Биографии Характеристики Анализ

Спектральная плотность сигнала. Автокорреляция случайных процессов, стационарных в широком смысле

Математические модели многих сигналов, широко применяемых в радиотехнике, не удовлетворяют условию абсолютной интегрируемости, поэтому метод преобразований Фурье в обычном виде к ним неприменим. Однако, как указывалось, можно говорить о спектральных плотностях таких сигналов, если допустить, что эти плотности описываются обобщенными функциями.

Обобщенная формула Рэлея. Докажем важное вспомогательное положение, касающееся спектральных свойств сигналов.

Пусть два сигнала в общем случае комплекснозначные, определены своими обратными преобразованиями Фурье:

Найдем скалярное произведение этих сигналов, выразив один из них, например через его спектральную плотность:

Здесь внутренний интеграл представляет собой, очевидно, спектральную плотность сигнала . Поэтому

Полученное соотношение представляет собой обобщенную формулу Рэлея. Легко запоминающаяся трактовка этой формулы такова: скалярное произведение двух сигналов с точностью до коэффициента пропорционально скалярному произведению их спектральных плотностей.

Обобщение понятия спектральной плотности.

Будем считать, что сигнал представляет собой абсолютно интегрируемую функцию. Тогда его преобразование Фурье - обычная классическая функция частоты. Пусть наряду с этим сигнал не удовлетворяет условию абсолютной интегрируемости и в обычном классическом смысле преобразование Фурье не существует. Однако можно расширить понятие спектральной плотности, допустив, что является обобщенной функцией в том смысле, который был установлен в § 1.2. Для этого в соответствии с обобщенной формулой Рэлея достаточно положить, что - функционал, который, действуя на известную функцию , дает следующий результат:

Приемы вычисления спектров неинтегрируемых сигналов целесообразно рассмотреть на конкретных примерах.

Спектральная плотность постоянного во времени сигнала. Простейший неинтегрируемый сигнал - это постоянная величина и . Предположим, что - произвольный вещественный абсолютно интегрируемый сигнал с известной спектральной плотностью

Раскрывая формулу (2.43), имеем

Но, как легко заметить,

Отсюда на основании фильтрующего свойства дельтафункции приходим к выводу, что равенство (2.43) возможно лишь при условии, что

Физический смысл полученного результата нагляден - неизменный во времени сигнал имеет спектральную составляющую только на нулевой частоте.

Спектральная плотность комплексного экспоненциального сигнала.

Пусть - комплексный экспоненциальный сигнал с заданной вещественной частотой Этот сигнал не является абсолютно интегрируемым, поскольку при функция s(t) не стремится ни к какому пределу. Преобразование Фурье этого сигнала, рассматриваемое в обобщенном смысле, должно удовлетворять соотношению

Отсюда искомая спектральная плотность S (со), выражается таким образом:

Отметим следующее:

1. Спектральная плотность комплексного экспоненциального сигнала равна нулю всюду, кроме точки где она имеет дельта-особенность.

2. Спектр данного сигнала несимметричен относительно точки и сосредоточивается в области либо положительных, либо отрицательных частот.

Спектральная плотность гармонических колебаний. Пусть По формуле Эйлера

Найденный выше спектр комплексного экспоненциального сигнала, а также свойство линейности преобразования Фурье позволяют сразу записать выражение спектральной плотности косинусоидального сигнала:

Читатель может легко проверитьсамостоятельно, что для синусоидального сигнала справедливо соотношение

Следует заметить, что выражение (2.46) представляет собой четную, а выражение (2.47) - нечетную функцию частоты.

Спектральная плотность произвольного периодического сигнала.

Ранее периодические сигналы исследовались методами теории рядов Фурье. Теперь можно расширить представления об их спектральных свойствах, описав периодические сигналы с помощью преобразования Фурье.

Периодический сигнал, заданный своим рядом Фурье в комплексной форме. На основании формулы (2.45), принимая во внимание свойство линейности преобразования Фурье, сразу получаем выражение спектральной плотности такого сигнала:

Соответствующий график спектральной плотности своей конфигурацией повторяет обычную спектральную диаграмму периодического сигнала. График образован дельта-импульсами в частотной области, которые располагаются в точках с координатами

Спектральная плотность функции включения.

Вычислим спектральную плотность функции включения , которую для простоты определим во всех точках, кроме точки t = 0 [ср. с (1.2)]:

Заметим прежде всего, что функция включения получается путем предельного перехода из экспоненциального видеоимпульса:

Поэтому можно попытаться получить спектральную плотность функции включения, выполнив предельный переход при а- О в формуле спектральной плотности экспоненциального колебания:

Непосредственный переход к пределу, согласно которому справедлив при всех частотах, кроме значения , когда необходимо более тщательное рассмотрение.

Прежде всего выделим в спектральной плотности экспоненциального сигнала вещественную и мнимую части:

Можно убедиться в том, что

Действительно, предельное значение этой дроби при любых обращается в нуль, и в то же ремя

независимо от величины а, откуда и следует сделанное утверждение.

Итак, получено взаимно однозначное соответствие функции включения и ее спектральной плотности:

Дельта-особенность при свидетельствует о том, что функция включения имеет постоянную составляющую, равную 1/2.

Спектральная плотность радиоимпульса.

Как известно, радиоимпульс задается в виде произведения некоторого видеоимпульса играющего роль огибающей, и неинтегрируемого гармонического колебания: .

Чтобы найти спектральную плотность радиоимпульса, будем полагать известной функцию - спектр его огибающей. Спектр косинусоидального сигнала с произвольной начальной фазой получается путем элементарного обобщения формулы (2.46):

Спектр радиоимпульса есть свертка

Приняв во внимание фильтрующее свойство дельтафункции, получаем важный результат:

Рис. 2.8 иллюстрирует трансформацию спектра видеоимпульса при умножении его на высокочастотный гармонический сигнал.

Рис. 2.8. Частотные зависимости модуля спектральной плотности: а - видеоимпульса; б - радиоимпульса

Видно, что переход от видеоимпульса к радиоимпульсу при спектральном подходе означает перенос спектра видеоимпульса в область высоких частот - вместо единственного максимума спектральной плотности при наблюдаются два максимума при абсолютные значения максимумов сокращаются вдвое.

Отметим, что графики на рис. 2.8 отвечают ситуации, когда частота значительно превышает эффективную ширину спектра видеоимпульса (именно такой случай обычно и реализуется на практике). При этом не наблюдается ощутимого «перекрытия» спектров, отвечающих положительным и отрицательным частотам. Однако может оказаться, что ширина спектра видеоимпульса велика настолько (при коротком импульсе), что выбранное значение частоты не устраняет эффект «перекрытия». Как следствие, профили спектров видеоимпульса и радиоимпульса перестают быть подобными.

Пример 2.3. Спектральная плотность прямоугольного радиоимпульса.

Для простоты положим начальную фазу нулевой и запишем математическую модель радиоимпульса в виде

Зная спектр соответствующего видеоимпульса [см. формулу (2.20)], на основании (2.50) находим искомый спектр:

На рис. 2.9 изображены результаты расчета спектральной плотности по формуле (2.51) для двух характерных случаев,

В первом случае (рис. 2.9,а) импульс огибающей содержит 10 периодов высокочастотного заполнения частота здесь достаточно высока для того, чтобы избежать «перекрытия». Во втором случае (рис. 2.9, б) радиоимпульс состоит всего лишь из одного периода заполнения Наложение составляющих, которые соответствуют областям положительных и отрицательных частот, приводит к характерной асимметрии лепестковой структуры графика спектральной плотности радиоимпульса.

Рис. 2.9. Графики спектральных плотностей радиоимпульса с прямоугольной огибающей: а - при ; б - при

В статистической радиотехнике и физике при изучении детерминированных сигналов и случайных процессов широко используется их спектральное представление в виде спектральной плотности, которая базируется на преобразовании Фурье .

Если процесс имеет конечную энергию и квадратично интегрируем (а это нестационарный процесс), то для одной реализации процесса можно определить преобразование Фурье как случайную комплексную функцию частоты:

X (f) = ∫ − ∞ ∞ x (t) e − i 2 π f t d t . {\displaystyle X(f)=\int \limits _{-\infty }^{\infty }x(t)e^{-i2\pi ft}dt.} (1)

Однако она оказывается почти бесполезной для описания ансамбля. Выходом из этой ситуации является отбрасывание некоторых параметров спектра, а именно спектра фаз, и построении функции, характеризующей распределение энергии процесса по оси частот. Тогда согласно теореме Парсеваля энергия

E x = ∫ − ∞ ∞ | x (t) | 2 d t = ∫ − ∞ ∞ | X (f) | 2 d f . {\displaystyle E_{x}=\int \limits _{-\infty }^{\infty }|x(t)|^{2}dt=\int \limits _{-\infty }^{\infty }|X(f)|^{2}df.} (2)

Функция S x (f) = | X (f) | 2 {\displaystyle S_{x}(f)=|X(f)|^{2}} характеризует, таким образом, распределение энергии реализации по оси частот и называется спектральной плотностью реализации. Усреднив эту функцию по всем реализациям можно получить спектральную плотность процесса.

Перейдем теперь к стационарному в широком смысле центрированному случайному процессу x (t) {\displaystyle x(t)} , реализации которого с вероятностью 1 имеют бесконечную энергию и, следовательно, не имеют преобразования Фурье. Спектральная плотность мощности такого процесса может быть найдена на основании теоремы Винера-Хинчина как преобразование Фурье от корреляционной функции:

S x (f) = ∫ − ∞ ∞ k x (τ) e − i 2 π f τ d τ . {\displaystyle S_{x}(f)=\int \limits _{-\infty }^{\infty }k_{x}(\tau)e^{-i2\pi f\tau }d\tau .} (3)

Если существует прямое преобразование, то существует и обратное преобразование Фурье , которое по известной определяет k x (τ) {\displaystyle k_{x}(\tau)} :

k x (τ) = ∫ − ∞ ∞ S x (f) e i 2 π f τ d f . {\displaystyle k_{x}(\tau)=\int \limits _{-\infty }^{\infty }S_{x}(f)e^{i2\pi f\tau }df.} (4)

Если полагать в формулах (3) и (4) соответственно f = 0 {\displaystyle f=0} и τ = 0 {\displaystyle \tau =0} , имеем

S x (0) = ∫ − ∞ ∞ k x (τ) d τ , {\displaystyle S_{x}(0)=\int \limits _{-\infty }^{\infty }k_{x}(\tau)d\tau ,} (5)
σ x 2 = k x (0) = ∫ − ∞ ∞ S x (f) d f . {\displaystyle \sigma _{x}^{2}=k_{x}(0)=\int \limits _{-\infty }^{\infty }S_{x}(f)df.} (6)

Формула (6) с учетом (2) показывает, что дисперсия определяет полную энергию стационарного случайного процесса, которая равна площади под кривой спектральной плотности. Размерную величину S x (f) d f {\displaystyle S_{x}(f)df} можно трактовать как долю энергии, сосредоточенную в малом интервале частот от f − d f / 2 {\displaystyle f-df/2} до f + d f / 2 {\displaystyle f+df/2} . Если понимать под x (t) {\displaystyle x(t)} случайный (флуктуационный) ток или напряжение, то величина S x (f) {\displaystyle S_{x}(f)} будет иметь размерность энергии [В 2 /Гц] = [В 2 с]. Поэтому S x (f) {\displaystyle S_{x}(f)} иногда называют энергетическим спектром . В литературе часто можно встретить другую интерпретацию: σ x 2 {\displaystyle \sigma _{x}^{2}} – рассматривается как средняя мощность, выделяемая током или напряжением на сопротивлении 1 Ом. При этом величину S x (f) {\displaystyle S_{x}(f)} называют спектром мощности случайного процесса.

Свойства спектральной плотности

  • Энергетический спектр стационарного процесса (вещественного или комплексного) – неотрицательная величина:
S x (f) ≥ 0 {\displaystyle S_{x}(f)\geq 0} . (7)
  • Энергетический спектр вещественного стационарного в широком смысле случайного процесса есть действительная и четная функция частоты:
S x (− f) = S x (f) {\displaystyle S_{x}(-f)=S_{x}(f)} . (8)
1. Сигналы и спектры. Теоретические основы цифровой связи

1. Сигналы и спектры

1.1. Обработка сигналов в цифровой связи

1.1.1. Почему «цифровая»

Почему в военных и коммерческих системах связи используются «цифры»? Существует множество причин. Основным преимуществом такого подхода является легкость восстановления цифровых сигналов по сравнению с аналоговыми. Рассмотрим рис. 1.1, на котором представлен идеальный двоичный цифровой импульс, распространяющийся по каналу передачи данных. На форму сигнала влияют два основных механизма: (1) поскольку все каналы и линии передачи имеют неидеальную частотную характеристику, идеальный импульс искажается; и (2) нежелательные электрические шумы или другое воздействие со стороны еще больше искажает форму импульса. Чем протяженнее канал, тем существеннее эти механизмы искажают импульс (рис. 1.1). В тот момент, когда переданный импульс все еще может быть достоверно определен (прежде чем он ухудшится до неоднозначного состояния), импульс усиливается цифровым усилителем, восстанавливающим его первоначальную идеальную форму. Импульс «возрождается» или восстанавливается. За восстановление сигнала отвечают регенеративные ретрансляторы, расположенные в канале связи на определенном расстоянии друг от друга.

Цифровые каналы менее подвержены искажению и интерференции, чем аналоговые. Поскольку двоичные цифровые каналы дают значимый сигнал только при работе в одном из двух состояний - включенном или выключенном - возмущение должно быть достаточно большим, чтобы перевести операционную точку канала из одного состояния в другое. Наличие всего двух состояний облегчает восстановление сигнала и, следовательно, предотвращает накопление в процессе передачи шумов или других возмущений. Аналоговые сигналы, наоборот, не являются сигналами с двумя состояниями; они могут принимать бесконечное множество форм. В аналоговых каналах даже небольшое возмущение может неузнаваемо исказить сигнал. После искажения аналогового сигнала возмущение нельзя убрать путем усиления. Поскольку накопление шума неразрывно связано с аналоговыми сигналами, как следствие, они не могут воспроизводиться идеально. При использовании цифровых технологий очень низкая частота возникновения ошибок плюс применение процедур выявления и коррекции ошибок делают возможным высокую точность сигнала. Остается только отметить, что с аналоговыми технологиями подобные процедуры недоступны.

Рис.1.1. Искажение и восстановление импульса

Существуют и другие важные преимущества цифровой связи. Цифровые каналы надежнее и могут производиться по более низким ценам, чем аналоговые. Кроме того, цифровое программное обеспечение позволяет более гибкую реализацию, чем аналоговое (например, микропроцессоры, цифровая коммутация и большие интегральные схемы (large-scale integrated circuit - LSI)). Использование цифровых сигналов и уплотнения с временным разделением (time-division multiplexing - TDM) проще применения аналоговых сигналов и уплотнения с частотным разделением (frequency-division multiplexing - FDM). При передаче и коммутации различные типы цифровых сигналов (данные, телеграф, телефон, телевидение) могут рассматриваться как идентичные: ведь бит - это и есть бит. Кроме того, для удобства коммутации и обработки, цифровые сообщения могут группироваться в автономные единицы, называемые пакетами. В цифровые технологии естественным образом внедряются функции, защищающие от интерференции и подавления сигнала либо обеспечивающие шифрование или секретность. (Подобные технологии рассматриваются в главах 12 и 14.) Кроме того, обмен данными в основном производится между двумя компьютерами или между компьютером и цифровыми устройствами или терминалом. Подобные цифровые оконечные устройства лучше (и естественнее!) обслуживаются цифровыми каналами связи.

Чем же мы платим за преимущества систем цифровой связи? Цифровые системы требуют более интенсивной обработки, чем аналоговые. Кроме того, для цифровых систем необходимо выделение значительной части ресурсов для синхронизации на различных уровнях (см. главу 10). Аналоговые системы, наоборот, легче синхронизировать. Еще одним недостатком систем цифровой связи является то, что ухудшение качества носит пороговый характер. Если отношение сигнал/шум падает ниже некоторого порога, качество обслуживания может внезапно измениться от очень хорошего до очень плохого. В аналоговых же системах ухудшение качества происходит более плавно.

1.1.2. Типичная блочная диаграмма и основные преобразования

Функциональная блочная диаграмма, приведенная на рис. 1.2, иллюстрирует распространение сигнала и этапы его обработки в типичной системе цифровой связи (DCS). Верхние блоки - форматирование, кодирование источника, шифрование, канальное кодирование, уплотнение, импульсная модуляция, полосовая модуляция, расширение спектра и множественный доступ - отражают преобразования сигнала на пути от источника к передатчику. Нижние блоки диаграммы - преобразования сигнала на пути от приемника к получателю информации, и, по сути, они противоположны верхним блокам. Блоки модуляции и демодуляции/обнаружения вместе называются модемом. Термин «модем» часто объединяет несколько этапов обработки сигналов, показанных на рис. 1.2; в этом случае модем можно представлять как «мозг» системы. Передатчик и приемник можно рассматривать как «мускулы» системы. Для беспроводных приложений передатчик состоит из схемы повышения частоты в область радиочастот (radio frequency - RF), усилителя мощности и антенны, а приемник - из антенны и малошумящего усилителя (low-noise amplifier - LNA). Обратное понижение частоты производится на выходе приемника и/или демодулятора.

На рис. 1.2 иллюстрируется соответствие блоков верхней (передающей) и нижней (принимающей) частей системы. Этапы обработки сигнала, имеющие место в передатчике, являются преимущественно обратными к этапам приемника. На рис. 1.2 исходная информация преобразуется в двоичные цифры (биты); после этого биты группируются в цифровые сообщения или символы сообщений. Каждый такой символ ( где ) можно рассматривать как элемент конечного алфавита, содержащего М элементов. Следовательно, для М =2 символ сообщения является бинарным (т.е. состоит из одного бита). Несмотря на то что бинарные символы можно классифицировать как М -арные (с М=2), обычно название «М -арный» используется для случаев М >2; значит, такие символы состоят из последовательности двух или большего числа битов. (Сравните подобный конечный алфавит систем DCS с тем, что мы имеем в аналоговых системах, когда сигнал сообщения является элементом бесконечного множества возможных сигналов.) Для систем, использующих канальное кодирование (коды коррекции ошибок), последовательность символов сообщений преобразуется в последовательность канальных символов (кодовых символов), и каждый канальный символ обозначается . Поскольку символы сообщений или канальные символы могут состоять из одного бита или группы битов, последовательность подобных символов называется потоком битов (рис. 1.2).

Рассмотрим ключевые блоки обработки сигналов, изображенные на рис. 1.2; необходимыми для систем DCS являются только этапы форматирования, модуляции, демодуляции/обнаружения и синхронизации.

Форматирование преобразовывает исходную информацию в биты, обеспечивая, таким образом, совместимость информации и функций обработки сигналов с системой DCS. С этой точки рисунка и вплоть до блока импульсной модуляции информация остается в форме потока битов.

Рис. 1.2. Блочная диаграмма типичной системы цифровой связи

Модуляция - это процесс, посредством которого символы сообщений или канальные символы (если используется канальное кодирование) преобразуются в сигналы, совместимые с требованиями, налагаемыми каналом передачи данных. Импульсная модуляция - это еще один необходимый этап, поскольку каждый символ, который требуется передать, вначале нужно преобразовать из двоичного представления (уровни напряжений представляют двоичные нули и единицы) в форму узкополосного сигнала. Термин «узкополосный» (baseband) определяет сигнал, спектр которого начинается от (или около) постоянной составляющей и заканчивается некоторым конечным значением (обычно, не более нескольких мегагерц). Блок импульсно-кодовой модуляции обычно включает фильтрацию, направленную на минимизацию полосы передачи. При применении импульсной модуляции к двоичным символам результирующий двоичный сигнал называется сигналом в кодировке PCM (pulse-code modulation - импульсно-кодовая модуляция). Существует несколько типов сигналов РСМ (описанных в главе 2); в приложениях телефонной связи эти сигналы часто называются кодами канала. При применении импульсной модуляции к небинарным символам результирующий сигнал именуется М -арным импульсно-модулированным. Существует несколько типов подобных сигналов, которые также описаны в главе 2, где основное внимание уделяется амплитудно-импульсной модуляции (pulse-amplitude modulation - РАМ). После импульсной модуляции каждый символ сообщения или канальный символ принимает форму полосового сигнала , где . В любой электронной реализации поток битов, предшествующий импульсной модуляции, представляется уровнями напряжений. Может возникнуть вопрос, почему существует отдельный блок для импульсной модуляции, когда фактически уровни напряжения для двоичных нулей и единиц уже можно рассматривать как идеальные прямоугольные импульсы, длительность каждого из которых равна времени передачи одного бита? Существует два важных отличия между подобными уровнями напряжения и полосовыми сигналами, используемыми для модуляции. Во-первых, блок импульсной модуляций позволяет использовать бинарные и М -арные сигналы. В разделе 2.8.2 описаны различные полезные параметры этих типов сигналов. Во-вторых, фильтрация, производимая в блоке импульсной модуляции, формирует импульсы, длительность которых больше времени передачи одного бита. Фильтрация позволяет использовать импульсы большей длительности; таким образом, импульсы расширяются на соседние временные интервалы передачи битов. Этот процесс иногда называется формированием импульсов; он используется для поддержания полосы передачи в пределах некоторой желаемой области спектра.

Для приложений, включающих передачу в диапазоне радиочастот, следующим важным этапом является полосовая модуляция (bandpass modulation); она необходима всегда, когда среда передачи не поддерживает распространение сигналов, имеющих форму импульсов. В таких случаях среда требует полосового сигнала , где . Термин «полосовой» (bandpass) используется для отражения того, что узкополосный сигнал сдвинут несущей волной на частоту, гораздо большую спектральных составляющих . По мере распространения сигнала по каналу, на него воздействуют характеристики канала, которые можно выразить через импульсную характеристику (см. раздел 1.6.1). Кроме того, в различных точках вдоль маршрута сигнала дополнительные случайные шумы искажают принятый сигнал , поэтому прием должен выражаться через поврежденную версию сигнала , поступающего от передатчика. Принятый сигнал можно выразить следующим образом:

где знак «*» представляет собой операцию свертки (см. приложение A), а - процесс шума (см. раздел 1.5.5).

В обратном направлении входной каскад приемника и/или демодулятор обеспечивают понижение частоты каждого полосового сигнала . В качестве подготовки к обнаружению демодулятор восстанавливает в виде оптимального огибающего узкополосного сигнала . Обычно с приемником и демодулятором связано несколько фильтров - фильтрование производится для удаления нежелательных высокочастотных составляющих (в процессе преобразования полосового сигнала в узкополосный) и формирования импульса. Выравнивание можно описать как разновидность фильтрации, используемой в демодуляторе (или после демодулятора) для удаления всех эффектов ухудшения качества сигнала, причиной которых мог быть канал. Выравнивание (equalization) необходимо в том случае, если импульсная характеристика канала настолько плоха, что принимаемый сигнал сильно искажен. Эквалайзер (устройство выравнивания) реализуется для компенсации (т.е. для удаления или ослабления) всех искажений сигнала, вызванных неидеальной характеристикой . И последнее, этап дискретизации преобразовывает сформированный импульс в выборку для восстановления (приблизительно) символа канала или символа сообщения (если не используется канальное кодирование). Некоторые авторы используют термины «демодуляция» и «обнаружение» как синонимы. В данной книге под демодуляцией (demodulation) подразумевается восстановление сигнала (полосового импульса), а под обнаружением (detection) - принятие решения относительно цифрового значения этого сигнала.

Остальные этапы обработки сигнала в модеме являются необязательными и направлены на удовлетворение специфических системных нужд. Кодирование источника (source coding) - это преобразование аналогового сигнала в цифровой (для аналоговых источников) и удаление избыточной (ненужной) информации. Отметим, что типичная система DCS может использовать либо кодирование источника (для оцифровывания и сжатия исходной информации), либо более простое преобразование форматирование (только для оцифровывания). Система не может одновременно применять и кодирование источника, и форматирование, поскольку первое уже включает необходимый этап оцифровывания информации. Шифрование, которое используется для обеспечения секретности связи, предотвращает понимание сообщения несанкционированным пользователем и введение в систему ложных сообщений. Канальное кодирование (channel coding) при данной скорости передачи данных может снизить вероятность ошибки РЕ или уменьшить отношение сигнал/шум, необходимое для получения желаемой вероятности РЕ за счет увеличения полосы передачи или усложнения декодера. Процедуры уплотнения (multiplexing) и множественного доступа (multiple access) объединяют сигналы, которые могут иметь различные характеристики или могут поступать от разных источников, с тем, чтобы они могли совместно использовать часть ресурсов связи (например, спектр, время). Расширение частоты (frequency spreading) может давать сигнал, относительно неуязвимый для интерференции (как естественной, так и умышленной), и может использоваться для повышения конфиденциальности сообщающихся сторон. Также оно является ценной технологией, используемой для множественно доступа.

Блоки обработки сигналов, показанные на рис. 1.2, представляют типичную схему системы цифровой связи; впрочем, эти блоки иногда реализуются в несколько ином порядке. Например, уплотнение может происходить до канального кодирования или модуляции либо - при двухэтапном процессе модуляции (поднесущая и несущая) - оно может выполняться между двумя этапами модуляции. Подобным образом блок расширения частоты может находиться в различных местах верхнего ряда рис. 1.2; точное его местонахождение зависит от конкретной используемой технологии. Синхронизация и ее ключевой элемент, синхронизирующий сигнал, задействованы во всех этапах обработки сигнала в системе DCS. Для простоты блок синхронизации на рис. 1.2 показан безотносительно к чему-либо, хотя фактически он участвует в регулировании операций практически в каждом блоке, приведенном на рисунке.

На рис. 1.3 показаны основные функции обработки сигналов (которые можно рассматривать как преобразования сигнала), разбитые на следующие девять групп.

Рис.1.3. Основные преобразования цифровой связи

1. Форматирование и кодирование источника

2. Узкополосная передача сигналов

3. Полосовая передача сигналов

4. Выравнивание

5. Канальное кодирование

6. Уплотнение и множественный доступ

7. Расширение спектра

8. Шифрование

9. Синхронизация

На рис. 1.3 блок Узкополосная передача сигналов содержит перечень бинарных альтернатив при использовании модуляции РСМ или линейных кодов. В этом блоке также указана небинарная категория сигналов, называемая М -арной импульсной модуляцией. Еще одно преобразование на рис. 1.3, помеченное как Полосовая передача сигналов, разделено на два основных блока, когерентный и некогерентный. Демодуляция обычно выполняется с помощью опорных сигналов. При использовании известных сигналов в качестве меры всех параметров сигнала (особенно фазы) процесс демодуляции называется когерентным; когда информация о фазе не используется, процесс именуется некогерентным.

Канальное кодирование связано с методами, используемыми для улучшения цифровых сигналов, которые в результате становятся менее уязвимыми к таким факторам ухудшения качества, как шум, замирание и подавление сигнала. На рис. 1.3 канальное кодирование разделено на два блока, блок кодирования формой сигнала и блок структурированных последовательностей. Кодирование формой сигнала включает использование новых сигналов, привносящих улучшенное качество обнаружения по сравнению с исходным сигналом. Структурированные последовательности включают применение дополнительных битов для определения наличия ошибки, вызванной шумом в канале. Одна из таких технологий, автоматический запрос повторной передачи (automatic repeat request - ARQ), просто распознает появление ошибки и запрашивает отправителя повторно передать сообщение; другая технология, известная как прямая коррекция ошибок (forward error correction - FEC), позволяет автоматически исправлять ошибки (с определенными ограничениями). При рассмотрении структурированных последовательностей мы обсудим три распространенных метода - блочное, сверточное и турбокодирование.

В цифровой связи синхронизация включает вычисление как времени, так и частоты. Как показано на рис. 1.3, синхронизация выполняется на пяти уровнях. Эталонные частоты когерентных систем требуется синхронизировать с несущей (и возможно, поднесущей) по частоте и фазе. Для некогерентных систем синхронизация фазы не обязательна. Основной процесс синхронизации по времени - это символьная синхронизация (или битовая синхронизация для бинарных символов). Демодулятор и детектор должны знать, когда начинать и заканчивать процесс обнаружения символа и бита; ошибка синхронизации приводит к снижению эффективности обнаружения. Следующий уровень синхронизации по времени, кадровая синхронизация, позволяет перестраивать сообщения. И последний уровень, сетевая синхронизация, позволяет скоординировать действия с другими пользователями с целью эффективного использования ресурсов.

1.1.3. Основная терминология области цифровой связи

Ниже приведены некоторые основные термины, часто используемые в области цифровой связи.

Источник информации (information source). Устройство, передающее информацию посредством системы DCS. Источник информации может быть аналоговым или дискретным. Выход аналогового источника может принимать любое значение из непрерывного диапазона амплитуд, тогда как выход дискретного источника информации - значения из конечного множества амплитуд. Аналоговые источники информации преобразуются в цифровые посредством дискретизации или квантования. Методы дискретизации и квантования, называемые форматированием и кодированием источника (рис. 1.3).

Текстовое сообщение (textual message). Последовательность символов (рис. 1.4, а ). При цифровой передаче данных сообщение представляет собой последовательность цифр или символов, принадлежащих конечному набору символов или алфавиту.

Знак (Character). Элемент алфавита или набора символов (рис. 1.4, б ). Знаки могут отображаться в последовательность двоичных цифр. Существует несколько стандартизованных кодов, используемых для знакового кодирования, в том числе код ASCII (American Standard Code for Information Interchange - Американский стандартный код для обмена информацией), код EBCDIC (Extended Binary Coded Decimal Interchange Code - расширенный двоичный код обмена информацией), код Холлерита (Hollerith code), код Бодо (Baudot code), код Муррея (Murray code) и код (азбука) Морзе (Morse code).

Рис.1.4. Иллюстрация терминов: а) текстовые сообщения; б) символы;

в) поток битов(7-битовый код ASCII); г) символы , ;

д) полосовой цифровой сигнал

Двоичная цифра (binary digit) (бит) (bit). Фундаментальная единица информации для всех цифровых систем. Термин «бит» также используется как единица объема информации, что описывается в главе 9.

Поток битов (bit stream). Последовательность двоичных цифр (нулей и единиц). Поток битов часто называют узкополосным (baseband) сигналом; это подразумевает, что его спектральные составляющие размещены от (или около) постоянной составляющей до некоторого конечного значения, обычно не превышающего несколько мегагерц. На рис. 1.4, в сообщение «HOW» представлено с использованием семибитового кода ASCII, а поток битов показан в форме двухуровневых импульсов. Последовательность импульсов изображена посредством крайне стилизованных (идеально прямоугольных) сигналов с промежутками между соседними импульсами. В реальной системе импульсы никогда не будут выглядеть так, поскольку подобные промежутки абсолютно бесполезны. При данной скорости передачи данных промежутки увеличат ширину полосы, необходимую для передачи; или, при данной ширине полосы, они увеличат временную задержку, необходимую для получения сообщения.

Символ (symbol) (цифровое сообщение) (digital message). Символ - это группа из k бит, рассматриваемых как единое целое. Далее мы будем называть этот блок символом сообщения (message symbol) () из конечного набора символов или алфавита (рис. 1.4, г.) Размер алфавита М равен , где k - число битов в символе. При узкополосной передаче каждый из символов будет представлен одним из набора узкополосных импульсных сигналов . Иногда при передаче последовательности таких импульсов для выражения скорости передачи импульсов (скорости передачи символов) используется единица бод (baud). Для типичной полосовой (bandpass) передачи каждый импульс будет представляться одним из набора полосовых импульсных сигналов . Таким образом, для беспроводных систем символ посылается путем передачи цифрового сигнала в течение Т секунд. Следующий символ посылается в течение следующего временного интервала, Т . То, что набор символов, передаваемых системой DCS, является конечным, и есть главное отличие этих систем от систем аналоговой связи. Приемник DCS должен всего лишь определить, какой из М возможных сигналов был передан; тогда как аналоговый приемник должен точно определять значение, принадлежащее непрерывному диапазону сигналов.

Цифровой сигнал (digital waveform). Описываемый уровнем напряжения или тока, сигнал (импульс - для узкополосной передачи или синусоида - для полосовой передачи), представляющий цифровой символ. Характеристики сигнала (для импульсов - амплитуда, длительность и расположение или для синусоиды - амплитуда, частота и фаза) позволяют его идентифицировать как один из символов конечного алфавита. На рис. 1.4, д приведен пример полосового цифрового сигнала. Хотя сигнал является синусоидальным и, следовательно, имеет аналоговый вид, все же он именуется цифровым, поскольку кодирует цифровую информацию. На данном рисунке цифровое значение указывается посредством передачи в течение каждого интервала времени Т сигнала определенной частоты.

Скорость передачи данных (data rate). Эта величина в битах в секунду (бит/с) дается формулой (бит/с), где k бит определяют символ из - символьного алфавита, а Т - это длительность к -битового символа.

1.1.4. Цифровые и аналоговые критерии производительности

Принципиальное отличие систем аналоговой и цифровой связи связано со способом оценки их производительности. Сигналы аналоговых систем составляют континуум, так что приемник должен работать с бесконечным числом возможных сигналов. Критерием производительности аналоговых систем связи является точность, например отношение сигнал/шум, процент искажения или ожидаемая среднеквадратическая ошибка между переданным и принятым сигналами.

В отличие от аналоговых, цифровые системы связи передают сигналы, представляющие цифры. Эти цифры формируют конечный набор или алфавит, и этот набор известен приемнику априорно. Критерием качества цифровых систем связи является вероятность неверного обнаружения цифры или вероятность ошибки ().

1.2. Классификация сигналов

1.2.1. Детерминированные и случайные сигналы

Сигнал можно классифицировать как детерминированный (при отсутствии неопределенности относительно его значения в любой момент времени) или случайный, в противном случае. Детерминированные сигналы моделируются математическим выражением . Для случайного сигнала такое выражение написать невозможно. Впрочем, при наблюдении случайного сигнала (также называемого случайным процессом) в течение достаточно длительного периода времени, могут отмечаться некоторые закономерности, которые можно описать через вероятности и среднее статистическое. Такая модель, в форме вероятностного описания случайного процесса, особенно полезна для описания характеристик сигналов и шумов в системах связи.

1.2.2. Периодические и непериодические сигналы

Сигнал называется периодическим во времени, если существует постоянное , такое, что

для (1.2)

где через t обозначено время. Наименьшее значение , удовлетворяющее это условие, называется периодом сигнала . Период определяет длительность одного полного цикла функции . Сигнал, для которого не существует значения , удовлетворяющего уравнение (1.2), именуется непериодическим.

1.2.3. Аналоговые и дискретные сигналы

Аналоговый сигнал является непрерывной функцией времени, т.е. однозначно определяется для всех t . Электрический аналоговый сигнал возникает тогда, когда физический сигнал (например, речь) некоторым устройством преобразовывается в электрический. Для сравнения, дискретный сигнал является сигналом, существующим в дискретные промежутки времени; он характеризуется последовательностью чисел, определенных для каждого момента времени, кТ , где k - целое число, а Т - фиксированный промежуток времени.

1.2.4. Сигналы, выраженные через энергию или мощность

Электрический сигнал можно представить как изменение напряжения или тока с мгновенной мощностью , подаваемой на сопротивление R :

В системах связи мощность часто нормируется (предполагается, что сопротивление R равно 1 Ом, хотя в реальном канале оно может быть любым). Если требуется определить действительное значение мощности, оно получается путем «денормирования» нормированного значения. В нормированном случае уравнения (1.3,а) и (1.3,6) имеют одинаковый вид. Следовательно, вне зависимости от того, представлен сигнал через напряжение или ток, нормированная форма позволяет нам выразить мгновенную мощность как

где - это либо напряжение, либо ток. Рассеивание энергии в течение промежутка времени () реального сигнала с мгновенной мощностью, полученной с помощью уравнения (1.4), может быть записано следующим образом.

(1.5)

Средняя мощность, рассеиваемая сигналом в течение этого интервала, равна следующему.

(1.6)

Производительность системы связи зависит от энергии принятого сигнала; сигналы с более высокой энергией обнаруживаются более достоверно (с меньшим числом ошибок) - работу по обнаружению выполняет принятая энергия. С другой стороны, мощность - это скорость поступления энергии. Этот момент важен по нескольким причинам. Мощность определяет напряжение, которое необходимо подать на передатчик, и напряженность электромагнитных полей, которые следует учитывать в радиосистемах (т.е. поля в волноводах, соединяющих передатчик с антенной, и поля вокруг излучающих элементов антенны).

При анализе сигналов связи зачастую желательно работать с энергией сигнала. Будем называть энергетическим сигналом тогда и только тогда, когда он в любой момент времени имеет ненулевую конечную энергию (), где

(1.7)

В реальной ситуации мы всегда передаем сигналы с конечной энергией (). Впрочем, для описания периодических сигналов, которые по определению (уравнение (1.2)) существуют всегда и, следовательно, имеют бесконечную энергию, и для работы со случайными сигналами, также имеющими неограниченную энергию, удобно определить класс сигналов, выражаемых через мощность. Итак, сигнал удобно представить с использованием мощности, если он является периодическим и в любой момент времени имеет ненулевую конечную мощность (), где

(1.8)

Определенный сигнал можно отнести либо к энергетическому, либо периодическому. Энергетический сигнал имеет конечную энергию, но нулевую среднюю мощность, тогда как периодический сигнал имеет нулевую среднюю мощность, но бесконечную энергию. Сигнал в системе может выражаться либо через его энергетические, либо периодические значения. Общее правило: периодические и случайные сигналы выражаются через мощность, а сигналы, являющиеся детерминированными и непериодическими, - через энергию .

Энергия и мощность сигнала - это два важных параметра в описании системы связи. Классификация сигнала либо как энергетического, либо как периодического является удобной моделью, облегчающей математическую трактовку различных сигналов и шумов. В разделе 3.1.5 эти идеи развиваются в контексте цифровых систем связи.

1.2.5. Единичная импульсная функция

Полезной функцией в теории связи является единичный импульс, или дельта-функция Дирака . Импульсная функция - это абстракция, импульс с бесконечно большой амплитудой, нулевой шириной и единичным весом (площадью под импульсом), сконцентрированный в точке, в которой значение его аргумента равно нулю. Единичный импульс задается следующими соотношениями.

Не ограничена в точке (1.11)

(1.12)

Единичный импульс - это не функция в привычном смысле этого слова. Если входит в какую-либо операцию, его удобно считать импульсом конечной амплитуды, единичной площади и ненулевой длительности, после чего нужно рассмотреть предел при стремлении длительности импульса к нулю. Графически можно изобразить как пик, расположенный в точке , высота которого равна интегралу от него или его площади. Таким образом, с постоянной А представляет импульсную функцию, площадь которой (или вес) равна А , а значение везде нулевое, за исключением точки .

Уравнение (1.12) известно как просеивающее (или квантующее) свойство единичной импульсной функции; интеграл от единичного импульса и произвольной функции дает выборку функции в точке .

1.3. Спектральная плотность

Спектральная плотность (spectral density) характеристик сигнала - это распределение энергии или мощности сигнала по диапазону частот. Особую важность это понятие приобретает при рассмотрении фильтрации в системах связи. Мы должны иметь возможность оценить сигнал и шум на выходе фильтра. При проведении подобной оценки используется спектральная плотность энергии (energy spectral density - ESD) или спектральная плотность мощности (power spectral density - PSD).

1.3.1. Спектральная плотность энергии

Общая энергия действительного энергетического сигнала , определенного в интервале описывается уравнением (1.7). Используя теорему Парсеваля , мы можем связать энергию такого сигнала, выраженную во временной области, с энергией, выраженной в частотной области:

, (1.13)

где - Фурье-образ непериодического сигнала . (Краткие сведения об анализе Фурье можно найти в приложении А.) Обозначим через прямоугольный амплитудный спектр, определенный как

(1.14)

Величина является спектральной плотностью энергии (ESD) сигнала . Следовательно, из уравнения (1.13) можно выразить общую энергию путем интегрирования спектральной плотности по частоте.

(1.15)

Данное уравнение показывает, что энергия сигнала равна площади под на графике в частотной области. Спектральная плотность энергии описывает энергию сигнала на единицу ширины полосы и измеряется в Дж/Гц. Положительные и отрицательные частотные компоненты дают равные энергетические вклады, поэтому, для реального сигнала , величина представляет собой четную функцию частоты. Следовательно, спектральная плотность энергии симметрична по частоте относительно начала координат, а общую энергию сигнала можно выразить следующим образом.

(1.16)

1.3.2. Спектральная плотность мощности

Средняя мощность действительного сигнала в периодическом представлении определяется уравнением (1.8). Если - это периодический сигнал с периодом , он классифицируется как сигнал в периодическом представлении. Выражение для средней мощности периодического сигнала дается формулой (1.6), где среднее по времени берется за один период .

(1.17,а)

Теорема Парсеваля для действительного периодического сигнала имеет вид

, (1.17,б)

где члены являются комплексными коэффициентами ряда Фурье для периодического сигнала (см. приложение А).

Чтобы использовать уравнение (1.17,6), необходимо знать только значение коэффициентов . Спектральная плотность мощности (PSD) периодического сигнала , которая является действительной, четной и неотрицательной функцией частоты и дает распределение мощности сигнала по диапазону частот, определяется следующим образом.

(1.18)

Уравнение (1.18) определяет спектральную плотность мощности периодического сигнала как последовательность взвешенных дельта-функций. Следовательно, PSD периодического сигнала является дискретной функцией частоты. Используя PSD, определенную в уравнении (1.18), можно записать среднюю нормированную мощность действительного сигнала.

(1.19)

Уравнение (1.18) описывает PSD только периодических сигналов. Если - непериодический сигнал, он не может быть выражен через ряд Фурье; если он является непериодическим сигналом в периодическом представлении (имеющим бесконечную энергию), он может не иметь Фурье-образа. Впрочем, мы по-прежнему можем выразить спектральную плотность мощности таких сигналов в пределе. Если сформировать усеченную версию непериодического сигнала в периодическом представлении , взяв для этого только его значения из интервала (), то будет иметь конечную энергию и соответствующий Фурье-образ . Можно показать , что спектральная плотность мощности непериодического сигнала определяется как предел.

(1.20)

Пример 1.1. Средняя нормированная мощность

а) Найдите среднюю нормированную мощность сигнала , используя усреднение по времени.

б) Выполните п. а путем суммирования спектральных коэффициентов.

Решение

а) Используя уравнение (1.17,а), имеем следующее.

б) Используя уравнения (1.18) и (1.19), получаем следующее.

(см. приложение А)

1.4. Автокорреляция

1.4.1. Автокорреляция энергетического сигнала

Корреляция - это процесс согласования; автокорреляцией называется согласование сигнала с собственной запаздывающей версией. Автокорреляционная функция действительного энергетического сигнала определяется следующим образом.

для (1.21)

Автокорреляционная функция дает меру похожести сигнала с собственной копией, смещенной на единиц времени. Переменная играет роль параметра сканирования или поиска. - это не функция времени; это всего лишь функция разности времен между сигналом и его смещенной копией.

Автокорреляционная функция действительного энергетического сигнала имеет следующие свойства.

1.

3. автокорреляция и ESD являются Фурье-образами друг друга, что обозначается двусторонней стрелкой

4. значение в нуле равно энергии сигнала

При удовлетворении пп. 1-3 является автокорреляционной функцией. Условие 4 - следствие условия 3, поэтому его не обязательно включать в основной набор для проверки на автокорреляционную функцию.

1.4.2. Автокорреляция периодического сигнала

Автокорреляция действительного периодического сигнала определяется следующим образом.

для (1.22)

Если сигнал является периодическим с периодом , среднее по времени в уравнении (1.22) можно брать по одному периоду , а автокорреляцию выражать следующим образом.

для (1.23)

Автокорреляция периодического сигнала, принимающего действительные значения, имеет свойства, сходные со свойствами энергетического сигнала.

1. симметрия по относительно нуля

2. для всех максимальное значение в нуле

3. автокорреляция и ESD являются Фурье-образами друг друга

4.

1.5. Случайные сигналы

Основной задачей системы связи является передача информации по каналу связи. Все полезные сигналы сообщений появляются случайным образом, т.е. приемник не знает заранее, какой из возможных символов сообщений будет передан. Кроме того, вследствие различных электрических процессов возникают шумы, которые сопровождают информационные сигналы. Следовательно, нам нужен эффективный способ описания случайных сигналов.

1.5.1. Случайные переменные

Пусть случайная переменная Х(А) представляет функциональное отношение между случайным событием А и действительным числом. Для удобства записи обозначим случайную переменную через X , а ее функциональную зависимость от А будем считать явной. Случайная переменная может быть дискретной или непрерывной. Распределение случайной переменной X находится выражением:

, (1.24)

где - вероятность того, что значение принимаемой; случайной переменной X меньше действительного числа х или равно ему. Функция распределения имеет следующие свойства.

2. если

Еще одной полезной функцией, связанной со случайной переменной X , является плотность вероятности, которая записывается следующим образом.

(1.25,а)

Как и в случае функции распределения, плотность вероятности - это функция действительного числа х . Название «функция плотности» появилось вследствие того, что вероятность события равна следующему.

Используя уравнение (1.25,6), можно приближенно записать вероятность того, что случайная переменная X имеет значение, принадлежащее очень малому промежутку между и .

Таким образом, в пределе при , стремящемся к нулю, мы можем записать следующее.

Плотность вероятности имеет следующие свойства.

2. .

Таким образом, плотность вероятности всегда неотрицательна и имеет единичную площадь. В тексте книги мы будем использовать запись для обозначения плотности вероятности для непрерывной случайной переменной. Для удобства записи мы часто будем опускать индекс X и писать просто . Если случайная переменная X может принимать только дискретные значения, для обозначения плотности вероятности мы будем использовать запись .

1.5.1.1. Среднее по ансамблю

Среднее значение (mean value) , или математическое ожидание (expected value), случайной переменной X определяется выражением

, (1.26)

где именуется оператором математического ожидания (expected value operator). Моментом n -го порядка распределения вероятностей случайной переменной X называется следующая величина.

(1.27)

Для анализа систем связи важны первые два момента переменной X . Так, при n =1 уравнение (1.27) дает момент , рассмотренный выше, а при n = 1 - среднеквадратическое значение X .

(1.28)

Можно также определить центральные моменты, представляющие собой моменты разности X и . Центральный момент второго порядка (называемый также дисперсией) равен следующему.

Дисперсия X также записывается как , а квадратный корень из этой величины, , называется среднеквадратическим отклонением X . Дисперсия - это мера «разброса» случайной переменной X . Задание дисперсии случайной переменной ограничивает ширину функции плотности вероятности. Дисперсия и среднеквадратическое значение связаны следующим соотношением.

Таким образом, дисперсия равна разности среднеквадратического значения и квадрата среднего значения.

1.5.2. Случайные процессы

Случайный процесс можно рассматривать как функцию двух переменных: события А и времени. На рис. 1.5 представлен пример случайного процесса. Показаны N выборочных функций времени . Каждую из выборочных функций можно рассматривать как выход отдельного генератора шума. Для каждого события имеем единственную функцию времени (т.е. выборочную функцию). Совокупность всех выборочных функций называется ансамблем. В любой определенный момент времени , - это случайная переменная , значение которой зависит от события. И последнее, для конкретного события и для конкретного момента времени , - это обычное число. Для удобства записи будем обозначать случайный процесс через X(t) , а функциональную зависимость от А будем считать явной.

Рис.1.5. Случайный процесс шума

1.5.2.1. Статистическое среднее случайного процесса

Поскольку значение случайного процесса в каждый последующий момент времени неизвестно, случайный процесс, функции распределения которого непрерывны, можно описать статистически через плотность вероятности. Вообще, в различные моменты времени эта функция для случайного процесса будет иметь разный вид. В большинстве случаев эмпирически определить распределение вероятностей случайного процесса нереально. В то же время для нужд систем связи часто достаточно частичного описания, включающего среднее и функцию автокорреляции. Итак, определим среднее случайного процесса X(t) как

, (1.30)

где - случайная переменная, полученная при рассмотрении случайного процесса в момент времени , a - плотность вероятности (плотность по ансамблю событий в момент времени ).

Определим автокорреляционную функцию случайного процесса X(t) как функцию двух переменных и

где и - случайные переменные, получаемые при рассмотрении X(t) в моменты времени и соответственно. Автокорреляционная функция - это мера связи двух временных выборок одного случайного процесса.

1.5.2.2. Стационарность

Случайный процесс X(t) называется стационарным в строгом смысле, если ни на одну из его статистик не влияет перенос начала отсчета времени. Случайный процесс именуется стационарным в широком смысле, если две его статистики, среднее и автокорреляционная функция, не меняются при переносе начала отсчета времени. Таким образом, процесс является стационарным в широком смысле, если

Стационарность в строгом смысле подразумевает стационарность в широком смысле, но не наоборот. Большинство полезных результатов теории связи основывается на предположении, что случайные информационные сигналы и шум являются стационарными в широком смысле. С практической точки зрения случайный процесс не обязательно всегда должен быть стационарным, достаточно стационарности в некотором наблюдаемом интервале времени, представляющем практический интерес.

Для стационарных процессов автокорреляционная функция в уравнении (1.33) зависит не от времени, а только от разности . Иными словами, все пары значений X(t) в моменты времени, разделенные промежутком , имеют одинаковое корреляционное значение. Следовательно, для стационарных систем функцию можно записывать просто как .

1.5.2.3. Автокорреляция случайных процессов, стационарных в широком смысле

Как дисперсия предлагает меру случайности для случайных переменных, так и автокорреляционная функция предлагает подобную меру для случайных процессов. Для процессов, стационарных в широком смысле, автокорреляционная функция зависит только от разности времен .

Для стационарного в широком смысле процесса с нулевым средним, функция показывает, насколько статистически коррелируют случайные величины процесса, разделенные секундами. Другими словами, дает информацию о частотной характеристике, связанной со случайным процессом. Если меняется медленно по мере увеличения от нуля до некоторого значения, это показывает, что в среднем выборочные значения X(t) , взятые в моменты времени и , практически равны. Следовательно, мы вправе ожидать, что в частотном представлении X(t) будут преобладать низкие частоты. С другой стороны, если быстро уменьшается по мере увеличения , стоит ожидать, что X(t) будет быстро меняться по времени и, следовательно, будет включать преимущественно высокие частоты.

Автокорреляционная функция стационарного в широком смысле процесса, принимающего действительные значения, имеет следующие свойства.

1. симметрия по относительно нуля

2. для всех максимальное значение в нуле

3. автокорреляция и спектральная плотность мощности являются Фурье-образами друг друга

4. значение в нуле равно средней мощности сигнала

1.5.3. Усреднение по времени и эргодичность

Для вычисления и путем усреднения по ансамблю нам нужно усреднить их по всем выборочным функциям процесса, и, значит, нам потребуется полная информация о взаимном распределении функций плотности вероятности в первом и втором приближениях. В общем случае, как правило, такая информация недоступна.

Если случайный процесс принадлежит к особому классу, называемому классом эргодических процессов, его среднее по времени равно среднему по ансамблю и статистические свойства процесса можно определить путем усреднения по времени одной выборочной функции процесса. Чтобы случайный процесс был эргодическим, он должен быть стационарным в строгом смысле (обратное не обязательно). Впрочем, для систем связи, где нам достаточно стационарности в широком смысле, нас интересуют только среднее и автокорреляционная функция.

Говорят, что случайный процесс является эргодическим по отношению к среднему значению, если

(1.35)

и эргодическим по отношению к автокорреляционной функции, если

(1.36)

Проверка случайного процесса на эргодичность обычно весьма непроста. На практике, как правило, используется интуитивное предположение о целесообразности замены средних по ансамблю средними по времени. При анализе большинства сигналов в каналах связи (при отсутствии импульсных эффектов) разумным будет предположение, что случайные сигналы являются эргодическими по отношению к автокорреляционной функции. Поскольку для эргодических процессов средние по времени равны средним по ансамблю, фундаментальные электротехнические параметры, такие как амплитуда постоянной составляющей, среднеквадратическое значение и средняя мощность, могут быть связаны с моментами эргодического случайного процесса.

1. Величина равна постоянной составляющей сигнала.

2. Величина равна нормированной мощности постоянной составляющей.

3. Момент второго порядка X(t) , , равен общей средней нормированной мощности.

4. Величина равна среднеквадратическому значению сигнала, выраженного через ток или напряжение.

5. Дисперсия равна средней нормированной мощности переменного сигнала.

6. Если среднее процесса равно нулю (т.е. ), то , а дисперсия равна среднеквадратическому значению или (другая формулировка) дисперсия представляет общую мощность в нормированной нагрузке.

7. Среднеквадратическое отклонение является среднеквадратическим значением переменного сигнала.

8. Если , то - это среднеквадратическое значение сигнала.

1.5.4. Спектральная плотность мощности и автокорреляция случайного процесса

Случайный процесс X(t) можно отнести к периодическому сигналу, имеющему такую спектральную плотность мощности , как указано в уравнении (1.20). Функция особенно полезна в системах связи, поскольку она описывает распределение мощности сигнала по диапазону частот. Спектральная плотность мощности позволяет оценить мощность сигнала, который будет передаваться через сеть с известными частотными характеристиками. Основные свойства функций спектральной плотности мощности можно сформулировать следующим образом.

1. всегда принимает действительные значения

2. для X(t) , принимающих действительные значения

3. автокорреляция и спектральная плотность мощности являются Фурье-образами друг друга

4. связь между средней нормированной мощностью и спектральной плотностью мощности

На рис. 1.6 приведено визуальное представление автокорреляционной функции и функции спектральной плотности мощности. Что означает термин «корреляция»? Когда мы интересуемся корреляцией двух явлений, спрашиваем, насколько близко они соотносятся по поведению или виду и насколько они совпадают. В математике автокорреляционная функция сигнала (во временной области) описывает соответствие сигнала самому себе, смещенному на некоторый промежуток времени. Точная копия считается созданной и локализированной на минус бесконечности. Затем мы последовательно перемещаем копию в положительном направлении временной оси и задаем вопрос, насколько они (исходная версия и копия) соответствуют друг другу. Затем мы перемещаем копию еще на один шаг в положительном направлении и задаем вопрос, насколько они совпадают теперь, и т.д. Корреляция между двумя сигналами изображается как функция времени, обозначаемого ; при этом время можно рассматривать как параметр сканирования.

На рис. 1.6, а-г изображена описанная выше ситуация в некоторые моменты времени. Рис. 1.6, а иллюстрирует отдельный сигнал стационарного в широком смысле случайного процесса X(t) . Сигнал представляет собой случайную двоичную последовательность с положительными и отрицательными (биполярными) импульсами единичной амплитуды. Положительные и отрицательные импульсы появляются с равной вероятностью. Длительность каждого импульса (двоичной цифры) равна Т секунд, а среднее, или величина постоянной составляющей случайной последовательности, равно нулю. На рис. 1.6, б показана та же последовательность, смещенная во времени на секунд. Согласно принятым обозначениям, эта последовательность обозначается . Предположим, что процесс X(t) является эргодическим по отношению к автокорреляционной функции, поэтому для нахождения мы можем использовать усреднение по времени вместо усреднения по ансамблю. Значение получается при перемножении двух последовательностей X(t) и с последующим нахождением среднего с помощью уравнения (1.36), которое справедливо для эргодических процессов только в пределе. Впрочем, интегрирование по целому числу периодов может дать нам некоторую оценку . Отметим, что может быть получено при смещении X(t) как в положительном, так и отрицательном направлении. Подобный случай иллюстрирует рис. 1.6, в , на котором использована исходная выборочная последовательность (рис. 1.6, а ) и ее смещенная копия (рис. 1.6, б ). Заштрихованные области под кривой произведения вносят положительный вклад в произведение, а серые области - отрицательный. Интегрирование по времени передачи импульсов дает точку на кривой . Последовательность может далее смещаться на и каждое такое смещение будет давать точку на общей автокорреляционной функции , показанной на рис. 1.6, г . Иными словами, каждой случайной последовательности биполярных импульсов соответствует автокорреляционная точка на общей кривой, приведенной на рис. 1.6, г . Максимум функции находится в точке (наилучшее соответствие имеет место при , равном нулю, поскольку для всех ), и функция спадает по мере роста . На рис. 1.6, г показаны точки, соответствующие и .

Аналитическое выражение для автокорреляционной функции , приведенной на рис. 1.6, г , имеет следующий вид .

(1.37)

Отметим, что автокорреляционная функция дает нам информацию о частоте; она сообщает нам кое-что о полосе сигнала. В то же время автокорреляция - это временная функция; в формуле (1.37) отсутствуют члены, зависящие от частоты. Так как же она дает нам информацию о полосе сигнала?

Рис.1.6. Автокорреляция и спектральная плотность мощности

Рис.1.6. Автокорреляция и спектральная плотность мощности (окончание)

Предположим, что сигнал перемещается очень медленно (сигнал имеет малую ширину полосы). Если мы будем смещать копию сигнала вдоль оси , задавая на каждом этапе смещения вопрос, насколько соответствуют друг другу копия и оригинал, соответствие достаточно долго будет довольно сильным. Другими словами, треугольная автокорреляционная функция (рис. 1.6, г и формула 1.37) будет медленно спадать с ростом . Предположим теперь, что сигнал меняется достаточно быстро (т.е. имеем большую полосу). В этом случае даже небольшое изменение приведет к тому, что корреляция будет нулевой и автокорреляционная функция будет иметь очень узкую форму. Следовательно, сравнение автокорреляционных функций по форме дает нам некоторую информацию о ширине полосы сигнала. Функция спадает постепенно? В этом случае имеем сигнал с узкой полосой. Форма функции напоминает узкий пик? Тогда сигнал имеет широкую полосу.

Автокорреляционная функция позволяет явно выражать спектральную плотность мощности случайного сигнала. Поскольку спектральная плотность мощности и автокорреляционная функция являются Фурье-образами друг друга, спектральную плотность мощности, , случайной последовательности биполярных импульсов можно найти как Фурье-преобразование функции , аналитическое выражение которой дано в уравнении (1.37). Для этого можно использовать табл. А.1. Заметим, что

(1.38)

Общий вид функции показан на рис. 1.6, д .

Отметим, что площадь под кривой спектральной плотности мощности представляет собой среднюю мощность сигнала. Одной из удобных мер ширины полосы является ширина основного спектрального лепестка (см. раздел 1.7.2). На рис. 1.6, д показано, что ширина полосы сигнала связана с обратной длительностью символа или шириной импульса. Рис. 1.6, е-к формально повторяют рис. 1.6, а-д , за исключением того, что на последующих рисунках длительность импульса меньше. Отметим, что для более коротких импульсов функция .уже (рис. 1.6, и ), чем для более длительных (рис. 1.6, г ). На рис. 1.6, и ; другими словами, в случае меньшей длительности импульса смещения на , достаточно для создания нулевого соответствия или для полной потери корреляции между смещенными последовательностями. Поскольку на рис. 1.6, е длительность импульса Т меньше (выше скорость передачи импульса), чем на рис. 1.6, а , занятость полосы на рис. 1.6, к больше занятости полосы для более низкой частоты импульсов, показанной на рис. 1.6, д .

1.5.5. Шум в системах связи

Термин «шум» обозначает нежелательные электрические сигналы, которые всегда присутствуют в электрических системах. Наличие шума, наложенного на сигнал, «затеняет», или маскирует, сигнал; это ограничивает способность приемника принимать точные решения о значении символов, а следовательно, ограничивает скорость передачи информации. Природа шумов различна и включает как естественные, так и искусственные источники. Искусственные шумы - это шумы искрового зажигания, коммутационные импульсные помехи и шумы от других родственных источников электромагнитного излучения. Естественные шумы исходят от атмосферы, солнца и других галактических источников.

Хорошее техническое проектирование может устранить большинство шумов или их нежелательные эффекты посредством фильтрации, экранирования, выбора модуляции и оптимального местоположения приемника. Например, чувствительные радиоастрономические измерения проводятся, как правило, в отдаленных пустынных местах, вдали от естественных источников шума. Впрочем, существует один естественный шум, называемый тепловым, который устранить нельзя. Тепловой шум вызывается тепловым движением электронов во всех диссипативных компонентах - резисторах, проводниках и т.п. Те же электроны, которые отвечают за электропроводимость, являются причиной теплового шума.

Тепловой шум можно описать как гауссов случайный процесс с нулевым средним. Гауссов процесс n(t) - это случайная функция, значение которой и в произвольный момент времени t статистически характеризуется гауссовой функцией плотности вероятностей:

, (1.40)

где - дисперсия n . Нормированная гауссова функция плотности процесса с нулевым средним получается в предположении, что . Схематически нормированная функция плотности вероятностей показана на рис. 1.7.

Здесь - случайный сигнал, а - сигнал в канале связи, а n - случайная переменная, выражающая гауссов шум. Тогда функция плотности вероятности выражается как

, (1.41)

где, как и выше, - дисперсия n .

Рис.1.7. Нормированная () гауссова функция плотности вероятности

Гауссово распределение часто используется как модель шума в системе, поскольку существует центральная граничная теорема , утверждающая, что при весьма общих условиях распределение вероятностей суммы j статистически независимых случайных переменных подчиняется гауссовому распределению , причем вид отдельных функций распределения не имеет значения. Таким образом, даже если отдельные механизмы шума будут иметь негауссово распределение, совокупность многих таких механизмов будет стремиться к гауссовому распределению.

1.5.5.1. Белый шум

Основной спектральной характеристикой теплового шума является то, что его спектральная плотность мощности одинакова для всех частот, представляющих интерес для большинства систем связи; другими словами, источник теплового шума на всех частотах излучает с равной мощностью на единицу ширины полосы - от постоянной составляющей до частоты порядка Гц. Следовательно, простая модель теплового шума предполагает, что его спектральная плотность мощности равномерна для всех частот, как показано на рис. 1.8, а , и записывается в следующем виде.

(1.42)

Здесь коэффициент 2 включен для того, чтобы показать, что - двусторонняя спектральная плотность мощности. Когда мощность шума имеет такую единообразную спектральную плотность, мы называем этот шум белым. Прилагательное «белый» используется в том же смысле, что и для белого света, содержащего равные доли всех частот видимого диапазона электромагнитного излучения.

Рис.1.8. Белый шум: а) спектральная плотность мощности;

б) автокорреляционная функция

Автокорреляционная функция белого шума дается обратным преобразованием Фурье спектральной плотности мощности шума (см. табл. А.1) и записывается следующим образом.

(1.43)

Таким образом, автокорреляция белого шума - это дельта-функция, взвешенная множителем и находящаяся в точке , как показано на рис. 1.8, б . Отметим, что равна нулю для , т.е. две различные выборки белого шума не коррелируют, вне зависимости от того, насколько близко они находятся.

Средняя мощность белого шума бесконечна, поскольку бесконечна ширина полосы белого шума. Это можно увидеть, получив из уравнений (1.19) и (1.42) следующее выражение.

(1.44)

Хотя белый шум представляет собой весьма полезную абстракцию, ни один процесс шума в действительности не может быть белым; впрочем, шум, появляющийся во многих реальных системах, можно предположительно считать белым. Наблюдать такой шум мы можем только после того, как он пройдет через реальную систему, имеющую конечную ширину полосы. Следовательно, пока ширина полосы шума существенно больше ширины полосы, используемой системой, можно считать, что шум имеет бесконечную ширину полосы.

Дельта-функция в уравнении (1.43) означает, что сигнал шума n(t) абсолютно не коррелирует с собственной смещенной версией для любого . Уравнение (1.43) показывает, что любые две выборки процесса белого шума не коррелируют. Поскольку тепловой шум - это гауссов процесс и его выборки не коррелируют, выборки шума также являются независимыми . Таким образом, воздействие канала с аддитивным белым гауссовым шумом на процесс обнаружения состоит в том, что шум независимо воздействует на каждый переданный символ. Такой канал называется каналом без памяти. Термин «аддитивный» означает, что шум просто накладывается на сигнал или добавляется к нему - никаких мультипликативных механизмов не существует.

Поскольку тепловой шум присутствует во всех системах связи и для большинства систем является заметным источником шума, характеристики теплового шума (аддитивный, белый и гауссов) часто применяются для моделирования шума в системах связи. Поскольку гауссов шум с нулевым средним полностью характеризуется его дисперсией, эту модель особенно просто использовать при обнаружении сигналов и проектировании оптимальных приемников. В данной книге мы будем считать (если не оговорено противное), что система подвергается искажению со стороны аддитивного белого гауссового шума с нулевым средним, хотя иногда такое упрощение будет чересчур сильным.

1.6. Передача сигнала через линейные системы

После того как мы разработали набор моделей для сигнала и шума, рассмотрим характеристики систем и их воздействие на сигналы и шумы. Поскольку систему с равным успехом можно охарактеризовать как в частотной, так и во временной области, в обоих случаях были разработаны методы, позволяющие анализировать отклик линейной системы на произвольный входной сигнал. Сигнал, поданный на вход системы (рис. 1.9), можно описать либо как временной сигнал, , либо через его Фурье-образ, . Использование временного анализа дает временной выход , и в процессе будет определена функция , импульсная характеристика, или импульсный отклик, сети. При рассмотрении ввода в частотной области мы должны определить для системы частотную характеристику, или передаточную функцию , которая определит частотный выход . Предполагается, что система линейна и инвариантна относительно времени. Также предполагается, что система не имеет скрытой энергии на момент подачи сигнала на вход.

Рис.1.9. Линейная система и её ключевые параметры

1.6.1. Импульсная характеристика

Линейная, инвариантная относительно времени система или сеть, показанная на рис. 1.9, описывается (во временной области) импульсной характеристикой , представляющей собой реакцию системы при подаче на ее вход единичного импульса .

Рассмотрим термин «импульсный отклик», крайне подходящий для данного события. Описание характеристик системы через ее импульсный отклик имеет прямую физическую интерпретацию. На вход системы мы подаем единичный импульс (нереальный сигнал, имеющий бесконечную амплитуду, нулевую ширину и единичную площадь), как показано на рис. 1.10, а . Подачу такого импульса в систему можно рассматривать как «мгновенный удар». Как отреагирует («откликнется») система на такое применение силы (импульс)? Выходящий сигнал - это и есть импульсный отклик системы. (Возможный вид этого отклика показан на рис. 1.10, б .)

Отклик сети на произвольный сигнал является сверткой с , что записывается следующим образом.

(1.46)

Рис.1.10. Иллюстрация понятия «импульсный отклик»: а) входной сигнал является единичной импульсной функцией; б) выходной сигнал - импульсным откликом системы

Здесь знак «*» обозначает операцию свертки (см. раздел А.5). Система предполагается причинной, что означает отсутствие сигнала на выходе до момента времени , когда сигнал подается на вход. Следовательно, нижняя граница интегрирования может быть взята равной нулю, и выход можно выразить несколько иначе.

(1.47,а)

или в виде

(1.47,б)

Выражения в уравнениях (1.46) и (1.47) называются интегралами свертки. Свертка (convolution) - это фундаментальный математический аппарат, играющий важную роль в понимании всех систем связи. Если читатель не знаком с этой операцией, ему стоит обратиться к разделу А.5, где приводится вывод уравнений (1.46) и (1.47).

1.6.2. Частотная передаточная функция

Частотный выходной сигнал получаем при применении преобразования Фурье к обеим частям уравнения (1.46). Поскольку свертка во временной области превращается в умножение в частотной (и наоборот), из уравнения (1.46) получаем следующее.

(Подразумевается, конечно, что для всех .) Здесь , Фурье-образ импульсного отклика, называемый частотной передаточной функцией, частотной характеристикой, или частотным откликом сети. Вообще, функция является комплексной и может быть записана как

, (1.50)

где - модуль отклика. Фаза отклика определяется следующим образом.

(1.51)

(и обозначают действительную и мнимую части аргумента.)

Частотная передаточная функция линейной, инвариантной относительно времени сети может легко измеряться в лабораторных условиях - в сети с генератором гармонических колебаний на входе и осциллографом на выходе. Если входной сигнал выразить как

,

то выход можно записать следующим образом.

Входная частота смещается на интересующее нас значение; таким образом, измерения на входе и выходе позволяют определить вид .

1.6.2.1. Случайные процессы и линейные системы

Если случайный процесс формирует вход линейной, инвариантной относительно времени системы, то на выходе этой системы получим также случайный процесс. Иными словами, каждая выборочная функция входного процесса дает выборочную функцию выходного процесса. Входная спектральная плотность мощности и выходная спектральная плотность мощности связаны следующим соотношением.

(1.53)

Уравнение (1.53) предоставляет простой способ нахождения спектральной плотности мощности на выходе линейной, инвариантной относительно времени системы при подаче на вход случайного процесса.

В главах 3 и 4 мы рассмотрим обнаружение сигналов в гауссовом шуме. Основное свойство гауссовых процессов будет применено к линейной системе. Будет показано, что если гауссов процесс подается на инвариантный относительно времени линейный фильтр, то случайный процесс , поступающий на выход, также является гауссовым .

1.6.3. Передача без искажений

Что необходимо для того, чтобы сеть вела себя как идеальный канал передачи? Сигнал на выходе идеального канала связи может запаздывать по отношению к сигналу на входе; кроме того, эти сигналы могут иметь различные амплитуды (простое изменение масштаба), но что касается всего остального - сигнал не должен быть искажен, т.е. он должен иметь ту же форму, что и сигнал на входе. Следовательно, для идеальной неискаженной передачи выходной сигнал мы можем описать как

, (1.54)

где и - константы. Применив к обеим частям преобразование Фурье (см. раздел А.3.1), имеем следующее.

(1.55)

Подставляя выражение (1.55) в уравнение (1.49), видим, что необходимая передаточная функция системы для передачи без искажений имеет следующий вид.

(1.56)

Следовательно, для получения идеальной передачи без искажений общий отклик системы должен иметь постоянный модуль, а сдвиг фаз должен быть линейным по частоте. Недостаточно, чтобы система равно усиливала или ослабляла все частотные компоненты. Все гармоники сигнала должны поступать на выход с одинаковым запаздыванием, чтобы их можно было просуммировать. Поскольку запаздывание связано со сдвигом фаз и циклической частотой соотношением

, (1.57,а)

очевидно, что, для того чтобы запаздывание всех компонентов было одинаковым, сдвиг фаз должен быть пропорционален частоте. Для измерения искажения сигнала, вызванного запаздыванием, часто используется характеристика, называемая групповой задержкой; она определяется следующим образом.

(1.57,б)

Таким образом, для передачи без искажений имеем два эквивалентных требования: фаза должна быть линейной по частоте или групповая задержка должна быть равна константе. На практике сигнал будет искажаться при проходе через некоторые части системы. Для устранения этого искажения в систему могут вводиться схемы коррекции фазы или амплитуды (выравнивания). Вообще, искажение - это общая характеристика ввода-вывода системы, определяющая ее производительность.

1.6.3.1. Идеальный фильтр

Построить идеальную сеть, описываемую уравнением (1.56), нереально. Проблема заключается в том, что в уравнении (1.56) предполагается бесконечная ширина полосы, причем ширина полосы системы определяется интервалом положительных частот, в которых модуль имеет заданную величину. (Вообще, существует несколько мер ширины полосы; самые распространенные перечислены в разделе 1.7.) В качестве приближения к идеальной сети с бесконечной шириной полосы выберем усеченную сеть, без искажения пропускающую все гармоники с частотами между и где - нижняя частота среза, а - верхняя, как показано на рис. 1.11. Все подобные сети называются идеальными фильтрами. Предполагается, что вне диапазона , который называется полосой пропускания (passband), амплитуда отклика идеального фильтра равна нулю. Эффективная ширина полосы пропускания определяется шириной полосы фильтра и составляет Гц.

Если и , фильтр называется пропускающим (рис. 1.11, а ). Если и имеет конечное значение, он именуется фильтром нижних частот (рис. 1.11, б ). Если имеет ненулевое значение и , он называется фильтром верхних частот (рис. 1.11, в ).

Рис.1.11. Передаточная функция идеальных фильтров: а) идеальный пропускающий фильтр; б) идеальный фильтр нижних частот; в) идеальный фильтр нижних частот

Используя уравнение (1.59) и полагая для идеального фильтра нижних частот с шириной полосы Гц, показанной на рис. 1.11, б , можно записать передаточную функцию следующим образом.

(1.58)

Импульсный отклик идеального фильтра нижних частот, показанный на рис. 1.12, выражается следующей формулой.

Рис.1.12. Импульсный отклик идеального фильтра нижних частот

где функция определена в уравнении (1.39). Импульсный отклик, показанный на рис. 1.12, является непричинным; это означает, что в момент подачи сигнала на вход (), на выходе фильтра имеется ненулевой отклик. Таким образом, должно быть очевидно, что идеальный фильтр, описываемый уравнением (1.58), не реализуется в действительности.

Пример 1.2. Прохождение белого шума через идеальный фильтр

Белый шум со спектральной плотностью мощности , показанный на рис 1.8, а , подается на вход идеального фильтра нижних частот, показанного на рис. 1.11, б . Определите спектральную плотность мощности и автокорреляционную функцию выходного сигнала.

Решение

Автокорреляционная функция - это результат применения обратного преобразования Фурье к спектральной плотности мощности. Определяется автокорреляционная функция следующим выражением (см. табл. А.1).

Сравнивая полученный результат с формулой (1.62), видим, что имеет тот же вид, что и импульсный отклик идеального фильтра нижних частот, показанный на рис. 1.12. В этом примере идеальный фильтр нижних частот преобразовывает автокорреляционную функцию белого шума (определенную через дельта-функцию) в функцию . После фильтрации в системе уже не будет белого шума. Выходной шумовой сигнал будет иметь нулевую корреляцию с собственными смещенными копиями только при смещении на , где - любое целое число, отличное от нуля.

1.6.3.2. Реализуемые фильтры

Простейший реализуемый фильтр нижних частот состоит из сопротивления (R) и емкости (С), как показано на рис. 1.13, а ; этот фильтр называется RC-фильтром, и его передаточная функция может быть выражена следующим образом .

, (1.63)

где . Амплитудная характеристика и фазовая характеристика изображены на рис. 1.13, б , в . Ширина полосы фильтра нижних частот определяется в точке половинной мощности; эта точка представляет собой частоту, на которой мощность выходного сигнала равна половине максимального значения, или частоту, на которой амплитуда выходного напряжения равна максимального значения.

В общем случае точка половинной мощности выражается в децибелах (дБ) как точка -3 дБ, или точка, находящаяся на 3 дБ ниже максимального значения. По определению величина в децибелах определяется отношением мощностей, и .

(1.64, а)

Здесь и - напряжения, a и - сопротивления. В системах связи для анализа обычно используется нормированная мощность; в этом случае сопротивления и считаются равными 1 Ом, тогда

Рис.1.13. RC-фильтр и его передаточная функция: а) RC-фильтр; б) амплитудная характеристика RC-фильтра; в) фазовая характеристика RC-фильтра

(1.64, б)

Амплитудный отклик можно выразить в децибелах как

, (1.64, в)

где и - напряжения на входе и выходе, а сопротивления на входе и выходе предполагаются равными.

Из уравнения (1.63) легко проверить, что точка половинной мощности RC-фильтра нижних частот соответствует рад/с, или Гц. Таким образом, ширина полосы в герцах равна . Форм-фактор фильтра - это мера того, насколько хорошо реальный фильтр аппроксимирует идеальный. Обычно он определяется как отношение ширины полос фильтров по уровню -60 дБ и -6 дБ. Достаточно малый форм-фактор (около 2) можно получить в пропускающем фильтре с очень резким срезом. Для сравнения, форм-фактор простого RC-фильтра нижних частот составляет около 600.

Существует несколько полезных аппроксимаций характеристики идеального фильтра нижних частот. Одну из них дает фильтр Баттерворта, аппроксимирующий идеальный фильтр нижних частот функцией

, (1.65)

где - верхняя частота среза (-3 дБ), а - порядок фильтра. Чем выше порядок, тем выше сложность и стоимость реализации фильтра. На рис. 1.14 показаны графики амплитуды для нескольких значений . Отметим, что по мере роста и амплитудные характеристики приближаются к характеристикам идеального фильтра. Фильтры Баттерворта популярны из-за того, что они являются лучшей аппроксимацией идеального случая в смысле максимальной пологости полосы пропускания фильтра.

Периодическое продолжение импульса. Понятие спектральной плотности сигнала.Обратное преобразование Фурье. Условие существования спектральной плотности сигнала.Связь между длительностью импульса и шириной его спектра.Обобщенная формула Рэлея.Взаимная спектральная плотность сигналов. Энергетический спектр.Корреляционный анализ сигналов.Сравнение сигналов, сдвинутых во времени.

Цель лекции:

Получить спектральные характе­ристики непериодических (импульсных) сигналов методом обобщения рядов Фурье. Определить требования к ширине полосы пропускания радиотехнического устройства. Представить сигналы посредством их спектральных плотностей. Использовать энергетический спектр для получения различных инженерных оценок. Понять, как возникает потребность в сигналах со специально выбранными свойствами.

Пусть s (t) - одиночный импульсный сигнал конечной длительности. Дополнив его мысленно такими же сигналами, периодически следую­щими через некоторый интервал времени T, получим изученную ранее периодическую последовательность S пер (t), которая может быть представлена в виде комплексного ряда Фурье

(12.1) с коэффициентами . (12.2)

Для того, чтобы вернуться к одиночному импульсному сигналу, устремим к бесконечности период повторения Т. При этом очевидно:

а) частоты соседних гармоник nω 1 и (n+ l)ω 1 окажутся сколь угодно близкими, так что в формулах (12.1) и (12.2) дискретную переменную nω 1 можно заменить непрерывной переменной ω - текущей частотой;

б) амплитудные коэффициенты С n станут неограниченными малыми из-за наличия величины Т в знаменателе формулы (12.2).

Наша задача состоит теперь в нахождении предельного вида формулы (12.1) при T→∞.

Рассмотрим малый интервал частот Δω, образующий окрестность некоторого выбранного значения частоты ω 0 . В пределах этого интервала будет содержаться N=Δω/ω 1 = ΔωT/(2π) отдельных пар спектральных составляющих, частоты которых отличаются сколь угодно мало. Поэтому составляющие можно складывать так, как будто все они имеют одну и ту же частоту и характеризуются одинаковыми комплексными амплитудами

В результате находим комплексную амплитуду эквивалентного гармонического сигнала, отображающего вклад всех спектральных составляющих, содержащихся внутри интервала Δω

. (12.3)

Функция (12.4)

носит название спектральной плотности сигнала s (t). Формула (12.4) осуществляет преобразование Фурье данного сигнала.

Решим обратную задачу спектральной теории сигналов: найдем сигнал по его спектральной плотности, которую будем считать заданной.

Поскольку в пределе частотные интервалы между соседними гармониками неограниченно сокращаются, последнюю сумму следует заменить интегралом

. (12.5)

Эта важная формула называется обратным преобразованием Фурье для сигнала s(t).

Сформулируем окончательно фундаментальный результат: сигнал s (t) и его спектральная плотность S(ω) взаимно однозначно связаны прямым и обратным преобразованиями Фурье

, (12.6)

.

Спектральное представление сигналов открывает прямой путь к анализу прохождения сигналов через широкий класс радиотехнических цепей, устройств и систем.

Сигналу s(t) можно сопоставить его спектральную плотность s(ω) в том случае, если этот сигнал абсолютно интегрируем, т. е. существует интеграл

Подобное условие значительно сужает класс допустимых сигналов. Так, в указанном классическом смысле невозможно говорить о спектральной плотности гармонического сигнала и (t) =U m cosω 0 t , существующего на всей бесконечной оси времени.

Важный вывод: чем меньше длительность импульса, тем шире его спектр.

Под шириной спектра понимают частотный интервал, в пределах которого модуль спектральной плотности не меньше некоторого наперед задан­ного уровня, например, изменяется в пределах от |S| max , до 0.1|S| max .

Произведение ширины спектра импульса на его длительность есть постоянное число, зависящее только от формы импульса и, как правило, имеющее порядок единицы: Чем короче длительность импульса, тем шире должна быть полоса пропускания соответствующего усилителя. Короткие импульсные помехи имеют широкий спектр и поэтому могут ухудшать условия радиоприема в значительной полосе частот.

Математические модели многих сигналов, широко применяемых в радиотехнике, не удовлетворяют условию абсолютной интегрируемости, поэтому метод преобразований Фурье в обычном виде к ним неприменим. Однако можно говорить о спектральных плотностях таких сигналов, если допустить, что эти плотности описываются обобщенными функциями.

Пусть два сигнала и(t) и v (t), в общем случае комплексно-значные, определены своими обратными преобразованиями Фурье.

Найдем скалярное произведение этих сигналов, выразив один из них, например v (t), через его спектральную плотность

Полученное соотношение представляет собой обобщенную формулу Рэлея. Легко запоминающаяся трактовка этой формулы такова: скалярное произведение двух сигналов с точностью до коэффициента пропорционально скалярному произведению их спектральных плотностей. Если сигналы тождественно совпадают, то скалярное произведение становится равным энергии

. (12.7)

Назовем взаимным энергетическим спектром вещественных сигналов u (t) и v (t) функцию

, (12.8)

такую, что

. (4.9)

Нетрудно заметить, что Re W uv (ω)-четная, а Im W uv (ω)-нечетная функция частоты. Вклад в интеграл (12.9) дает только вещественная часть, поэтому

. (12.10)

Последняя формула дает возможность проанализировать «тонкую структуру» взаимосвязи сигналов.

Более того, обобщенная формула Рэлея, представленная в виде (12.10), указывает на принципиальный путь, позволяющий уменьшить степень связи между двумя сигналами, добившись в пределе их ортогональности. Для этого один из сигналов необходимо подвергнуть обработке в особой физической системе, называемой частотным фильтром. К этому фильтру предъявляется требование: не пропускать на выход спектральные составляющие, находящиеся в пределах частотного интервала, где вещественная часть взаимного энергетического спектра велика. Частотная зависимость коэффициента передачи такого ортогонализирующего фильтра будет обладать резко выраженным минимумом в пределах указанной области частот.

Спектральное представление энергии сигнала легко получить из обобщенной формулы Рэлея, если в ней сигналы и(t) и v (t) считать одинаковыми. Формула (12.8), выражающая спектральную плотность энергии, приобретает вид

Величина W u (ω) носит название спектральной плотности энергии сигнала и(t), или, короче, его энергетического спектра. Формула (3.2) при этом запишется так

. (12.12)

Соотношение (4.12) известно как формула Рэлея (в узком смысле), которая констатирует следующее: энергия любого сигнала есть результат суммирования вкладов от различных интервалов частотной оси.

Изучая сигнал с помощью его энергетического спектра, мы неизбежно теряем информацию, которая заключена в фазовом спектре сигнала, поскольку в соответствии с формулой (4.11) энергетический спектр есть квадрат модуля спектральной плотности и не зависит от ее фазы.

Обратимся к упрощенной идее работы импульсного радиолокатора, предназначенного для измерения дальности до цели. Здесь информация об объекте измерения заложена в величине τ - задержке по времени между зондирующим и принятым сигналами. Формы зондирующего и (t) и принятого и (t-τ) сигналов одинаковы при любых задержках. Структурная схема устройства обработки радиолокационных сигналов, предназначенного для измерения дальности, может выглядеть так, как это изображено на рисунке 12.1.

Рисунок 12.1 - Устройство для измерения времени задержки сигналов

Рассмотрим так называемую энергетическую форму интеграла Фурье. В главе 5 были приведены формулы (7.15) и (7.16), дающие переход от функции времени к изображению Фурье и обратно. Если рассматривается некоторая случайная функция времени х (с), то для нее эти формулы могут быть записаны в виде

и проинтегрируем по всем

заменим выражением (11.54):

Величина, находящаяся в квадратных скобках (11.57), как нетрудно видеть, является исходной функцией времени (11.55). Поэтому в результате получается так называемая формула Релея (теорема Парсеваля), которая и соответствует энергетической форме интеграла Фурье:

Правая часть (11.58) и (11.39) представляет собой величину, пропорциональную энергии рассматриваемого процесса. Так, например, если рассматривается ток, протекающий по некоторому резистору с сопротивлением К, то энергия, выделившаяся в этом резисторе за время и будет

Формулы (11.58) и (11.59) и выражают энергетическую форму интеграла Фурье.

Однако эти формулы неудобны тем, что для большинства процессов энергия за бесконечный интервал времени стремится также к бесконечности. Поэтому удобнее иметь дело не с энергией, а со средней мощностью процесса, которая будет получена, если энергию поделить на интервал наблюдения. Тогда формулу (11.58) можно представить в виде

Вводя обозначение

носит название спектральной плотности. Важным

По своему физическому смыслу спектральная плотность есть величина, которая пропорциональна средней мощности процесса в интервале частот от со до со + й?со.

В некоторых случаях спектральную плотность рассматривают только для положительных частот, удваивая ее при этом, что можно сделать, так как спектральная плотность является четной функцией частоты. Тогда, например, формула (11.62) должна быть записана в виде

- спектральная плотность для положительных частот.

так как при этом формулы получают более симметричный характер.

Весьма важным обстоятельством является то, что спектральная плотность и корреляционная функция случайных процессов представляют собой взаимные преобразования Фурье, т. е. они связаны интегральными зависимостями типа (11.54) и (11.55). Это свойство приводится без доказательств .

Таким образом, могут быть записаны следующие формулы:

Так как спектральная плотность и корреляционная функция представляют собой четные вещественные функции, то иногда формулы (11.65) и (11.66) представляют в более простом виде;

)

Это вытекает из того, что имеют место равенства:

и мнимые части могут быть отброшены после подстановки в (11.65) и (11.66), так как слева стоят вещественные функции.

заключается в том, что чем уже график спектральной плотности (рис, 11.16, а), т. е. чем меньшие частоты представлены в спектральной плотности, тем медленнее изменяется величина х во времени. Наоборот, чем шире график спектральной плотности (рис. 11.16, б), т. е. чем большие частоты представлены в спектральной плотности, тем тоньше структура функции х (г) и тем быстрее происходят изменения.г во времени.

Как видно из этого рассмотрения, связь между видом спектральной плотности и видом функции времени получается обратной но сравнению со связью между корреляционной функцией и самим процессом (рис. 11.14). Отсюда вытекает, что более широкому графику спектральной плотности должен соответствовать более узкий график корреляционной функции и наоборот.

И 8 (со). Эти функции, в отличие от импульсных функций, рассматривавшихся в главе 4, являются четными. Это означает, что функция 8 (т) расположена симметрично относительно начала координат и может быть определена следующим образом;

Аналогичное определение относится к функции 8 (со). Иногда в рассмотрение вводят нормированную спектральную плотность, являющуюся изображением Фурье нормированной корреляционной функции (11.52):

и следовательно,

где О - дисперсия.

Взаимные спектральные плотности также являются мерой связи между двумя случайными величинами. При отсутствии связи взаимные спектральные плотности равны нулю.

Рассмотрим некоторые примеры.

Эта функция изображена на рис. 11.17, а. Соответствующее ей изображение Фурье на основании табл. 11.3 будет

Спектр процесса состоит из единственного пика типа импульсной функции, расположенной в начале координат (рис. 11,17, б).

Это означает, что вся мощность рассматриваемого процесса сосредоточена на пулевой частоте, что и следовало ожидать.

Эта функция изображена на рис. 11.18, а, В соответствии с табл. 11.3 спектральная плотность будет

3. Для периодической функции, разлагаемой в ряд Фурье

кроме периодической части будет содержать непериодическую составляющую, то спектр этой функции будет содержать, наряду с отдельными линиями типа импульсной функции, также и непрерывную часть (рис. 11.20). Отдельные пики на графике спектральной плотности указывают на присутствие в исследуемой функции скрытых нериодичностей.

не содержит периодической части, то она будет иметь непрерывный спектр без ярко выраженных пиков.

Рассмотрим некоторые стационарные случайные процессы, имеющие значение при исследовании систем управления. Будем рассматривать только центрированные

При этом средний квадрат случайной величины будет равен дисперсии:

учет постоянного смещения в системе управления является элементарным.

(рис. 11.21, а):

Пример такого процесса - тепловые шумы резистора, которые дают уровень спектральной плотности хаотического напряжения на этом резисторе

Абсолютная температура.

На основании (11,68) спектральной плотности (11.71) соответствует корреляционная функция

отсутствует корреляция между последующими и предыдущими значениями случайной величины х.

а следовательно, бесконечно большая мощность.

Чтобы получить физически реальный процесс, удобно ввести понятие белого шума с ограниченной спектральной плотностью (рис. 11.21, б):

Полоса частот для спектральной плотности.

Этому процессу соответствует корреляционная функция

Среднеквадратичное значение случайной величины пропорционально корню квадратному из полосы частот:

Часто бывает удобнее аппроксимировать зависимость (11.73) плавной кривой. Для этой цели можно, например, использовать выражение

Коэффициент, определяющий ширину полосы частот.

Процесс приближается к белому шуму, так

как для этих частот

Интегрирование (11.77) по всем частотам дает возможность определить дисперсию:

Поэтому спектральная плотность (11.77) может быть записана в другом виде:

Корреляционная функция для этого процесса

Корреляционная функция также изображена на рис. 11.21, в.

Переход от одного значения к другому совершается мгновенно. Интервалы времени подчиняются закону распределения Пуассона (11.4).

График такого вида получается, например, в первом приближении при слежении радиолокатором за движущейся целью. Постоянное значение скорости соответствует движению цели по прямой. Перемена знака или величины скорости соответствует маневру цели.

Будет средним значением интервала времени, в течение которого угловая скорость сохраняет постоянное значение. Применительно к радиолокатору это значение будет средним временем движения цели по прямой.

Для определения корреляционной функции необходимо найти среднее значение произведения

При нахождении этого произведения могут быть два случая.

относятся к одному интервалу. Тогда среднее значение произведения угловых скоростей будет равно среднему квадрату угловой скорости или дисперсии:

относятся к разным интервалам. Тогда среднее значение произведения скоростей будет равно пулю:

так как произведения с положительным и отрицательным знаками будут равновероятными. Корреляционная функция будет равна

Вероятность нахождения их в разных интервалах.

Вероятность отсутствия

Для интервала времени

так как эти события независимые.

В результате для конечного промежутка Ат получаем

Знак модуля при т поставлен вследствие того, что выражение (11.80) должно соответствовать четной функции. Выражение для корреляционной функции совпадает с (11.79). Поэтому спектральная плотность рассматриваемого процесса должна совпадать с (11.78):

Заметим, что в отличие от (11.78) формула спектральной плотности (11.81) записана для угловой скорости процесса (рис. 11.22). Если перейти от угловой скорости к углу, то получится нестационарный случайный процесс с дисперсией, стремящейся к бесконечности. Однако в большинстве случаев следящая система, на входе которой действует этот процесс, обладает астатизмом первого и более высоких порядков. Поэтому первый коэффициент ошибки с0 у следящей системы равен нулю и ее ошибка будет определяться только входной скоростью и производными более высоких порядков, относительно которых процесс стационарен. Это дает возможность использовать спектральную плотность (11.81) при расчете динамической ошибки следящей системы.

3. Нерегулярная качка. Некоторые объекты, например корабли, самолеты и другие, находясь под действием нерегулярных возмущений (нерегулярное волнение, атмосферные возмущения и т. п.), движутся но случайному закону Так как сами объекты имеют определенную им свойственную, частоту колебаний, то они обладают свойством подчёркивать те частоты возмущений, которые близки к их собственной частоте колебаний. Получающееся при этом случайное движение объекта называют нерегулярной качкой в отличие от регулярной качки, представляющей собой периодическое движение.

Типичный график нерегулярной качки изображен на рис. 11.23. Из рассмотрения этого графика видно, что, несмотря на случайный характер, это

движение довольно близко к периодическому.

В практике корреляционную функцию нерегулярной качки часто аппроксимируют выражением

Дисперсия.

находятся обычно путем обработки экспериментальных данных (натурных испытаний).

Корреляционной функции (11.82) соответствует спектральная плотность (см. табл. 11.3)

Неудобством аппроксимации (11.82) является то, что этой формулой можно описать поведение какой-либо одной величины нерегулярной качки (угла, угловой скорости или углового ускорения), В этом случае величина О будет соответствовать дисперсии угла, скорости или ускорения.

Если, например, записать формулу (11.82) для угла, то этому процессу будет соответствовать нерегулярная камка с дисперсией для угловых скоростей, стремящейся к бесконечности, т. е. это будет физически нереальный процесс.

Более удобная формула для аппроксимации угла качки

Однако и эта аппроксимация соответствует физически нереальному процессу, так как дисперсия углового ускорения получается стремящейся к бесконечности.

Для получения конечной дисперсии углового ускорения требуются еще более сложные формулы аппроксимации, которые здесь не приводятся.

Типичные кривые для корреляционной функции и спектральной плотности нерегулярной качки приведены на рис. 11.24.