Биографии Характеристики Анализ

Срок окончания миелинизации нервных волокон. Миелиновые нервные волокна

Очень часто при описании нервной системы используются «электрические» термины: например, нервы сравниваются с проводами. Это потому, что по нервному волокну действительно перемещается электрический сигнал. Каждому из нас известно, что оголенный провод опасен, ведь он бьет током, и по этой причине люди пользуются изоляционными материалами, не проводящими электричество. Природе тоже не чужда техника безопасности, и нервные «провода» она обматывает своим собственным изолирующим материалом - миелином.

Сложная обёртка

Рисунок 1. Нервное волокно, обернутое миелином. Видны ядра шванновских клеток (nucleus of Schwann cell) и перехваты Ранвье (nodes of Ranvier) - участки аксона, которые не покрыты миелиновой оболочкой.

Если говорить о белках, входящих в состав миелина, то надо уточнить, что это не только простые белки. В миелине встречаются гликопротеины - белки, к которым присоединены короткие углеводные последовательности. Важной составляющей миелина является главный структурный белок миелина (myelin basic protein , MBP ), впервые выделенный около 50 лет назад. MBP - это трансмембранный белок, который может многократно «прошивать» липидный слой клетки. Его различные изоформы (рис. 2) кодируются геном под названием Golli (gene in the oligodendrocyte lineage ). Структурной основой миелина служит изоформа массой 18,5 килодальтон .

Рисунок 2. Различные изоформы основного белка миелина (MBP) создаются на основе одного и того же гена. Например, для синтеза изоформы массой 18,5 кДа используются все экзоны, кроме экзона II.

В состав миелина входят сложные липиды цереброзиды . Они представляют собой аминоспирт сфингозин , соединенный с жирной кислотой и остатком углевода. В синтезе липидов миелина принимают участие пероксисомы олигодендроцитов. Пероксисомы - это липидные пузырьки с различными ферментами (в общей сложности известно около 50 видов пероксисомных энзимов). Эти органеллы занимаются, в частности, β-окислением жирных кислот: жирных кислот с очень длинной цепью (very long chain fatty acids , VLCFA ), некоторых эйкозаноидов и полиненасыщенных жирных кислот (ПНЖК, polyunsaturated fatty acids , PUFAs ). Поскольку миелин может содержать до 70% липидов, пероксисомы крайне важны для нормального метаболизма этого вещества. Они используют N-ацетиласпартат, вырабатываемый нервной клеткой, для постоянного синтеза новых липидов миелина и поддержания его существования. Кроме этого, пероксисомы принимают участие в поддержании энергетического метаболизма аксонов .

Важная обёртка

Миелинизация (постепенная изоляция нервных волокон миелином) начинается у людей уже в эмбриональном периоде развития. Первыми этот путь проходят подкорковые структуры. В течение первого года жизни происходит миелинизация отделов периферической и центральной нервной системы, отвечающих за двигательную активность. Миелинизация участков головного мозга, регулирующих высшую нервную деятельность, заканчивается к 12–13 годам. Из этого видно, что миелинизация тесно связана со способностью отделов нервной системы осуществлять специфические для них функции. Вероятно, именно активная работа волокон до рождения запускает их миелинизацию.

Дифференцировка клеток - предшественниц олигодендроцитов зависит от ряда факторов, связанных с работой нейронов. В частности, работающие отростки нейронов могут выделять белок нейролигин 3 , который способствует пролиферации и дифференциации клеток-предшественниц . В дальнейшем созревание олигодендроцитов происходит за счет ряда других факторов. В статье с характерным названием «Насколько велик миелинизирующий оркестр? » описывается происхождение олигодендроцитов в разных частях мозга . Во-первых , в различных частях мозга олигодендроциты начинают созревать в разное время. Во-вторых , за их созревание отвечают разные клеточные факторы, что тоже зависит от региона нервной системы (рис. 3). У нас может возникнуть вопрос: а сходны ли между собой олигодендроциты, появившиеся с таким расхождением в стартовых данных? И насколько схож у них миелин? В целом, авторы статьи считают, что между популяциями олигодендроцитов из разных участков головного мозга действительно существуют различия, и обусловлены они во многом именно местом закладки клеток, воздействием на них окружающих нейронов. И всё же типы миелина, синтезируемые разными пулами олигодендроцитов, не имеют настолько больших отличий, чтобы они не были взаимозаменяемыми.

Сам процесс миелинизации нервных волокон в центральной нервной системе происходит следующим образом (рис. 4). Олигодендроциты выпускают несколько отростков к аксонам разных нейронов. Входя с ними в контакт, отростки олигодендроцитов начинают оборачиваться вокруг них и расползаться по длине аксона. Количество оборотов постепенно увеличивается: в некоторых участках ЦНС их число доходит до 50. Мембраны олигодендроцитов становятся всё более тонкими, распространяясь по поверхности аксона и «выдавливая» из себя цитоплазму. Чем раньше слой миелина был обернут вокруг нервного окончания, тем более тонким он будет. Самый внутренний слой мембраны остается довольно толстым - для осуществления метаболической функции. Новые слои миелина наматываются поверх старых, перекрывая их так, как показано на рисунке 4 - не только сверху, но и увеличивая площадь аксона, покрытую миелином.

Рисунок 4. Миелинизация нервного волокна. Мембрана олигодендроцита наматывается на аксон, постепенно уплотняясь с каждым оборотом. Внутренний, прилегающий к аксону слой мембраны остается относительно толстым, что необходимо для выполнения метаболической функции. На разных частях рисунка (а-в ) с разных ракурсов показано постепенное наматывание новых слоев миелина на аксон. Красным цветом выделен более толстый, метаболически активный слой, синим - новые уплотняющиеся слои. Внутренний слой миелина (inner tongue на части б ) охватывается всё новыми и новыми слоями мембраны не только сверху, но и по бокам (в ), вдоль аксона.

Миелинизация нервных волокон олигодендроцитами также значимо зависит от белка нейрегулина 1 . Если он не воздействует на олигодендроциты, то в них запускается программа миелинизации, не учитывающая активность нервной клетки. Если же олигодендроциты получили сигнал от нейрегулина 1, то далее они начнут ориентироваться на работу аксона, и миелинизация будет зависеть от интенсивности выработки глутамата и активации им специфических NMDA-рецепторов на поверхности олигодендроцитов . Нейрегулин 1 - ключевой фактор для запуска процессов миелинизации и в случае шванновских клеток .

Изменчивая обёртка

Миелин постоянно образуется и разрушается в человеческом организме. На синтез и распад миелина могут влиять факторы, связанные с особенностями внешней среды. Например, воспитание. С 1965 по 1989 год Румынией руководил Николае Чаушеску . Он установил жесткий контроль над репродуктивным здоровьем и институтом брака в своей стране: усложнил процедуру развода, запретил аборты и ввел ряд стимулов и льгот для женщин, имевших более пяти детей. Итогом этих мер стало ожидаемое повышение рождаемости. Вместе с рождаемостью увеличилось количество криминальных абортов, не добавивших здоровья румынкам, и возросло количество детей-отказников. Последние воспитывались в детских домах, где с ними не очень-то активно общался персонал. Румынские дети в полной мере ощутили на себе то, что называется социальной депривацией - лишение возможности полноценного общения с другими людьми. Если речь идет о маленьком ребенке, то следствиями социальной депривации станут нарушение формирования эмоциональных привязанностей и расстройство внимания. Когда режим Чаушеску пал, западным ученым предстояло в полной мере оценить результат социальной политики этого диктатора. Румынских детей, имеющих выраженные проблемы со вниманием и установкой социальных контактов, впоследствии стали называть детьми Чаушеску.

Кроме различий при выполнении нейропсихологических тестов, у детей Чаушеску по сравнению с детьми, не находившимися в таких условиях, отличалось даже строение головного мозга . При оценке состояния белого вещества мозга ученые используют показатель фрактальной анизотропии. Он позволяет оценить плотность нервных волокон, диаметр аксонов и их миелинизацию. Чем больше фрактальная анизотропия, тем разнообразнее волокна, которые встречаются в этой области мозга. У детей Чаушеску отмечалось снижение фрактальной анизотропии в пучке белого вещества, соединяющего височную и лобную доли в левом полушарии, то есть связи в этом регионе были недостаточно сложными и разнообразными, с нарушениями миелинизации. Такое состояние связей мешает нормальному проведению сигналов между височной и лобной долями. В височной доле находятся центры эмоционального реагирования (миндалина , гиппокамп), а орбитофронтальная кора лобной доли также связана с эмоциями и принятием решений. Нарушение формирования связей между этими отделами мозга и проблемы в их работе в итоге приводили к тому, что выросшие в детдомах дети испытывали трудности в установлении нормальных отношений с другими людьми.

На миелинизацию также может влиять и состав еды, которую дают ребенку. При белково-энергетической недостаточности питания отмечается снижение образования миелина. Недостаток жирных кислот тоже отрицательно сказывается на синтезе этого ценного вещества, так как оно больше чем на 2/3 состоит из липидов. Дефицит железа, йода и витаминов группы В приводит к снижению образования миелина . В основном эти данные были получены при изучении лабораторных животных, но история, к сожалению, дала людям возможность оценить влияние недостатка еды и на формирующийся мозг ребенка . Голодная зима (голл. hongerwinter ) 1944–1945 гг. в Нидерландах привела к тому, что родилось множество детей, чьи матери плохо питались. Оказалось, что в условиях голодания мозг этих детей формировался с нарушениями. В частности, наблюдалось большое количество нарушений именно в белом веществе, то есть возникали проблемы с формированием миелина. В итоге это приводило к разнообразным психическим расстройствам.

Поврежденная обёртка

Рисунок 5. Нарушение чувствительности по полиневритическому типу. Название «носки - перчатки» связано с тем, что анатомические зоны, соответствующие поражению нервов, похожи на области, покрываемые этими предметами одежды.

Как мне кажется, для человеческого организма вполне подходит следующее правило: если есть орган, значит, к нему должна быть болезнь . В принципе, это правило можно расширить до молекулярных процессов: есть процесс - есть и болезни, связанные с нарушением этого процесса . В случае с миелином это демиелинизирующие заболевания. Их довольно много, но подробнее я расскажу о двух - синдроме Гийена-Барре и рассеянном склерозе. При этих расстройствах повреждение миелина приводит к нарушению адекватного проведения сигнала по нервам, что и обуславливает симптомы болезни.

Синдром Гийена-Барре (СГБ) - это заболевание периферической нервной системы, при котором происходит разрушение миелиновой оболочки, формируемой шванновскими клетками. СГБ является классическим аутоиммунным заболеванием. Как правило, ему предшествует инфекция (часто - вызванная микробом Campylobacter jejuni ). Присутствие различных возбудителей в организме человека запускает аутоиммунное повреждение миелина нервных волокон T- и B-лимфоцитами. Клинически это проявляется мышечной слабостью, нарушением чувствительности по типу «носки - перчатки» (полиневритический тип) (рис. 5). В дальнейшем мышечная слабость может нарастать вплоть до полного паралича конечностей и поражения туловищной мускулатуры. Поражения чувствительной нервной системы также могут быть разнообразны: от снижения способности различать собственные движения (нарушение глубокой чувствительности) до выраженного болевого синдрома. При тяжелых формах СГБ главную опасность представляет потеря способности к самостоятельному дыханию, требующая подключения к аппарату искусственной вентиляции легких (ИВЛ). Для лечения СГБ в настоящее время используют плазмаферез (очистку плазмы от вредных антител) и внутривенные вливания препаратов человеческого иммуноглобулина для нормализации иммунного ответа. В большинстве случаев лечение приводит к стойкому выздоровлению.

Рассеянный склероз (РС) заметно отличается от СГБ. Во-первых , это демиелинизирующее заболевание приводит к поражению центральной нервной системы, то есть затрагивает миелин, синтезируемый олигодендроцитами. Во-вторых , с причинами РС до сих пор много неясного: слишком большое разнообразие генетических и средовых факторов задействовано в патогенезе заболевания. Принципиальный момент в запуске РС - нарушение непроницаемости гематоэнцефалического барьера (ГЭБ) для иммунных клеток. В норме ткань мозга отгорожена от всего остального организма этим надежным фильтром, который не пропускает к ней множество веществ и клеток, в том числе иммунных. ГЭБ появляется уже в эмбриональном периоде развития, изолируя ткань мозга от формирующейся иммунной системы. В это время иммунная система человека «знакомится» со всеми существующими тканями, чтобы в дальнейшем, при взрослой жизни, не нападать на них. Мозг и ряд других органов остаются «не представленными» иммунной системе. При нарушении целостности ГЭБ иммунные клетки получают возможность для атаки незнакомых ей тканей мозга. В-третьих , РС отличается более тяжелыми симптомами, которые требуют других терапевтических подходов. Симптоматика зависит от того, где локализуются повреждения нервной системы (рис. 6 и 7). Это может быть шаткость походки, нарушения чувствительности, различные когнитивные симптомы. Для лечения РС используются высокие дозы глюкокортикоидов и цитостатики, а также препараты интерферона и специфические антитела (натализумаб). По-видимому, в дальнейшем будут развиваться новые методы лечения РС, основанные непосредственно на восстановлении миелиновой оболочки в поврежденных участках мозга. Ученые указывают на возможность трансплантации клеток - предшественниц олигодендроцитов или усиления их роста за счет введения инсулиноподобного фактора роста или тиреоидных гормонов . Однако это еще впереди, а пока неврологам недоступны более «молекулярные» методы лечения.

Этот процесс протекает в патогенезе последовательно и упорядрченно в строгом соответствии с эмбриональными, анатомическими и функциональными особенностями систем нервных волокон.
Миелин является совокупностью липоидных и белковых веществ, входящих в состав внутреннего слоя оболочки нервного волокна. Таким образом, миелиновая оболочка представляет собой внутреннюю часть глиальной оболочки нервного волокна, которая содержит миелин. Миелиновая оболочка - белково-липидная мембрана, которая состоит из бимолекулярного липидного слоя, находящегося между двумя мономолекулярными слоями белковых субстанций.
Миелиновая оболочка многократно в несколько слоев закручивается вокруг нервного волокна. С увеличением диаметра нервного волокна количество витков миелиновой оболочки возрастает. Миелиновая оболочка является как бы изоляционным покрытием для биоэлектрических импульсов, которые возникают в нейронах при возбуждении. Она обеспечивает более быстрое проведение биоэлектрических импульсов по нервным волокнам. Этому способствуют так называемые перехваты Ранвье. Перехваты Ранвье - это небольшие просветы нервного волокна, не покрытые миелиновой оболочкой. В центральной нервной системе эти перехваты располагаются приблизительно через 1 мм.
Миелин в центральной нервной системе синтезируется олигодендроцитами. Один олигодендроцит синтезирует миелин примерно для 50 нервных волокон. При этом к каждому аксону примыкает только узкий отросток олигодендроцита.
В процессе спирального закручивания оболочки образуется ламеллярное строение миелина, при этом два гидрофильных слоя поверхностных белков миелина сливаются, между ними образуется гидрофобный слой липидов. Расстояние между пластинками миелина в среднем равняется 12 нм. В настоящее время описано более 20 видов белков миелина. Строение и биохимический состав миелина центральной нервной системы довольно подробно изучены. Миелин, помимо защитной, структурной и изоляторной функций, участвует также в питании нервного волокна. Поражение миелиновой оболочки нервных волокон - демиелинизация - происходит при различных тяжелых заболеваниях, таких как энцефаломиелиты различного генеза, СПИД, рассеянный склероз, болезнь Бехчета, синдром Шегрена и др.

{module директ4}

Миелинизация дистального отдела (у заднего полюса глаза) зрительного нерва начинается только после рождения ребенка. Она происходит в период от 3 нед до нескольких месяцев, уже в период внутриутробной жизни. Это так называемый условно «кабельный период», когда весь комплекс осевых цилиндров - аксонов ганглиозных клеток сетчатки лишен миелиновых оболочек и заключен в одну общую оболочку. При этом сохраняется функция проведения зрительных импульсов, но она очень несовершенна и имеет диффузный характер. Также «кабельные нервы» проводят зрительные импульсы путем обобщения или путем поперечной индукции. В них переход возбуждения с одного волокна без миелиновой оболочки происходит на другое такое же волокно по соприкосновению. Такое проведение импульсов делает невозможным прохождение их из определенных точек сетчатки в определенные зоны корковых анализаторов. Таким образом, в этот период жизни ребенка еще отсутствует четкая ретинотопичность представительства в зрительных центрах. Нервные волокна интракраниальной части зрительного нерва раньше покрываются миелиновой оболочкой - к VIII месяцу внутриглазного развития.
Миелинизация нервных волокон хиазмы и зрительных трактов у новорожденных уже хорошо выражена. При этом миелинизация распространяется на зрительный нерв из центра на периферию, т. е. происходит в противоположном направлении роста его нервных волокон. Миелинизация нервных волокон головного мозга начинается с 36-й недели эмбрионального периода.
К моменту рождения миелинизация зрительных проводящих путей в области первичных проекционных корковых зрительных центров (поле 17 по Бродману) заканчивается. Поля 18 и 19 по Бродману - продолжают миелинизацию еще в течение 1-1,5 мес после рождения. Позднее всего миелинизируются поля в области высших ассоциативных центров (терминальные зоны Флексига). В этих зонах миелинизация внутримозговых проводников, которые соединяют зрительные центры различных уровней между собой и с корковыми центрами других анализаторов, завершаются только на 4-м месяце жизни ребенка. Аксоны некоторых больших пирамидных клеток в 5-м слое поля 17 по Бродману начинают покрываться миелиновой оболочкой с 3-месячного возраста. В аксонах клеток 3-го слоя в этом возрасте еще нет следов миелина.
Таким образом, миелинизация нервных волокон зрительного пути начинается на 36-й неделе эмбрионального периода и в общих чертах заканчивается в корковых структурах головного мозга к 4-летнему возрасту.
На миелинизацию нервных волокон зрительного пути оказывают значительное стимулирующее влияние лучи света. Этот феномен, открытый Флексигом более 100 лет назад, получил подтверждение в дальнейшем в целом ряде научных публикаций.

Онтогенез нервной системы или нейроонтогенез - это генетически детерминированные структурные и функциональные преобразования нервной ткани с момента рождения до момента смерти организма. Этапы нейроонтогенеза соответствуют этапам общего онтогенеза и также представляют собой два параллельно идущих процесса: прогресс и регресс (см. предыдущую главу).

Нейроонтогенез начинается и продолжается антенатально, затем прерывается в перинатальном периоде на период родов, восстанавливается в раннем постнатальном этапе (после неонатального периода), продолжается и наиболее интенсивно протекает в первое десятилетие жизни. В это время нервная система проходит основной адаптационный период с момента начала структурного, а затем функционального созревания нервной ткани под действием факторов окружающей среды.

Созревание нервной ткани продолжается в течение длительного времени, хотя условно можно считать, что оно идет до тех пор, пока в нервной системе не начнутся сначала медленные, но постепенно

ускоряющиеся и, наконец, преобладающие инволюционные процессы. Например, известно, что желтый пигмент нейронов - липофусцин впервые появляется у ребенка 7-10 лет, и его нормальное содержание (типичное для взрослого организма) сохраняется до 30-летнего возраста, и только потом оно превышает нормативные значения.

Основные события антенатального этапа

Для антенатального этапа нейроонтогенеза характерны:

Миграция нейронов ПВО к местам своего назначения;

Начало роста аксонов к клеткам-мишеням и образование синапсов;

Начало роста дендритов и их ветвление. Эти процессы наблюдаются за несколько недель до начала родов и останавливаются в случае патологического действия факторов среды (см. гомеорез в главе 12);

Начало миелинизации нервных волокон и окончаний;

Глиальная дифференцировка, трофическое и иммунное обеспечение сформировавшихся структур нервной системы.

Формирование основных структур

Нервная ткань зародыша развивается на антенатальном этапе из дорсального утолщения эктодермы - нервной пластинки, которая прогибается и превращается в желобок, а затем замыкается в нервную трубку, обособляющуюся от кожной части эктодермы. Нервная трубка является эмбриональным зачатком всей нервной системы - это стадия нейруляции.

Начиная с 25-го дня беременности, головной конец нервной трубки последовательно проходит стадии трех и пяти мозговых пузырей.

На 3-м месяце беременности из мозговых пузырей образуются основные структуры головного мозга.

Первоначально головной мозг - это утолщенные стенки мозговых пузырей. Из них развиваются продолговатый, задний (мост и мозжечок), промежуточный (диэнцефальная область) и конечный мозг (ствол головного мозга и кора больших полушарий), а полости мозговых пузырей становятся полостями мозговых желудочков. Обращенная к полости внутренняя зона мозговых пузырей вместе с околожелудочковой зоной (стенки полости) называется перивентрикулярной областью мозга.

Утолщение стенок мозговых пузырей обусловлено форсированным размножением нейронов ПВО, их радиальной миграцией и размещением в краевой (наружной) зоне стенок мозговых желудочков - будущей коре больших полушарий. При этом краевая зона как бы отодвигается молодыми нейронами кнаружи, образуя слои субвентрикулярной зоны, в которой начинается и интенсивно протекает размножение глиальных клеток. В это время в краевой зоне уже прекращен митоз нейронов, она постепенно сужается и в ней формируется корковая пластинка, состоящая из нейронов определенной степени зрелости.

Краевая зона мозга вместе с корковой пластинкой образуют серое (корковое) вещество мозга - это поверхностные слои коры больших полушарий и коры мозжечка, а также центральные ядра мозжечка и ядра ствола головного мозга в составе чувствительных, ассоциативных и двигательных нейронов. Одновременно с формированием серого вещества между корковой пластинкой с наружной стороны и субвентрикулярной зоной с внутренней стороны мозговых желудочков образуется промежуточная зона, в которой постепенно уменьшается количество нейронов и их место занимают нервные волокна, формирующие белое вещество головного мозга.

Нейроны серого вещества спинного мозга развиваются из нейробластов. На поперечном срезе спинного мозга - это внутренняя (центральная) часть, содержащая ядра передних и задних рогов в составе афферентных нейронов и пучковых клеток. Компоненты белого вещества спинного мозга - это его периферическая часть (на поперечном разрезе выделяется в виде буквы Н или «бабочки»).

Периферическая часть включает продольно ориентированные миелиновые волокна - это проводящие пути (передние, боковые и задние), связывающие между собой различные отделы нервной системы.

На 3-м месяце беременности из средних отделов нервной трубки формируются ствол мозга и ганглиозная пластинка. Нервная трубка дает начало трем слоям клеток: внутреннему (эпендима), среднему (мантия или плащ) и наружному (краевая вуаль).

Краевая вуаль - это отростки клеток, расположенных во внутреннем и среднем слоях.

В дальнейшем из эпендимы образуются глиальные клетки, а из мантии - нейробласты (предшественники нейронов) и спонгиобласты (астроциты и олигодендроглиоциты).

Ствол мозга объединяет продолговатый, средний и промежуточный мозг, а также базальную часть конечного мозга.

В центре продолговатого мозга расположена ретикулярная субстанция (формация), распространяющаяся до промежуточного мозга и состоящая из мелких мультиполярных нейронов. Как макросистема ретикулярная формация связана с корой больших полушарий, корой мозжечка, гипоталамической областью мозга и спинным мозгом (см. выше).

Нейробласты передних столбов спинного мозга дифференцируются в моторные нейроны передних рогов, их аксоны выходят из спинного мозга и образуют его передние корешки.

В задних столбах и промежуточной зоне развиваются вставочные (ассоциативные) нейроны, и их аксоны вступают в белое вещество спинного мозга, образуя проводящие пути. В задние рога входят аксоны клеток спинальных ганглиев.

Ганглиозная пластинка развивается из средних отделов нервной трубки, ее основу составляют две группы клеток, расположенных по краям нервных валиков перед их окончательным смыканием в нервную трубку. Клетки ганглиозной пластинки служат исходным материалом для чувствительных краниальных нервных узлов (многочисленные ядра мультиполярных нейронов ствола мозга, предназначенные для переключения нервных импульсов, восходящих к коре и нисходящих от нее на ствол и спинной мозг), а также спинальных нервных узлов вегетативной нервной системы, иннервирующей внутренние органы, сосуды и железы.

Миграция и размещение нейронов

Уникальной особенностью нервной системы является высокая точность формирования общей сети межнейронных связей. Эта особенность обеспечивается генетическим предназначением каждого нейрона, который «знает» то конкретное место, куда растет его аксон (только к своей клетке-мишени), игнорируя другие клетки и создавая синапсы не в любом, а «заранее определенном» месте и при этом проходя путь, нередко равный 50 см.

В основе столь точного пути лежит химическое сродство, выражающееся в наличии на поверхности клеток-мишеней своеобразных химических меток (хапотаксических ориентиров), позволяющих аксонам их узнавать. Полагают, что в этом процессе важная роль принадлежит топографическим взаимоотношениям нейронов и хро-

нологической последовательности созревания их функциональных связей.

Миграция молодых нейронов в кору головного мозга осуществляется центробежно к краевой (наружной) зоне по глиальным волокнам, располагающимся в толще стенки мозгового желудочка, - это основной путь миграции. Молодые нейроны не имеют аксона и дендритов, но у них на месте будущего аксона есть конус роста, находящийся в постоянном «ощупывающем пространство» движении и определяющий направление миграции. Конус роста аксона имеет аппарат узнавания химических ориентиров, находящихся в стенке мозгового желудочка - это гликопротеидные (хапотаксические) факторы.

Мигрируя по стволу радиальной глии, молодые нейроны один за другим отправляются к будущей коре больших полушарий, собираясь в конце пути в нейронные модули или колонки. Чем позже добрался до своей колонки нейрон, тем более поверхностное место на ней он занимает над ранее пришедшими нейронами, пробираясь сквозь их слои вверх.

В соответствии с послойным размещением нейронов в коре больших полушарий в дальнейшем будут различаться функции ее «этажей». Для других отделов нервной трубки, из которых формируются структуры ствола головного и спинного мозга, характерны миграция и размещение нейронов с их концентрацией не в колонках, а пластах, например, располагающихся в краниальных и спинальных ганглиях.

Таким образом, размещение нейронов в строго определенных местах не является случайным - оно генетически детерминировано. В связи с этим возникает возможность создания аксонами нейронов ложных межнейронных связей, и тогда появляются неполноценные нейроны, занимающие не «свои места». Такие нейроны утрачиваются. Механизмы их гибели различны - это либо некроз, либо апоптоз нейрона (см. главу 10).

Рост аксонов и дендритный спраунинг

Рост аксона нейрона начинается с движения конуса роста к клеткемишени. Скорость этого роста определяется скоростью роста (перемещения) цитоскелета аксона, которая не превышает 2 мм в сутки. Одновременно к встрече с конусом роста готовится клетка-мишень, формирующая на своей поверхности рецепторное поле для образования точечного контакта при этой встрече.

Время роста аксона к клетке-мишени соответствует времени созревания на ее поверхности рецепторного поля, т.е. это генетически контролируемый синхронный процесс. В случае образования точечного контакта одного из щупальцев конуса роста с клеткой-мишенью в этом месте формируется терминальное утолщение, участвующее в образовании полноценного синапса.

Дендритный спраунинг - это арборизация (ветвление) дендритов нейронов и образование дендритного дерева (сети). Первые дендритные отростки появляются в начале перинатального периода вскоре после завершения миграции и размещения нейронов в коре и подкорковых структурах мозга. Затем рост дендритов прерывается на период родов и восстанавливается в раннем постнатальном нейроонтогенезе (после неонатального периода). В это время расширение дендритной сети идет в основном за счет процесса ветвления, а не увеличения количества дендритов, так как один нейрон имеет 1-3 таких отростка.

Наиболее интенсивный дендритный спраунинг происходит в постнатальном нейроонтогенезе, когда постепенно увеличивается действие факторов окружающей среды на мозг ребенка. Подтверждением этому служит рост массы головного мозга. Если мозг новорожденного весит 350-400 г, то в 9 мес его масса удваивается, в 3-5 лет утраивается, 18-20 лет мозг весит 1500-1600 г., а у взрослого человека его масса даже достигает 2000 г.

Следует отметить, что именно возобновлением строительства дендритного дерева, формированием нервных окончаний и следующим за ними синаптогенезом головной мозг начинает последовательно отражать нарастающее действие на него факторов окружающей среды и таким образом адаптироваться к ним. Иными словами, это отражение перенесено из антенатального в постнатальный нейроонтогенез, т.е. отсрочено во времени.

Миелинизация нервных волокон

Миелинизация нервных волокон - это их обволакивание (одевание) в миелиновые оболочки, состоящие из особых глиальных (шванновских) клеток, содержащих миелин - жироподобный пигмент из липидов и пептидов. Как сказано выше, начало миелинизации нервных волокон и окончаний приходится на антенатальный этап. Миелинизация значительной части нервных волокон и окончаний завершается в первом десятилетии жизни.

Среди причин, нарушающих миелинизацию, следует привести перивентрикулярную энцефалопатию и лейкомаляцию, в ходе которой активируются факторы некроза опухолей (ФНО), инициирующие аутоиммунный процесс в белом веществе с дисмиелинизацией и атрофией нервной ткани.

Переход к постнатальному этапу

Мозг плода перед родами значительно увеличивается в объеме, достигая 350-400 г. Это происходит благодаря росту аксонов. Параллельно увеличению массы мозга растет масса тела, достигающая у новорожденного 3,0-3,5 кг. Соответственно растет потребность мозга в кислороде, и плацента постепенно начинает не справляться с ее удовлетворением, что приводит к усилению физиологической гипоксии плода, которая служит сигналом к завершению внутриутробного этапа развития и вызывает роды.

Непосредственно перед родами в материнском организме повышается концентрация биологически активных веществ гормональной, пептидной и липидной природы. Этот «материнский коктейль» проникает через плаценту в организм плода и вызывает в нем состояние готовности к рождению: снижение температуры тела, трофики и обмена веществ, замедление нервной, эндокринной и иммунной активности, уменьшение частоты сердечных сокращений, ослабление дыхания и активных движений. В результате действия «материнского коктейля» снижается потребность плода в кислороде и повышается его устойчивость к гипоксии во время родов.

Постнатальный этап

В сравнении с другими органами и системами организма, мозг новорожденного считается наиболее подготовленным к условиям существования в постнатальной жизни. Однако это относится не столько к непосредственному функционированию мозговых структур, сколько к их дальнейшему развитию и обучению навыкам работы в окружающей среде, т.е. речь идет об адаптации мозга к абсолютно новым для него условиям внешней среды. Такая адаптация возникает не сразу: сначала ей предшествует первая «стрессовая» неделя, или неонатальный период жизни. Адаптация начинается с периода первичной настройки жизненно важных функций (дыхание, кровообращение, пищеварение).

Период первичной настройки жизненно важных функций

Сразу после рождения на мозг новорожденного обрушивается мощный поток воздействия факторов окружающей среды. В первые секунды и минуты жизни выключаются старые механизмы дыхания и кровообращения через плаценту и включаются новые механизмы дыхания и кровообращения через легкие. Резко изменяются условия гравитации (после нахождения организма в околоплодных водах). Появляются и быстро нарастают потоки афферентной (сенсорной) информации в виде зрительных, слуховых и тактильных раздражителей. При этом в течение 1-2 ч жизни у новорожденного нейтрализуется действие «материнского коктейля» (см. главу 12).

В первые 12 ч жизни (или к концу первых суток) начинают подавляться, а затем постепенно утрачиваются (как правило, в течение первой недели жизни) базовые врожденные автоматизмы (кроме автоматизмов сосания и шагового), а также исчезают врожденные способности удерживать голову, имитировать движения матери или врача (например, показывать язык), т.е. развивается «феномен обнуления». Вместе с тем частично сохраняются остаточные функциональные возможности «уходящего» этапа онтогенеза, и на их фоне формируются новые (или обновленные) функции. Например, при сохранении автоматизма сосания развиваются и закрепляются функции захвата материнского соска, активного сосания, жевания и проглатывания. Таким образом, начало постнатального этапа нейроонтогенеза связано с первичной настройкой жизненно важных функций организма и «прощанием» с внутриутробными функциями.

Долговременный адаптационный период

После первичной настройки жизненно важных функций следует долговременный адаптационный период, в ходе которого мозг ребенка медленно приспосабливается к новым условиям окружающей среды и постепенно увеличивается в объеме. Начиная со второй недели жизни возобновляется (после «консервации» на период родов) рост аксонов и дендритов. Их рост служит базой для последующего развития межнейронных сетей (спраунинга), в ходе которого будут совершенствоваться («повышать функциональное мастерство») нервная система и смежные с ней другие системы организма. При этом продолжается миелинизация аксонов и дендритов, идет глиальная дифференцировка, трофическое и иммунное обеспечение нервной ткани.

В первые 2 мес жизни в ходе аксоно-дендритного спраунинга первыми начинают ветвиться отростки пространственно отдаленных нейронов. За ними постепенно объединяются в общую межнейронную сеть нервные окончания ранее разветвившихся раздельно отростков нейронов, в которых в дальнейшем происходит синаптогенез.

В течение 3-18 мес жизни происходит интенсивное развитие связей сенсорной системы и двигательных навыков ребенка, необходимых для активных контактов с внешней средой, т.е. начинается процесс «обучения». В это время ребенок последовательно осваивает активное видение и слух, навыки держания головы, ползания, сидения, стояния, хождения, понимание обращенной речи, произношение отдельных слов и т.д. (см. главу 12). Благодаря отсроченному и последовательному спраунингу, масса каждого нейрона возрастает в 3-5 раз, что является причиной увеличения массы мозга. Ощутимый вклад в это увеличение вносит миелинизация нейронов, нервных стволов и волокон, а также пролиферация глиальных клеток. Далее постепенно формируются центральные отделы зрительного, слухового, двигательного, вкусового и тактильного анализаторов, и на их основе начинаются длительный период обучения и приобретения мозгом ребенка персонального опыта общения с окружающей средой, включающий первые 1,5-3 года жизни, дошкольный и школьный возрастные периоды. Окончательное формирование нервной системы завершается в 18-20 лет.

Апоптоз неполноценных нейронов

Апоптоз неполноценного нейрона - это его программированная гибель или «альтруистическое самоубийство». Как сказано выше, путем апоптоза уничтожаются около 5 млрд (3%) нейронов.

В апоптозе участвуют особые информационные молекулы - ФНО и интерлейкины, относящиеся к классу цитокинов, выполняющих роль переносчиков информации (нейротрансмиттеров). С их помощью регулируются метаболические, трофические, иммунные и другие процессы в нейронах (см. главу 8). ФНО продуцируются в ПВО и гипоталамусе при участии микроглии и астроцитов. Эти цитокины обладают крайне важными для клеток свойствами, выступая как факторы роста, факторы отторжения и как нейроиммуномодуляторы. Во многих случаях их влияние становится пусковым механизмом развития патологии ПВО мозга.

В частности, их высокое содержание вызывает тяжелые нарушения трофики нервной ткани (вплоть до необратимого повреждения, проявляющегося некрозом, некротическим шоком и кахексией), приводит к угнетению (и реже к усилению) пролиферации нейронов, но при этом не влияет на деление трансформированных клеток.

Нередко посредниками действия ФНО могут быть интерфероны. Кроме того, в конце внутриутробного периода ФНО стимулируют синтез простагландинов и могут вызвать преждевременные роды.

Цепочка молекулярных событий, происходящих при апоптозе, до конца не ясна, но, по-видимому, в их основе лежит механизм получения нейроном информации о несоответствии генетической программе.

Молекулярные механизмы формирования межнейронных связей

Известно, что генная сеть, участвующая в формировании и функционировании нервной системы человека, включает около 20 тыс. генов.

В нейронах одновременно экспрессируется не менее 2500 генов (среди них охарактеризовано всего 125 генов или около 5%). Причем эта часть генов резко превышает часть генов, работающих в клетках других органов. Например, из всех молекул мРНК, выделенных из клеток печени или почек, только 4-6% клеток вступают в ДНК-РНКгибридизацию, что крайне мало, так как их должно быть не менее

Кроме того, высказано предположение, что в нейронах филогенетически молодых отделов головного мозга (у человека они обеспечивают функции, отсутствующие у других биологических видов) экспрессируется больше генов, чем в старых отделах могза. Например, в пользу этого свидетельствуют данные, что в нейронах ассоциированных зон коры больших полушарий экспрессировались 35,6% генов, а в нейронах проекционных зон - 30,8%.

Эти различия, по-видимому, лежат в основе специализации разных отделов мозга при развитии разных функций. Иными словами, благодаря такой специализации в ходе нейроонтогенеза растет объем активной генетической информации.

В свою очередь, об этом свидетельствуют данные о ДНК-РНКгибридизации, согласно которым по мере увеличения интенсивно-

сти функционирования ПВО усиливаются активность и сложность генетических эффектов в нервной ткани: у 22-недельного эмбриона в нейронах мозга активны только 8% генов, тогда как у взрослых людей их более 25%.

Реализация экспрессии генов в различных областях мозга обусловливает развитие широкой сети межнейронных связей (см. ниже). Основными механизмами развития таких связей являются генерация и проведение нервного импульса и внутриклеточный транспорт структурных элементов цитоплазмы.

Генерация и проведение нервного импульса

Механизм генерации (возбуждения) и проведения нервного импульса в системе межнейронных связей заключается в появлении и быстром распространении (перемещении) реакции локальной деполяризации мембраны осевого цилиндра по длине нервного волокна.

В ходе деполяризации участка мембраны (условно назовем его первым участком) ионы Na+ меняют отрицательный заряд на положительный путем повышения проводимости этих ионов в смежном участке мембраны (второй участок), что обеспечивает выход ионов К+ на поверхность мембраны первого участка, в котором восстанавливается исходный уровень разности потенциалов, и так далее по всей мембране осевого цилиндра нервного волокна.

Нервный импульс - это быстрая реакция. Скорость деполяризации мембраны осевого цилиндра определяет скорость передачи нервного импульса, и она тем выше, чем толще осевой цилиндр. В среднем для толстых волокон она составляет 5-120 м/с, а для тонких - 1-2 м/с. При передаче нервного импульса через миелиновые волокна скорость выше, чем при передаче через безмиелиновые волокна.

Локальная деполяризация мембраны также происходит при мышечном сокращении. В этом случае прохождение нервного импульса открывает каналы, обычно закрытые для пассивного транспорта ионов Са2+, и впускает эти ионы в миофибриллы. В результате в нервно-мышечном синапсе освобождается ацетилхолин, что вызывает локальную деполяризацию мембраны. Выход ионов Са2+ из сократившихся миофибрилл происходит путем их обмена на ионы Na+ и зависит от натриевого градиента, поскольку существует другая система, обеспечивающая транспорт ионов натрия внутрь, а ионов кальция наружу мембраны (см. главу 6).

Молекулярная организация работы синаптического аппарата сложна. Нейроны, способные выделять в синаптическую щель один и тот же медиатор, объединяются в эргические системы, которые связаны между собой особыми путями - трактами, соединяющими специфические синапсы. С молекулярных позиций хорошо изучена схема работы норадреналинергического синапса (см. главу 8). В этом случае пусковым фактором служит импульс, пришедший из пресинаптической мембраны аксона в постсинаптическую мембрану клетки-мишени, в которой в ответ на импульс возбуждается сигнал, распространяющийся по аксону в пресинаптическую мембрану и в виде пузырьков с медиатором поступающий в синаптическую щель, а потом в постсинаптическую мембрану другой клеткимишени, - это прерывистый межклеточный аксоно-аксональный контакт. Прерывистость контактов необходима для поддержания быстрой скорости распространения импульса, так как возбуждение может распространяться по мембране нейрона от тела клетки и обратно.

Аксональный транспорт

Наряду с проведением нервного импульса через систему прерывистых межнейронных связей (синапсов) существует второй механизм прохождения молекулярной информации - внутриклеточный транспорт. Для нейрона, основная цитоплазма которого сконцентрирована в аксонах и дендритах, простирающихся на значительные расстояния от ядра клетки, внутриклеточный транспорт или движение элементов цитоплазмы имеет большое значение.

Аксональный транспорт в целом хорошо изучен. Среди транспортируемых элементов:

Лизосомы и пероксисомы - большие, средние и мелкие вакуоли с гидролитическими и окислительными ферментами, представляющие собой емкости для переработки отходов, или своеобразные «очистные сооружения»;

Митохондрии, производящие энергию в виде АТР, - своеобразные «электростанции»;

Микротрубочки, представленные нестабильным белком определенной полярности - тубулином, выполняющим роль транспортных путей;

Синаптические пузырьки с различными медиаторами и регуляторными ферментами;

«строительные материалы» - белковые, липидные и другие молекулы;

Продукты распада молекул и др.

В отличие от нервного импульса, аксональный транспорт - это медленные реакции. Их средняя скорость не превышает 2 мм в сутки. Вместе с тем, у разных органелл и элементов цитоплазмы скорости транспорта разные. Так, синаптические пузырьки могут перемещаться со скоростью свыше 400 мм в сутки.

С одинаковой скоростью антеградно (к терминальной части) перемещаются «строительные материалы», а ретроградно (к ядру) - продукты их распада. При этом поддерживается баланс их перемещения: поступает ровно столько, сколько расходуется.

Митохондрии совершают маятниковые движения, двигаясь то антеградно, то ретроградно. Благодаря такому движению обеспечивается энергетическое снабжение по всей длине аксона (дендрита) нейрона.

В аксональном транспорте также принимают участие активированные нервными импульсами сократительные единицы - белки (актин, миозин, тубулин, некоторые ферменты), микротрубочки и другие элементы.

Закономерности информационного обеспечения и основное свойство коры больших полушарий мозга

Информационное обеспечение коры больших полушарий мозга базируется на следующих закономерностях:

Многоуровневое (многоэтажное) прохождение информации; основано на особенностях миграции и размещения нервных клеток при формировании нейронных модулей (колонок), являющихся структурными единицами коры больших полушарий;

Прерывистость прохождения информации в синапсах между этажами, характерная для всей сети межнейронных связей;

Постоянство активности коры мозга; обеспечивается ретикулярной субстанцией, контролирующей прохождение информации между этажами и ее прерывистость в синапсах; при избытке информации эта субстанция ее аккумулирует, создавая резервы, а при недостатке - добавляет из резервов, поддерживая равномерную интенсивность потоков и, следовательно, постоянную активность коры;

Дублирование информационных каналов; основанное на межнейронных связях, формирующих единую сеть рецепторных оконча-

ний, расположенных во всех частях организма; рецепторы этой сети воспринимают разную по содержанию и назначению информацию, в том числе одной направленности; например, положение тела в пространстве контролируется с помощью потоков информации, поступающей в кору головного мозга одновременно от зрительного, вестибулярного и слухового анализаторов, а также рецепторов мышц, кровеносных сосудов, рук, ног, туловища и головы; поэтому в случае ошибок приема и переключения информации кора мозга все-таки получает необходимую информацию и дает правильный ответ. Указанные закономерности позволяют коре больших полушарий анализировать восходящие к ней потоки информации, переключать их в синапсах, изменять скорости проведения, фильтровать (отсеивать) наименее значимую, пропускать и доставлять по месту назначения наиболее значимую информацию, увеличивать или уменьшать ее объемы, поддерживать равномерную интенсивность потоков, адаптироваться к окружающей среде, принимать своевременные и адекватные решения, реализуемые в разнообразных функциях, и, следовательно, поддерживать постоянную активность коры.

Вместе с тем, эти закономерности обеспечивают развитие основного свойства коры больших полушарий - способность отражать (запечатлять) результаты действия факторов окружающей среды.

В случае нормального нейроонтогенеза это свойство проявляется на морфологическом уровне как специфическая картина зрелой межнейронной сети с особенностями цитоархитектоники и миелоархитектоники (при УЗИ, КТ- и ЯМР-томографии). На физиологическом уровне это свойство выражается как проявление обычного сознания и реализация основных нервных и высших психических функций.

Признаками отражения и адаптации коры к окружающей среде являются:

Готовность к функциональным переменам и последовательной смене старых функций на новые функции и навыки в критические периоды развития;

Полноценное развитие функций и навыков при минимальных энергетических затратах (см. предыдущую главу);

Восполнение утрачиваемых элементов нервной ткани и выбор наиболее эффективных межнейронных сетей при их интенсивной работе;

Пластичность (компенсаторность) функционирования структур мозга в изменяющихся условиях среды при одновременном сохранении их автономности. Важно подчеркнуть особое значение этих признаков при проведении терапии заболеваний, проявляющихся патологией ПВО мозга.

Нарушения нейроонтогенеза как результат первичного поражения перивентрикулярной области мозга

Нарушения нейроонтогенеза относятся к одной из нерешенных проблем нейрогенетики. Их систематизация представляет значительные трудности, объясняемые участием нервной системы практически во всех патологических процессах. Это относится как к наследственной, так и к ненаследственной патологии.

Нервная система поражается не только первично, но и вторично, на фоне поражения других систем организма, либо одновременно с ними в результате общих механизмов.

На ранних этапах нейроонтогенеза мозг эмбриона почти исключительно представлен ПВО, к сфере деятельности которой относятся: миграция и размещение нейронов, образование нейронных колонок, рост аксонов и дендритов, формирование синапсов. ПВО регулирует эти процессы на основе химического узнавания своих нейронов среди множества чужих, что сближает ее с иммунной системой.

Находясь на границах капиллярного кровотока и цереброспинальной жидкости, ПВО выполняет защитные (барьерные) функции, что также сближает ее с иммунной системой. В качестве барьеров выступают астроцитарные клетки, играющие роль рецепторов, воспринимающих молекулярную информацию из капиллярного кровотока и при циркуляции ликвора.

Таким образом, ПВО является особой системой мозга. Она обеспечивает медленные процессы его развития, выполняя формообразующую (ростовую) функцию, сохраняя трофический и иммунный гомеостаз нервной ткани и выступая в роли «стража» (гематоэнцефалический и ликвороэнцефалический барьеры) на границах между капиллярным кровотоком или ликвором с одной стороны и мозгом, с другой стороны.

При патологии ПВО все эти медленные процессы тормозятся и останавливаются, приводя к неврологической патологии. На рис. 51 показана роль ПВО мозга в развитии такой патологии.

Рис. 51. Роль ПВО мозга в нарушении матричной, формообразующей, трофической и иммунной функций (по Скворцову И.А., 2000)

ПВО поражается при морфогенетических нарушениях и нарушениях метаболизма мозговых структур, нейроинфекции, гипоксии мозга и родовой травме. Поражение ПВО, возникшее в результате этих причин, ведет к нарушениям формообразования структур мозга, гипоплазии и другим его аномалиям, нарушениям трофического и иммунного обеспечения критических периодов нейроонтогенеза и как следствие - к функциональному дефициту мозга. На рис. 52 представлена схема взаимосвязи основных причин и результатов поражения ПВО мозга.

Функционирование ПВО зависит от гестационной незрелости (влияние эндотоксинов, ФНО и других цитокинов), а также от перинатального неблагополучия (гипоксия и родовая травма). Наряду с этими причинами в перечне причин такой зависимости

Рис. 52. Примерная схема взаимосвязи основных причин и результатов поражения ПВО мозга (по Скворцову И.Α., 2001)

значатся недоношенная беременность, фетоплацентарная недостаточность в результате инфицирования матери во время беременности, инфаркты плаценты, внутриутробное инфицирование плода, повышенное давление ликвора в желудочках мозга, малый вес и артериальная гипертензия на фоне дыхательных расстройств у новорожденного, НБО, хромосомные синдромы, первичные нейрогенетические заболевания нейрона и глиальных элементов, болезни рецепторов, трансмембранного транспорта разных ионов и нейромедиаторов.

Все перечисленные причины нарушают формообразование, трофику и иммунную защиту мозга и даже при слабо выраженных изменениях ведут к гипоплазии и/или незначительному функциональному дефициту, а при изменениях средней и тяжелой степени - к перивентрикулярной энцефалопатии (ПВЭ) и лейкомаляции соответственно.

В ряде случаев изменения ПВО имеют общие механизмы. Например, внутриутробная нейроинфекция и/или гипоксия плода могут вызвать паралич ресничек эпендимы, выстилающей стенки желудочков мозга и спинномозгового канала, что обусловит развитие врожденной (вентрикулярной) гидроцефалии, повышение внутричерепного давления, нарушение циркуляции ликвора и таким образом приведет к задержке аксонального и дендритного спраунинга, синаптогенеза, дистрофическим или деструктивным изменениям в коре и подкорковых образованиях.

Среди тяжелых перинатальных поражений ПВО следует отметить действие эндотоксинов кишечника, стимулирующих у плода и новорожденного продукцию ФНО, интерлейкинов и других цитокинов, приводящих к расстройствам микроциркуляции, апоптозу и аутоиммунным нарушениям в тканях мозга. При этом аутоиммунные механизмы реализуются путем возникновения ишемических и геморрагических очагов в бассейнах каротидной и вертебробазилярной сосудистых систем ПВО, коре больших полушарий, подкорковых и стволово-мозжечковых структурах с последующими дистрофическими или деструктивными изменениями в них в виде дисмиелинизации и атрофии, что может привести к смерти. Однако значительно чаще в ПВО развиваются не грубые деструктивные процессы (лейкомаляция), а дистрофия, в основе которой лежат долговременные метаболические, трофические и иммунные нарушения (энцефалопатия).

Вместе с тем, если основные формообразующие процессы в мозге уже завершились, то эти изменения ограничиваются незначительными нарушениями трофики и иммунного обеспечения нервной ткани.

Нервные волокна.

Отростки нервных клеток, покрытые оболочками, называются волокнами. По строению оболочек различают миелиновые и безмиелиновые нервные волокна. Отросток нервной клетки в нервном волокне называют осевым цилиндром, или аксоном.

В ЦНС оболочки отростков нейронов образуют отростки олигодендроглиоцитов, а в перефирической – нейролеммоциты.

Безмиелиновые нервные волокна располагаются преимущественно в периферической вегетативной нервной системе. Их оболочка представляет собой тяж нейролеммоцитов, в который погружены осевые цилиндры. Безмиелиновое волокно, в котором находятся несколько осевых цилиндров, называется волокном кабельного типа. Осевые цилиндры из одного волокна могут переходить в соседнее.

Процесс образования безмиелинового нервного волокна происходит следующим образом. При появлении отростка в нервной клетке рядом с ним появляется тяж нейролеммоцитов. Отросток нервной клетки (осевой цилиндр) начинает погружаться в тяж нейролеммоцитов, увлекая плазмолемму вглубь цитоплазмы. Сдвоенная плазмолемма называется мезаксоном. Таким образом, осевой цилиндр располагается на дне мезаксона (подвешен на мезаксоне). Снаружи безмиелиновое волокно покрыто базальной мембраной.

Миелиновые нервные волокна располагаются преимущественно в соматической нервной системе, имеют значительно больший диаметр по сравнению с безмиелиновыми-достигает до 20 мкм. Осевой цилиндр тоже более толстый. Миелиновые волокна окрашиваются осмием в черно-коричневый цвет. После окрашивания в оболочке волокна видны 2 слоя: внутренний миелиновый и наружный, состоящий из цитоплазмы, ядра и плазмолеммы, который называется неврилеммой. В центре волокна проходит неокрашенный (светлый) осевой цилиндр.

В миелиновом слое оболочки видны косые светлые насечки (incisio myelinata). По ходу волокна имеются сужения, через которые не переходит миелиновый слой оболочки. Эти сужения называются узловыми перехватами (nodus neurofibra). Через эти перехваты проходит только неврилемма и базальная мембрана, окружающая миелиновое волокно. Узловые перехваты являются границей между двумя смежными леммоцитами. Здесь от нейролеммоцита отходят короткие выросты диаметром около 50 нм, заходящие между концами таких же отростков смежного нейролеммоцита.

Участок миелинового волокна, расположенный между двумя узловыми перехватами, называется межузловым, или интернодальным, сегментом. В пределах этого сегмента рас-полагается всего лишь 1 нейролеммоцит.

Миелиновый слой оболочки - это мезаксон, навернутый на осевой цилиндр.

Формирование миелинового волокна. Вначале процесс образования миелинового волокна сходен с процессом образованием безмиелинового, т. е. осевой цилиндр погружается в тяж нейролеммоцитов и образуется мезаксон. После этого мезаксон удлиняется и навертывается на осевой цилиндр, оттесняя цитоплазму и ядро на периферию. Вот этот, навернутый на осевой цилиндр, мезаксон и есть миелиновый слой, а наружный слой оболочки - это оттесненные к периферии ядра и цитоплазма нейролеммоцитов.

Миелиновые волокна отличаются от безмиелиновых по строению и функции. В частности, скорость движения им¬пульса по безмиелиновому нервному волокну составляет 1-2 м в секунду, по миелиновому - 5-120 м в секунду. Объясняется это тем, что по миелиновому волокну импульс движется сальтоторно (скачкообразно). Это значит, что в пределах узлового перехвата импульс движется по неврилемме осевого цилиндра в виде волны деполяризации, т. е. медленно; в пределах межузлового сегмента импульс движется как электрический ток, т. е. быстро. В то же время импульс по безмиелиновому волокну движется только в виде волны деполяризации.

На электронограмме хорошо видно отличие миелинового волокна от безмиелинового - мезаксон послойно навернут на осевой цилиндр.

Нервная система выполняет важнейшие функции в организме. Она отвечает за все действия и мысли человека, формирует его личность. Но вся эта сложная работы была бы невозможна без одной составляющей — миелина.

Миелин – это вещество, образующее миелиновую (мякотную) оболочку, которая отвечает за электроизоляцию нервных волокон и скорость передачи электрического импульса.

Анатомия миелина в строении нерва

Главная клетка нервной системы – нейрон. Тело нейрона называется сома. Внутри нее находится ядро. Тело нейрона окружено короткими отростками, которые называются дендриты. Они отвечают за связь с другими нейронами. От сомы отходит один длинный отросток – аксон. Он несет импульс от нейрона к другим клеткам. Чаще всего на конце он соединяется с дендритами других нервных клеток.

Всю поверхность аксона покрывает миелиновая оболочка, которая представляет собой отросток клетки Шванна, лишенный цитоплазмы. По сути, это несколько слоев клеточной мембраны, обернутые вокруг аксона.

Шванновские клетки, обволакивающие аксон, разделяются перехватами Ранвье, в которых отсутствует миелин.

Функции

Основными функциями миелиновой оболочки являются:

  • изоляция аксона;
  • ускорение проведения импульса;
  • экономия энергии за счет сохранения ионных потоков;
  • опора нервного волокна;
  • питание аксона.

Как работают импульсы

Нервные клетки изолированы благодаря своей оболочке, но все же взаимосвязаны между собой. Участки, в которых клетки соприкасаются, называются синапсы. Это место, где встречаются аксон одной клетки и сома или дендрит другой.

Электрический импульс может передаваться внутри одной клетки или от нейрона к нейрону. Это сложный электрохимический процесс, который основан на перемещении ионов через оболочку нервной клетки.

В спокойном состоянии внутрь нейрона попадают только ионы калия, а ионы натрия остаются снаружи. В момент возбуждения они начинаются меняться местами. Аксон положительно заряжается изнутри. Затем натрий перестает поступать через мембрану, а отток калия не прекращается.

Изменение напряжения из-за движения ионов калия и натрия называется «потенциал действия». Он распространяется медленно, но миелиновая оболочка, обволакивающая аксон, ускоряет это процесс, препятствуя оттоку и притоку ионов калия и натрия из тела аксона.

Проходя через перехват Ранвье, импульс перескакивает с одного участка аксона на другой, что и позволяет ему двигаться быстрее.

После того, как потенциал действия пересекает разрыв в миелине, импульс останавливается, и возвращается состояние покоя.

Такой способ передачи энергии характерен для ЦНС. Что касается вегетативной нервной системы, в ней часто встречаются аксоны, покрытые малым количеством миелина или вообще не покрытые им. Скачки между шванновскими клетками не осуществляются, и импульс проходит гораздо медленнее.

Состав

Миелиновый слой состоит из двух слоев липидов и трех слоев белка. Липидов в нем гораздо больше (70-75%):

  • фосфолипиды (до 50%);
  • холестерин (25%);
  • глактоцереброзид (20%) и др.

Белковые слои тоньше липидных. Содержание белка в миелине – 25-30%:

  • протеолипид (35-50%);
  • основной белок миелина (30%);
  • белки Вольфграма (20%).

Существуют простые и сложные белки нервной ткани.

Роль липидов в строении оболочки

Липиды играют ключевую роль в строении мякотной оболочки. Они являются структурным материалом нервной ткани и защищают аксон от потери энергии и ионных потоков. Молекулы липидов обладают способностью восстанавливать ткани мозга после повреждений. Липиды миелина отвечают за адаптацию зрелой нервной системы. Они выступают в роли рецепторов гормонов и осуществляют коммуникацию между клетками.

Роль белков

Немаловажное значение в строении миелинового слоя имеют молекулы белков. Они наряду с липидами выступают в роли строительного материала нервной ткани. Их главной задачей является транспортировка питательных веществ в аксон. Также они расшифровывают сигналы, поступающие в нервную клетку и ускоряют реакции в ней. Участие в обмене веществ – важная функция молекул белка миелиновой оболочки.

Дефекты миелинизации

Разрушение миелинового слоя нервной системы – очень серьезная патология, из-за которой происходит нарушение передачи нервного импульса. Она вызывает опасные заболевания, зачастую несовместимые с жизнью. Существуют два типа факторов, влияющие на возникновение демиелинизации:

  • генетическая предрасположенность к разрушению миелина;
  • воздействие на миелин внутренних или внешних факторов.
  • Демиелизация делится на три вида:
  • острая;
  • ремиттирующая;
  • острая монофазная.

Почему происходит разрушение

Наиболее частыми причинами разрушения мякотной оболочки являются:

  • ревматические болезни;
  • существенное преобладание белков и жиров в питании;
  • генетическая предрасположенность;
  • бактериальные инфекции;
  • отравление тяжелыми металлами;
  • опухоли и метастазы;
  • продолжительные сильные стрессы;
  • плохая экология;
  • патологии иммунной системы;
  • длительный прием нейролептиков.

Заболевания вследствие демиелинизации

Демиелинизирующие заболевания центральной нервной системы:

  1. Болезнь Канавана генетическое заболевание, возникающее в раннем возрасте. Его характеризуют слепота, проблемы с глотанием и приемом пищи, нарушение моторики и развития. Также следствием этой болезни являются эпилепсия, макроцефалия и мышечная гипотония.
  2. Болезнь Бинсвангера. Чаще всего вызвана артериальной гипертонией. Больных ожидают расстройства мышления, слабоумие, а также нарушения ходьбы и функций тазовых органов.
  3. . Может вызвать поражения нескольких частей ЦНС. Ему сопутствуют парезы, параличи, судороги и нарушение моторики. Также в качестве симптомов рассеянного склероза выступают поведенческие расстройства, ослабление лицевых мышц и голосовых связок, нарушение чувствительности. Зрение нарушается, меняется восприятие цвета и яркости. Рассеянный склероз также характеризуется расстройствами тазовых органов и дистрофией ствола мозга, мозжечка и черепных нервов.
  4. Болезнь Девика – демиелинизация в зрительном нерве и спинном мозге. Болезнь характеризуют нарушения координации, чувствительности и функций тазовых органов. Ее отличают серьезные нарушения зрения и даже слепота. В клинической картине также наблюдаются парезы, мышечная слабость и вегетативная дисфункция.
  5. Синдром осмотической демиелинизации . Возникает из-за недостатка натрия в клетках. Симптомами выступают судороги, нарушения личности, потери сознания вплоть до комы и смерти. Следствием заболевания являются отек головного мозга, инфаркт гипоталамуса и грыжа ствола мозга.
  6. Миелопатии – различные дистрофические изменения в спинном мозге. Их характеризуют мышечные нарушения, сенсорные расстройства и дисфункция тазовых органов.
  7. Лейкоэнцефалопатия – разрушение миелиновой оболочки в подкорке головного мозга. Больных мучают постоянная головная боль и эпилептические припадки. Также наблюдаются нарушения зрения, речи, координации и ходьбы. Снижается чувствительность, наблюдаются расстройства личности и сознания, прогрессирует слабоумие.
  8. Лейкодистрофия – генетическое нарушение метаболизма, вызывающее разрушение миелина. Течение болезни сопровождают мышечные и двигательные расстройства, параличи, нарушение зрения и слуха, прогрессирующее слабоумие.

Демиелинизирующие заболевания периферической нервной системы:

  1. Синдром Гийена-Барре – острая воспалительная демиелинизация. Она характеризуется мышечными и двигательными нарушениями, дыхательной недостаточностью, частичным или полным отсутствием сухожильных рефлексов. Больные страдают заболеваниями сердца, нарушением работы пищеварительной системы и тазовых органов. Парезы и нарушения чувствительности так же являются признаками этого синдрома.
  2. Невральная амиотрофия Шарко-Мари-Тута – наследственная патология миелиновой оболочки. Ее отличают нарушения чувствительности, дистрофия конечностей, деформация позвоночника и тремор.

Это лишь часть заболеваний, возникающих из-за разрушения миелинового слоя. Симптомы в большинстве случаев схожи. Точный диагноз можно поставить лишь после проведения компьютерной или магнитно-резонансной томографии. Немаловажную роль в постановке диагноза играет уровень квалификации врача.

Принципы лечения дефектов оболочки

Заболевания, связанные с разрушением мякотной оболочки, очень сложно лечить. Терапия направлена в основном на купирование симптомов и остановку процессов разрушения. Чем раньше диагностировано заболевание, тем больше шансов остановить его течение.

Возможности восстановления миелина

Благодаря своевременному лечению можно запустить процесс восстановления миелина. Однако, новая миелиновая оболочка не будет так же хорошо выполнять свои функции. Кроме того, болезнь может перейти в хроническую стадию, а симптомы сохранятся, лишь слегка сгладятся. Но даже незначительная ремиелинизация способна остановить ход болезни и частично вернуть утраченные функции.

Современные лекарственные средства, направленные на регенерацию миелина более эффективны, но отличаются очень высокой стоимостью.

Терапия

Для лечения заболеваний, вызванных разрушением миелиновой оболочки, используются следующие препараты и процедуры:

  • бета-интерфероны (останавливают течение заболевания, снижают риск возникновения рецидивов и инвалидности);
  • иммуномодуляторы (воздействуют на активность иммунной системы);
  • миорелаксанты (способствуют восстановлению двигательных функций);

  • ноотропы (восстанавливают проводниковую активность);
  • противовоспалительные (снимают воспалительный процесс, вызвавший разрушение миелина);
  • (предупреждают повреждение нейронов мозга);
  • обезболивающие и противосудорожные препараты;
  • витамины и антидепрессанты;
  • фильтрация ликвора (процедура, направленная на очищение спинномозговой жидкости).

Прогноз по заболеваниям

В настоящее время лечение демиелинизации не дает стопроцентного результата, но учеными активно ведутся разработки лекарственных средств, направленных на восстановление мякотной оболочки. Исследования проводятся по следующим направлениям:

  1. Стимуляция олигодендроцитов . Это клетки, производящие миелин. В организме, пораженном демиелинизацией, они не работают. Искусственная стимуляция этих клеток поможет запустить процесс восстановления разрушенных участков миелиновой оболочки.
  2. Стимуляция стволовых клеток . Стволовые клетки могут превращаться в полноценную ткань. Есть вероятность, что они могут заполнять и мякотную оболочку.
  3. Регенерация гематоэнцефалического барьера . При демиелинизации этот барьер разрушается и позволяет лимфоцитам негативно влиять на миелин. Его восстановление защищает миелиновый слой от атаки иммунной системы.

Возможно, в скором времени заболевания, связанные с разрушением миелина, перестанут быть неизлечимыми.