системы относительно того же центра.

Закон сохранения главного момента количества движения (момента импульса).
Если сумма моментов всех приложенных к системе внешних сил относительно данного неподвижного центра O равна нулю, то главный момент количества движения системы относительно этого центра будет постоянным. То есть все его проекции на оси координат будут сохранять постоянные значения.

Если сумма моментов внешних сил относительно некоторой неподвижной оси равна нулю, то момент количества движения системы относительно этой оси будет постоянным.

Произвольные системы

Следующая далее теорема имеет универсальный характер. Она применима как к закрепленным системам, так и к свободно движущимся. В случае закрепленных систем нужно учитывать реакции связей в закрепленных точках. Она отличается от предыдущей теоремы тем, что вместо закрепленной точки O следует брать центр масс C системы.

Теорема моментов относительно центра масс
Производная по времени от главного момента количества движения системы относительно центра масс C равна сумме моментов всех внешних сил системы относительно того же центра.

Закон сохранения момента импульса.
Если сумма моментов всех приложенных к системе внешних сил относительно центра масс C равна нулю, то главный момент количества движения системы относительно этого центра будет постоянным. То есть все его проекции на оси координат будут сохранять постоянные значения.

Момент инерции тела

Если тело вращается вокруг оси z с угловой скоростью ω z , то его момент количества движения (кинетический момент) относительно оси z определяется по формуле:
L z = J z ω z ,
где J z - момент инерции тела относительно оси z .

Момент инерции тела относительно оси z определяется по формуле:
,
где h k - расстояние от точки массой m k до оси z .
Для тонкого кольца массы M и радиуса R или цилиндра, масса которого распределена по его ободу,
J z = M R 2 .
Для сплошного однородного кольца или цилиндра,
.

Теорема Штейнера-Гюйгенса.
Пусть Cz - ось, проходящая через центр масс тела, Oz - параллельная ей ось. Тогда моменты инерции тела относительно этих осей связаны соотношением:
J Oz = J Cz + M a 2 ,
где M - масса тела; a - расстояние между осями.

В более общем случае :
,
где - тензор инерции тела.
Здесь - вектор, проведенный из центра масс тела в точку с массой m k .

Теорема об изменении кинетической энергии

Пусть тело массы M совершает поступательное и вращательное движение с угловой скоростью ω вокруг некоторой оси z . Тогда кинетическая энергия тела определяется по формуле:
,
где v C - скорость движения центра масс тела;
J Cz - момент инерции тела относительно оси, проходящей через центр масс тела параллельно оси вращения. Направление оси вращения может меняться со временем. Указанная формула дает мгновенное значение кинетической энергии.

Теорема об изменении кинетической энергии системы в дифференциальной форме.
Дифференциал (приращение) кинетической энергии системы при некотором ее перемещении равно сумме дифференциалов работ на этом перемещении всех приложенных к системе внешних и внутренних сил:
.

Теорема об изменении кинетической энергии системы в интегральной форме.
Изменение кинетической энергии системы при некотором ее перемещении равно сумме работ на этом перемещении всех приложенных к системе внешних и внутренних сил:
.

Работа, которую совершает сила , равна скалярному произведению векторов силы и бесконечно малому перемещению точки ее приложения :
,
то есть произведению модулей векторов F и ds на косинус угла между ними.

Работа, которую совершает момент сил , равна скалярному произведению векторов момента и бесконечно малого угла поворота :
.

Принцип Даламбера

Суть принципа Даламбера состоит в том, чтобы задачи динамики свести к задачам статики. Для этого предполагают (или это заранее известно), что тела системы имеют определенные (угловые) ускорения. Далее вводят силы инерции и (или) моменты сил инерции, которые равны по величине и обратные по направлению силам и моментам сил, которые по законам механики создавали бы заданные ускорения или угловые ускорения

Рассмотрим пример. Путь тело совершает поступательное движение и на него действуют внешние силы . Далее мы предполагаем, что эти силы создают ускорение центра масс системы . По теореме о движении центра масс, центр масс тела имел бы такое же ускорение, если бы на тело действовала сила . Далее мы вводим силу инерции:
.
После этого задача динамики:
.
;
.

Для вращательного движения поступают аналогичным образом. Пусть тело вращается вокруг оси z и на него действуют внешние моменты сил M e zk . Мы предполагаем, что эти моменты создают угловое ускорение ε z . Далее мы вводим момент сил инерции M И = - J z ε z . После этого задача динамики:
.
Превращается в задачу статики:
;
.

Принцип возможных перемещений

Принцип возможных перемещений применяется для решений задач статики. В некоторых задачах, он дает более короткое решение, чем составление уравнений равновесия. Особенно это касается систем со связями (например, системы тел, соединенные нитями и блоками), состоящих из множества тел

Принцип возможных перемещений .
Для равновесия механической системы с идеальными связями необходимо и достаточно, чтобы сумма элементарных работ всех действующих на нее активных сил при любом возможном перемещении системы была равна нулю.

Возможное перемещение системы - это малое перемещение, при котором не нарушаются связи, наложенные на систему.

Идеальные связи - это связи, которые не совершают работы при перемещении системы. Точнее, сумма работ, совершаемая самими связями при перемещении системы равна нулю.

Общее уравнение динамики (принцип Даламбера - Лагранжа)

Принцип Даламбера - Лагранжа - это объединение принцип Даламбера с принципом возможных перемещений. То есть, при решении задачи динамики, мы вводим силы инерции и сводим задачу к задаче статики, которую решаем с помощью принципа возможных перемещений.

Принцип Даламбера - Лагранжа .
При движении механической системы с идеальными связями в каждый момент времени сумма элементарных работ всех приложенных активных сил и всех сил инерции на любом возможном перемещении системы равна нулю:
.
Это уравнение называют общим уравнением динамики .

Уравнения Лагранжа

Обобщенные координаты q 1 , q 2 , ..., q n - это совокупность n величин, которые однозначно определяют положение системы.

Число обобщенных координат n совпадает с числом степеней свободы системы.

Обобщенные скорости - это производные от обобщенных координат по времени t .

Обобщенные силы Q 1 , Q 2 , ..., Q n .
Рассмотрим возможное перемещение системы, при котором координата q k получит перемещение δq k . Остальные координаты остаются неизменными. Пусть δA k - это работа, совершаемая внешними силами при таком перемещении. Тогда
δA k = Q k δq k , или
.

Если, при возможном перемещении системы, изменяются все координаты, то работа, совершаемая внешними силами при таком перемещении, имеет вид:
δA = Q 1 δq 1 + Q 2 δq 2 + ... + Q n δq n .
Тогда обобщенные силы являются частными производными от работы по перемещениям:
.

Для потенциальных сил с потенциалом Π ,
.

Уравнения Лагранжа - это уравнения движения механической системы в обобщенных координатах:

Здесь T - кинетическая энергия. Она является функцией от обобщенных координат, скоростей и, возможно, времени. Поэтому ее частная производная также является функцией от обобщенных координат, скоростей и времени. Далее нужно учесть, что координаты и скорости являются функциями от времени. Поэтому для нахождения полной производной по времени нужно применить правило дифференцирования сложной функции:
.

Использованная литература:
С. М. Тарг, Краткий курс теоретической механики, «Высшая школа», 2010.

Министерство образования и науки Российской Федерации

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования

«Кубанский государственный технологический университет»

Теоретическая механика

Часть 2 динамика

Утверждено Редакционно-издательским

советом университета в качестве

учебного пособия

Краснодар

УДК 531.1/3 (075)

Теоретическая механика. Часть 2. Динамика: Учебное пособие / Л.И.Драйко; Кубан. гос. технол.ун-т. Краснодар, 2011. 123 с.

ISBN 5-230-06865-5

Излагается в краткой форме теоретический материал, даны примеры решения задач, большинство из которых отражает реальные вопросы техники, уделено внимание выбору рацио­нального способа решения.

Предназначено для бакалавров заочной и дистанционной форм обучения стро­ительных, транспортных и машиностроительных направлений.

Табл. 1 Илл. 68 Библиогр. 20 назв.

Научный редактор канд.техн.наук,доц. В.Ф.Мельников

Рецензенты: зав.кафедрой теоретической механики и теории механизмов и машин Кубанского аграрного университета проф. Ф.М. Канарев; доцент кафедры теоретической механики Ку­банского государственного технологического университета М.Е. Мултых

Печатается по решению Редакционно-издательского совета Кубанского государственного технологического университета.

Переиздание

ISBN 5-230-06865-5 КубГТУ 1998г.

Предисловие

Данное учебное пособие предназначено для студентов заочной формы обучения строительных, транспортных и машиностроительных специальностей, но может быть использовано при изучении раздела «Динамика» курса теоретической механики студентами заочниками других специальностей, а также студентами дневной формы обучения при самостоятельной работе.

Пособие составлено в соответствии с действующей программой курса теоретической механики, охватывает все вопросы основной части курса. Каждый раздел содержит краткий теоретический материал, снабженный иллюстрациями и методическими рекомендациями для его использования при решении задач. В пособии разобрано решение 30 задач, отражающих реальные вопросы техники и соответствующих контрольным заданиям для самостоятельного решения. Для каждой задачи представлена расчетная схема, наглядно иллюстрирующая решение. Оформление решения соответствует требованиям, предъявляемым к оформлению контрольных работ студентов-заочников.

Автор выражает глубокую признательность преподавателям кафедры теоретической механики и теории механизмов и машин Кубанского аграрного университета за большой труд по рецензированию учебного пособия, а также преподавателям кафедры теоретической механики Кубанского государственного технологического университета за ценные замечания и советы по подготовке учебного пособия к изданию.

Все критические замечания и пожелания будут приняты автором с благодарностью и в дальнейшем.

Введение

Динамика является наиболее важным разделом теоретической механики. Большинство конкретных задач, которые приходится в инженерной практике, относится к динамике. Используя выводы статики и кинематики, динамика устанавливает общие законы движения материальных тел под действием приложенных сил.

Простейшим материальным объектом является материальная точка. За материальную точку можно принять материальное тело любой формы, размерами которого в рассматриваемой задаче можно пренебречь. За материальную точку можно принимать тело конечных размеров, если различие в движении его точек для данной задачи не существенно. Это бывает в случае, когда размеры тела малы по сравнению с расстояниями, которые проходят точки тела. Каждую частицу твердого тела можно считать материальной точкой.

Силы, приложенные к точке или материальному телу, в динамике оцениваются по их динамическому воздействию, т. е. по тому, как они изменяют характеристики движения материальных объектов.

Движение материальных объектов с течением времени совершается в пространстве относительно определенной системы отсчета. В классической механике, опирающейся на аксиомы Ньютона, пространство считается трехмерным, его свойства не зависят от движущихся в нем материальных объектов. Положение точки в таком пространстве определяется тремя координатами. Время не связано с пространством и движением материальных объектов. Оно считается одинаковым для всех систем отсчета.

Законы динамики описывают движение материальных объектов по отношению к абсолютным осям координат, условно принятым за неподвижные. Начало абсолютной системы координат принимается в центре Солнца, а оси направляются на отдаленные, условно не подвижные звезды. При решении многих технических задач условно не подвижными можно считать координатные оси, связанные с Землей.

Параметры механического движения материальных объектов в динамике устанавливаются путем математических выводов из основных законов классической механики.

Первый закон (закон инерции):

Материальная точка сохраняет состояние покоя или равномерного и прямолинейного движения до тех пор, пока действие каких-либо сил не выведет ее из этого состояния.

Равномерное и прямолинейное движение точки называют движением по инерции. Покой является частным случаем движения по инерции, когда скорость точки равна нулю.

Всякая материальная точка обладает инертностью, т. е. стремится сохранить состояние покоя или равномерного прямолинейного движения. Система отсчета, по отношению к которой выполняется закон инерции, называется инерциальной, а движение, наблюдаемое по отношению к этой системе, называется абсолютным. Любая система отсчета, совершающая относительно инерциальной системы поступательное прямолинейное и равномерное движение, будет также инерциальной системой.

Второй закон (основной закон динамики):

Ускорение материальной точки относительно инерциальной системы отсчета пропорционально приложенной к точке силе и совпадает с силой по направлению:
.

Из основного закона динамики следует, что при силе
ускорение
. Масса точки характеризует степень сопротивляемости точки изменению ее скорости, т. е. является мерой инертности материальной точки.

Третий закон (закон действия и противодействия):

Силы, с которыми два тела действуют друг на друга, равны по модулю и направлены вдоль одной прямой в противоположные стороны.

Силы, именуемые действием и противодействием, приложены к разным телам и поэтому уравновешенной системы не образуют.

Четвертый закон (закон независимости действия сил):

При одновременном действии нескольких сил ускорение материальной точки равно геометрической сумме ускорений, которые имела бы точка при действии каждой силы в отдельности:

, где
,
,…,
.