Биографии Характеристики Анализ

Строение клеточной мембраны и ее функции. Какую функцию выполняет клеточная мембрана — её свойства и функции

text_fields

text_fields

arrow_upward

Клетки отделены от внутренней среды организма клеточной или плазматической мембраной.

Мембрана обеспечивает:

1) Избирательное проникновение в клетку и из нее молекул и ионов, необходимых для выполнения специфических функций клеток;
2) Избирательный транспорт ионов через мембрану, поддерживая трансмембранную разницу электрического потенциала;
3) Специфику межклеточных контактов.

Благодаря наличию в мембране многочисленных рецепторов, воспринимающих химические сигналы - гормоны, медиаторы и другие биологически активные вещества, она способна изменять метаболическую активность клетки. Мембраны обеспечивают специфику иммунных проявлений, благодаря наличию на них антигенов - структур, вызывающих образование антител, способных специфически связываться с этими антигенами.
Ядро и органеллы клетки также отделены от цитоплазмы мембранами, которые предупреждают свободное движение воды и растворенных в ней веществ из цитоплазмы в них и наоборот. Это создает условия для разделения биохимических процессов, протекающих в различных отсеках (компартментах) внутри клетки.

Структура мембраны клетки

text_fields

text_fields

arrow_upward

Мембрана клетки - эластичная структура, толщиной от 7 до 11 нм (рис.1.1). Она состоит, в основном, из липидоа и белков. От 40 до 90% всех липидов составляют фосфолипиды — фосфатидилхолин, фосфатидилэтаноламин, фосфатидилсерин, сфингомиелин и фосфатидилинозит. Важным компонентом мембраны являются гликолипиды, представленные цереброзидами, сульфатидами, ганглиозидами и холестерином.

Рис. 1.1 Организация мембраны.

Основной структурой мембраны клетки является двойной слой фосфолипидных молекул. За счет гидрофобных взаимодействий углеводные цепочки липидных молекул удерживаются друг возле друга в вытянутом состоянии. Группы же фосфолипидных молекул обоих слоев взаимо действуют с белковыми молекулами, погруженными в липидную мембрану. Благодаря тому, что большинство липидных компонентов бислоя находится в жидком состоянии, мембрана обладает подвижностью, совершает волнообразные движения. Ее участки, а также белки, погруженные в липидный бислой, перемешаются из одной ее части в другую. Подвижность (текучесть) мембран клеток облегчает процессы транспорта веществ через мембрану.

Белки мембраны клеток представлены, в основном, гликопротеинами. Различают:

интегральные белки , проникающие через всю толщу мембраны и
периферические белки , прикрепленные только к поверхности мембраны, в основном, к внутренней ее части.

Периферические белки почти все функционируют как энзимы (ацетилхолинестераза, кислая и шелочная фосфатазы и др.). Но некоторые энзимы также представлены интегральными белками - АТФ-аза.

Интегральные белки обеспечивают селективный обмен ионов через каналы мембран между экстрацеллюлярной и интрацеллюлярной жидкостью, а также действуют как белки - переносчики крупных молекул.

Рецепторы и антигены мембраны могут быть представлены как интегральными, так и периферическими белками.

Белки, примыкающие к мембране с цитоплазматической стороны, относятся к цитоскелету клетки . Они могут прикрепляться к мембранным белкам.

Так, белок полосы 3 (номер полосы при электрофорезе белков) эритроцитарных мембран объединяется в ансамбль с другими молекулами цитоскелета - спектрином через низкомолекулярный белок анкирин (рис. 1.2).

Рис. 1.2 Схема расположения белков в примембранном цитоскелете эритроцитов.
1 - спектрин; 2 - анкирин; 3 - белок полосы 3; 4 - белок полосы 4,1; 5 - белок полосы 4,9; 6 - олигомер актина; 7 - белок 6; 8 - гпикофорин А; 9 - мембрана.

Спектрин является основным белком цитоскелета, составляющим двумерную сеть, к которой прикрепляется актин.

Актин образует микрофиламенты, представляющие собой сократительный аппарат цитоскелета.

Цитоскелет позволяет клетке проявлять гибкоэластические свойства, обеспечивает дополнительную прочность мембраны.

Большинство интегральных белков - гликопротеины . Их углеводная часть выступает из клеточной мембраны наружу. Многие гликопротеины обладают большим отрицательным зарядом из-за значительного содержания сиаловой кислоты (например, молекула гликофорина). Это обеспечивает поверхности большинства клеток отрицательный заряд, способствуя отталкиванию других отрицательно заряженных объектов. Углеводные выступы гликопротеинов являются носителями антигенов групп крови, других антигенных детерминант клетки, они действуют как рецепторы, связывающие гормоны. Гликопротеины образуют адгезивные молекулы, обуславливающие прикрепление клеток одна к другой, т.е. тесные межклеточные контакты.

Особенности обмена веществ в мембране

text_fields

text_fields

arrow_upward

Мембранные компоненты подвержены многим метаболическим превращениям под влиянием ферментов, расположенных на их мембране или внутри ее. К ним относятся окислительные ферменты, играющие важную роль в модификации гидрофобных элементов мембран - холестерина и др. В мембранах же при активации ферментов - фосфолипаз происходит образование из арахидоновой кислоты биологически активных соединений - простагландинов и их производных. В результате активации метаболизма фосфолипидов в мембране образуются тромбоксаны, лейкотриены, оказывающие мощное воздействие на адгезию тромбоцитов, процесс воспаления и др.

В мембране непрерывно протекают процессы обновления ее компонентов . Так, время жизни мембранных белков колеблется от 2 до 5 дней. Однако в клетке существуют механизмы, обеспечивающие доставку вновь синтезированных молекул белка к мембранным рецепторам, облегчающим встраивание белка в мембрану. «Узнавание» данного рецептора вновь синтезированным белком облегчается образованием сигнального пептида, помогающего найти на мембране рецептор.

Липиды мембраны отличаются также значительной скоростью обмена , что требует для синтеза этих компонентов мембраны большого количества жирных кислот.
На специфику липидного состава мембран клеток влияют изменения среды обитания человека, характера его питания.

Например, увеличение в пище жирных кислот с ненасыщенными связями увеличивает жидкое состояние липидов мембран клеток различных тканей, приводит к благоприятному для функции мембраны клетки изменению отношения фосфолипидов к сфингомиелинам и липидов к белкам.

Избыток холестерина в мембранах, напротив, увеличивает микровязкость их бислоя фосфолипидных молекул, понижая скорость диффузии некоторых веществ через мембраны клеток.

Пища, обогащенная витаминами А, Е, С, Р улучшает обмен липидов в мембранах эритроцитов, снижает микровязкость мембран. Это повышает деформируемость эритроцитов, облегчает выполнение ими транспортной функции (глава 6).

Дефицит жирных кислот и холестерина в пище нарушает липидный состав и функции мембран клеток.

Например, дефицит жиров нарушает функции мембраны нейтрофилов, что угнетает их способность к движению и фагоцитозу (активный захват и поглощение микроскопических инородных живых объектов и твердых частиц одноклеточными организмами или некоторыми клетками).

В регулировании липидного состава мембран и их проницаемости, регуляции пролиферации клеток важную роль играют активные формы кислорода, образующиеся в клетке сопряженно с нормально протекающими метаболическими реакциями (микросомальным окислением и др.).

Образующиеся активные формы кислорода - супероксидный радикал (О 2), перекись водорода (H 2 О 2) и др. представляют собой чрезвычайно реакционноспособные вещества. Их основным субстратом в реакциях свободнорадикального окисления являются ненасыщенные жирные кислоты, входящие в состав фосфолипидов мембран клетки (так называемые реакции перекисного окисления липидов). Интенсификация этих реакций может вызвать повреждение мембраны клетки, ее барьерной, рецепторной и обменной функций, модификацию молекул нуклеиновых кислот и белков, что ведет к мутациям и инактивации ферментов.

В физиологических условиях интенсификация перекисного окисления липидов регулируется антиоксидазной системой клеток, представленной ферментами, инактивируюшими активные формы кислорода - супероксиддисмутазой, каталазой, пероксидазой и веществами, обладающими антиокислительной активностью - токоферолом (витамин Е), убихиноном и др. Выраженный защитный эффект на мембраны клетки (цитопротекторный эффект) при различных повреждающих воздействиях на организм оказывают простагландины Е и J2, «гася» активацию свободнорадикального окисления. Простагландины защищают слизистую желудка и гепатоциты от химических повреждений, нейроны, клетки нейроглии, кардиомиоциты - от гипоксических повреждений, скелетные мышцы — при тяжелой физической нагрузке. Простагландины, связываясь со специфическими рецепторами на клеточных мембранах стабилизируют бислой последних, уменьшают потерю мембранами фосфолипидов.

Функции рецепторов мембран

text_fields

text_fields

arrow_upward

Химический или механический сигнал вначале воспринимается рецепторами мембраны клетки. Следствием этого является химическая модификация мембранных белков, влекущая активацию «вторичных посредников», обеспечивающих быстрое распространение сигнала в клетке к ее геному, энзимам, сократительным элементам и т.д.

Схематично трансмембранная передача сигнала в клетке может быть представлена следующим образом:

1) Возбужденный воспринятым сигналом рецептор активирует у — белки мембраны клетки. Это происходит при связывании ими гуанозинтрифосфата (ГТФ).

2) Взаимодействие комплекса «ГТФ-у- белки», в свою очередь, активирует фермент - предшественник вторичных посредников, расположенный на внутренней стороне мембраны.

Предшественником одного вторичного посредника - цАМФ, образующегося из АТФ, является фермент аденилатциклаза;
Предшественником других вторичных посредников - инозитолтрифосфата и диацилглицерина, образующихся из фосфатидилинозитол-4,5-дифосфата мембраны, является фермент фосфолипаза С. Кроме того, инозитолтрифосфат мобилизует в клетке еще один вторичный посредник - ионы кальция, участвующие практически во всех регуляторных процессах в клетке. Так, например, образовавшийся инозитолтрифосфат вызывает выброс кальция из эндоплазматического ретикулума и повышение его концентрации в цитоплазме, тем самым включая различные формы клеточного ответа. С помощью инозитолтрифосфата и диацилглицерина регулируется функция гладких мышц и В-клеток поджелудочной железы ацетилхолином, передней доли гипофиза тиреогропин-релизинг фактором, ответ лимфоцитов на антиген и т.д.
В некоторых клетках роль вторичного посредника выполняет цГМФ, образующийся из ГТФ с помощью фермента гуанилатциклазы. Он служит, например, вторичным посредником для натрийуретического гормона в гладких мышцах стенок кровеносных сосудов. цАМФ служит вторичным посредником для многих гормонов - адреналина, эритропоэтина и др. (глава 3).

Природа создала множество организмов и клеток, но, несмотря на это, строение и большая часть функций биологических мембран одинаковы, что позволяет рассматривать их структуру и изучать их ключевые свойства без привязанности к конкретному виду клеток.

Что такое мембрана?

Мембраны - это защитный элемент, который является неотъемлемой составляющей клетки любого живого организма.

Структурной и функциональной единицей всех живых организмов на планете является клетка. Жизнедеятельность ее неразрывно связана с окружающей средой, с которой она обменивается энергией, информацией, веществом. Так, питательная энергия, необходимая для функционирования клетки, поступает извне и тратится на осуществление ею различных функций.

Структура простейшей единицы строения живого организма: мембрана органеллы, разнообразные включения. Она окружена мембраной, внутри которой располагается ядро и все органеллы. Это митохондрии, лизосомы, рибосомы, эндоплазматический ретикулум. Каждый структурный элемент имеет свою мембрану.

Роль в жизнедеятельности клетки

Биологическая мембрана играет кульминационную роль в строении и функционировании элементарной живой системы. Только клетка, окруженная защитной оболочкой, по праву может называться организмом. Такой процесс, как обмен веществ, также осуществляется благодаря наличию мембраны. Если структурная целостность ее нарушена, это приводит к изменению функционального состояния организма в целом.

Клеточная мембрана и ее функции

Она отделяет цитоплазму клетки от внешней среды или от оболочки. Мембрана клетки обеспечивает должное выполнение специфических функций, специфику межклеточных контактов и иммунных проявлений, поддерживает трансмембранную разницу электрического потенциала. В ней имеются рецепторы, способные воспринимать химические сигналы - гормоны, медиаторы и другие биологические активные компоненты. Эти рецепторы наделяют ее еще одной способностью - изменять метаболическую активность клетки.

Функции мембраны:

1. Активный перенос веществ.

2. Пассивный перенос веществ:

2.1. Диффузия простая.

2.2. Перенос через поры.

2.3. Транспорт, осуществляемый за счет диффузии переносчика вместе с мембранным веществом или посредством передачи по эстафете вещества по молекулярной цепи переносчика.

3. Перенос неэлектролитов благодаря простой и облегченной диффузии.

Строение мембраны клетки

Составляющие мембраны клетки - липиды и белки.

Липиды: фосфолипиды, фосфатидилэтаноламин, сфингомиелин, фосфатидилинозит и фосфатидилсерин, гликолипиды. Доля липидов составляет 40-90 %.

Белки: периферические, интегральные (гликопротеины), спектрин, актин, цитоскелет.

Основной структурный элемент - двойной слой фосфолипидных молекул.

Кровельная мембрана: определение и типология

Немного статистики. На территории Российской Федерации мембрана в качестве кровельного материала используется не так уж и давно. Удельный вес мембранных кровель из общего числа мягких перекрытий крыш составляет всего 1,5 %. Более широкое распространение в России получили битумные и мастичные кровли. А вот в Западной Европе на долю мембранных кровель приходится 87 %. Разница ощутимая.

Как правило, мембрана в роли основного материала при перекрытии крыши идеально подходит для плоских кровель. Для имеющих большой уклон она подходит в меньшей степени.

Объемы производства и реализации мембранных кровель на отечественном рынке имеют положительную тенденцию роста. Почему? Причины более чем ясны:

  • Срок эксплуатации составляет около 60 лет. Представьте себе, только гарантийный срок использования, который устанавливается производителем, достигает 20 лет.
  • Легкость в монтаже. Для сравнения: установка битумной кровли занимает в 1,5 раза больше времени, нежели монтаж мембранного перекрытия.
  • Простота в обслуживании и проведении ремонтных работ.

Толщина кровельных мембран может составлять 0,8-2 мм, а средний показатель веса одного метра квадратного равен 1,3 кг.

Свойства кровельных мембран:

  • эластичность;
  • прочность;
  • устойчивость к воздействию ультрафиолетовых лучей и иных сред-агрессоров;
  • морозоустойчивость;
  • огнеупорность.

Мембрана кровельная бывает трех типов. Главный классификационный признак - вид полимерного материала, составляющего основание полотна. Итак, кровельные мембраны бывают:

  • принадлежащие группе ЭПДМ, изготовлены на основе полимеризированного этилен-пропилен-диен-мономера, а проще говоря, Преимущества: высокая прочность, эластичность, водонепроницаемость, экологичность, низкая стоимость. Недостатки: клеевая технология соединения полотен посредством использования специальной ленты, низкие показатели прочности соединений. Сфера применения: используется как гидроизоляционный материал для туннельных перекрытий, водных источников, хранилищ отходов, искусственных и природных водоемов и т. д.
  • ПВХ-мембраны. Это оболочки, при производстве которых в качестве основного материала используется поливинилхлорид. Преимущества: устойчивость к ультрафиолету, огнеупорность, обширная цветовая гамма мембранных полотен. Недостатки: низкие показатели устойчивости к битумным материалам, маслам, растворителям; выделяет в атмосферу вредные вещества; цвет полотна со временем тускнеет.
  • ТПО. Изготавливаются из термопластичных олефинов. Могут быть армированными и неармированными. Первые оснащаются сеткой из полиэстера или стекловолоконной тканью. Преимущества: экологичность, долговечность, высокая эластичность, температуростойкость (как при высоких, так и при низких температурах), сварные соединения швов полотен. Недостатки: высокая ценовая категория, отсутствие производителей на отечественном рынке.

Мембрана профилированная: характеристика, функции и преимущества

Профилированные мембраны - это инновация на строительном рынке. Такая мембрана эксплуатируется в качестве гидроизоляционного материала.

Вещество, используемое при изготовлении, - полиэтилен. Последний бывает двух типов: полиэтилен высокого давления (ПВД) и полиэтилен низкого давления (ПНД).

Техническая характеристика мембраны из ПВД и ПНД

Показатель

Прочность при разрыве (МРа)

Удлинение при растяжении (%)

Плотность (кг/куб. м)

Прочность при сжатии (МРа)

Ударная вязкость (с надрезом) (КДж/кв. м)

Модуль упругости на изгиб (МРа)

Твёрдость (МРа)

Рабочий температурный режим (˚С)

от -60 до +80

от -60 до +80

Суточная норма водопоглощения (%)

Профилированная мембрана из полиэтилена высокого давления имеет особую поверхность - пустотелые пупырышки. Высота этих образований может колебаться от 7 до 20 мм. Внутренняя поверхность мембраны ровная. Это дает возможность беспроблемного сгибания стройматериала.

Изменение формы отдельных участков мембраны исключено, поскольку давление по всей ее площади распределяется равномерно благодаря наличию все тех же выступов. Геомембрана может использоваться в качестве вентиляционной изоляции. В таком случае обеспечивается свободный тепловой обмен внутри здания.

Преимущества профилированных мембран:

  • повышенная прочность;
  • теплоустойчивость;
  • устойчивость химического и биологического влияния;
  • длительный срок эксплуатации (более 50 лет);
  • простота в установке и обслуживании;
  • доступная стоимость.

Профилированные мембраны бывают трех видов:

  • с однослойным полотном;
  • с двухслойным полотном = геотекстиль + дренажная мембрана;
  • с трехслойным полотном = скользкая поверхность + геотекстиль + дренажная мембрана.

Однослойная профилированная мембрана применяется для защиты основной гидроизоляции, монтажа и демонтажа подготовки бетоном стен с повышенной влажностью. Двухслойную защитную используют во время оснащения Состоящую из трех слоев применяют на грунте, который поддается морозным пучениям, и грунтовой почве, находящейся глубоко.

Сферы использования дренажных мембран

Профилированная мембрана находит свое применение в следующих областях:

  1. Основная гидроизоляция фундамента. Обеспечивает надежную защиту от разрушительного влияния грунтовых вод, корневых систем растений, просадки грунта, повреждений механического типа.
  2. Стеновой дренаж фундамента. Нейтрализует воздействие грунтовых вод, атмосферных осадков посредством переправления их в дренажные системы.
  3. Горизонтальный типа - защита от деформации благодаря структурным особенностям.
  4. Аналог подготовки бетоном. Эксплуатируется в случае проведения строительных работ по возведению зданий в зоне низкого залегания грунтовых вод, в тех случаях, когда используется горизонтальная гидроизоляция с целью защиты от капиллярной влаги. Также в функции мембраны профилированной входит непропускание цементного молока в грунт.
  5. Вентиляция стеновых поверхностей повышенного уровня влажности. Может устанавливаться как на внутренней, так и на внешней стороне помещения. В первом случае активизируется воздушная циркуляция, а во втором обеспечивается оптимальная влажность и температура.
  6. Используемая инверсионная кровля.

Супердиффузионная мембрана

Мембрана супердиффузионная является материалом нового поколения, главное предназначение которого - защита элементов кровельной конструкции от ветровых явлений, осадков, пара.

Производство защитного материала основано на использовании нетканых веществ, плотных волокон высокого качества. На отечественном рынке популярна трехслойная и четырехслойная мембрана. Отзывы специалистов и потребителей подтверждают, что чем больше слоев лежит в основе конструкции, тем сильнее ее защитные функции, а значит, и выше энергоэффективность помещения в целом.

В зависимости от типа крыши, особенностей ее конструкции, климатических условий, производители рекомендуют отдавать предпочтение тому или иному виду диффузионных мембран. Так, существуют они для скатных кровель сложных и простых конструкций, для крыш скатного типа с минимальным уклоном, для кровель с фальцевым покрытием и т. д.

Супердиффузионная мембрана укладывается непосредственно на теплоизоляционный слой, настил из досок. Необходимости в вентиляционном зазоре нет. Крепится материал специальными скобами или стальными гвоздями. Края диффузионных листов соединяются работы разрешается проводить даже при экстремальных условиях: в при сильных порывах ветра и т. д.

Кроме того, рассматриваемое покрытие может использоваться в качестве временного перекрытия крыши.

ПВХ-мембраны: сущность и предназначение

ПФХ-мембраны - это материал для кровли, изготавливаемый из поливинилхлорида и обладающий эластичными свойствами. Такой современный кровельный материал вовсе вытеснил битумные рулонные аналоги, имеющие существенный недостаток - необходимость систематического обслуживания и ремонта. На сегодняшний день характерные особенности ПВХ-мембран позволяют использовать их при проведении ремонтных работ на старых кровлях плоского типа. Применяются они и при монтаже новых крыш.

Кровля из такого материала удобна в эксплуатации, а ее установка возможна на любые типы поверхностей, в любое время года и при любых погодных условиях. ПВХ-мембрана обладает следующими свойствами:

  • прочность;
  • устойчивость при воздействии УФ-лучей, различного рода атмосферных осадков, точечных и поверхностных нагрузках.

Именно благодаря своим уникальным свойствам ПВХ-мембраны будут служить вам верой и правдой на протяжении многих лет. Срок использования такой кровли приравнивается к сроку эксплуатации самого здания, в то время как рулонные кровельные материалы нуждаются в регулярном ремонте, а в некоторых случаях и вовсе в демонтаже и установке нового перекрытия.

Между собой мембранные полотна из ПВХ соединяются методом сварки горячим вздохом, температура которого находится в пределах 400-600 градусов по Цельсию. Такое соединение является абсолютно герметичным.

Преимущества ПВХ-мембран

Достоинства их очевидны:

  • гибкость кровельной системы, что максимально соответствует строительному проекту;
  • прочный, обладающий герметичными свойствами соединительный шов между мембранными полотнами;
  • идеальная переносимость перемены климата, погодных условий, температуры, влажности;
  • повышенная паропроницаемость, которая содействует испарению влаги, скопившейся в подкровельном пространстве;
  • множество вариантов цветовых решений;
  • противопожарные свойства;
  • способность длительный период сохранять первоначальные свойства и внешний вид;
  • ПВХ-мембрана - абсолютно экологичный материал, что подтверждается соответствующими сертификатами;
  • процесс монтажа механизирован, поэтому не займет много времени;
  • правила эксплуатации допускают установку различных архитектурных дополнений непосредственно сверху самой мембранной ПВХ-кровли;
  • однослойная укладка сэкономит ваши деньги;
  • простота в обслуживании и ремонте.

Мембранная ткань

Текстильной промышленности мембранная ткань известна давно. Из такого материала изготавливается обувь и одежда: взрослая и детская. Мембрана - основа мембранной ткани, представленная в виде тонкой полимерной пленки и обладающая такими характеристиками, как водонепроницаемость и паропроницаемость. Для производства данного материала эту пленку покрывают наружным и внутренним защитными слоями. Строение их определяет сама мембрана. Делается это с целью сохранения всех полезных свойств даже в случае повреждения. Иными словами, мембранная одежда не промокает при воздействии осадков в виде снега или дождя, но в то же время отлично пропускает пар от тела во внешнюю среду. Такая пропускная способность позволяет коже дышать.

Учитывая все вышесказанное, можно сделать вывод о том, что из подобной ткани изготавливается идеальная одежда зимняя. Мембрана, находящаяся в основе ткани, при этом может быть:

  • с порами;
  • без пор;
  • комбинированная.

В составе мембран, имеющих множество микропор, числится тефлон. Размеры таких пор не достигают габаритов даже капли воды, но больше водной молекулы, что свидетельствует о водонепроницаемости и способности выводить пот.

Мембраны, которые не имеют пор, как правило, произведены из полиуретана. Их внутренний слой концентрирует в себе все потожировые выделения тела человека и выталкивает их наружу.

Строение мембраны комбинированной подразумевает наличие двух слоев: пористого и гладкого. Такая ткань обладает высокими качественными характеристиками и прослужит долгие годы.

Благодаря этим достоинствам одежда и обувь, изготовленные из мембранных тканей и предназначенные для носки в зимнюю пору года, прочные, но легкие, превосходно защищают от мороза, влаги, пыли. Они просто незаменимы для множества активных видов зимнего отдыха, альпинизма.

Наружная клеточная мембрана (плазмалемма, цитолемма, плазматическая мембрана) животных клеток покрыта снаружи (т.е. на стороне, не контактирующей с цитоплазмой) слоем олигосахаридных цепей, ковалентно присоединенных к мембранным белкам (гликопротеины) и в меньшей степени к липидам (гликолипиды). Это углеводное покрытие мембраны называется гликокаликсом. Назначение гликокаликса пока не очень ясно; есть предположение, что эта структура принимает участие в процессах межклеточного узнавания.

У растительных клеток поверх наружной клеточной мембраны располагается плотный целлюлозный слой с порами, через которые осуществляется связь между соседними клетками посредством цитоплазматических мостиков.

У клеток грибов поверх плазмалеммы – плотный слой хитина .

У бактерий муреина .

Свойства биологических мембран

1. Способность к самосборке после разрушающих воздействий. Это свойство определяется физико-химическими особенностями фосфолипидных молекул, которые в водном растворе собираются вместе так, что гидрофильные концы молекул разворачиваются наружу, а гидрофобные - внутрь. В уже готовые фосфолипидные слои могут встраиваться белки. Способность к самосборке имеет важное значение на клеточном уровне.

2. Полупроницаемость (избирательность в пропускании ионов и молекул). Обеспечивает поддержание постоянства ионного и молекулярного состава в клетке.

3. Текучесть мембран . Мембраны не являются жесткими структурами, они постоянно флюктуируют за счет вращательных и колебательных движений молекул липидов и белков. Это обеспечивает большую скорость протекания ферментативных и других химических процессов в мембранах.

4. Фрагменты мембран не имеют свободных концов , так как замыкаются в пузырьки.

Функции наружной клеточной мембраны (плазмалеммы)

Основными функциями плазмалеммы являются следующие: 1) барьерная, 2) рецепторная, 3) обменная, 4)транспортная.

1. Барьерная функция. Она выражается в том, что плазмалемма ограничи­вает содержимое клетки, отделяя его от внешней среды, а внутриклеточные мембраны раз­деляют цитоплазму на отдельные реакционные отсеки-компартменты .

2. Рецепторная функция. Одной из важнейших функций плазмалеммы является обеспечение коммуникации (связи) клетки с внешней средой посредством присутствующего в мембранах рецепторного аппарата, имеющего белковую или гликопротеиновую природу. Основная функция рецепторных образований плазмалеммы - распознавание внешних сигналов, благодаря которым клетки правильно ориентируются и образуют ткани в процессе дифференцировки. С рецепторной функцией связана деятельность различных регуляторных систем, а также формирование иммунного ответа.

    Обменная функция определяется содержанием в биологических мембранах ферментных белков, являющихся биологическими катализаторами. Их активность меняется в зависимости от рН среды, температуры, давления, от концентрации как субстрата, так и самого фермента. Ферменты определяют интенсивность ключевых реакций метаболизма, а также их направленность.

    Транспортная функция мембран. Мембрана обеспечивает избирательное проникновение в клетку и из клетки в окружающую среду различных химических веществ. Транспорт веществ необходим для поддержания в клетке соответствующего рН, надлежащей ионной концентрации, что обеспечивает эффективность работы клеточных ферментов. Транспорт поставляет питательные вещества, которые служат источником энергии, а также материалом для образования различных клеточных компонентов. От него зависит выведение из клетки токсических отходов, секреция различных полезных веществ и создание ионных градиентов, необходимых для нервной и мышечной активности, Изменение скорости переноса веществ может приводить к нарушениям биоэнергетических процессов, водно-солевого обмена, возбудимости и других процессов. Коррекция этих изменений лежит в основе действия многих лекарственных препаратов.

Существует два основных способа поступления веществ в клетку и вывода из клетки во внешнюю среду;

    пассивный транспорт,

    активный транспорт.

Пассивный транспорт идет по градиенту химической или электрохимической концентрации без затрат энергии АТФ. Если молекула транспортируемого вещества не имеет заряда, то направление пассивного транспорта определяется только разностью концентрации этого вещества по обеим сторонам мембраны (градиент химической концентрации). Если же молекула заряжена, то на ее транспорт влияют как градиент химической концентрации, так и электрический градиент (мембранный потенциал).

Оба градиента вместе составляют электрохимический градиент. Пассивный транспорт веществ может осуществляться двумя способами простой диффузией и облегченной диффузией.

При простой диффузии ионы солей и вода, могут проникать через селективные каналы. Эти каналы образуются за счет некоторых трансмембранных белков, формирующих сквозные транспортные пути, открытые постоянно или только на короткое время. Через селективные каналы проникают различные молекулы, имеющие соответствующие каналам размер и заряд.

Имеется и другой путь простой диффузии - это диффузия веществ через липидный бислой, через который легко проходят жирорастворимые вещества и вода. Липидный бислой непроницаем для заряженных молекул (ионов), и в то же время незаряженные малые молекулы могут свободно диффундировать, при этом, чем меньше молекула, тем быстрее она транспортируется. Довольно большая скорость диффузии воды через липидный бислой как раз и объясняется малой величиной ее молекул и отсутствием заряда.

При облегченной диффузии в транспорте веществ участвуют белки – переносчики, работающие по принципу «пинг-понг». Белок при этом существует в двух конформационных состояниях: в состоянии «понг» участки связывания транспортируемого вещества открыты с наружной стороны бислоя, а в состоянии «пинг» такие же участки открываются с другой стороны. Этот процесс обратимый. С какой же стороны в данный момент времени будет открыт участок свя­зывания вещества, зависит от градиента концентрации, этого вещества.

Таким способом через мембрану проходят сахара и аминокислоты.

При облегченной диффузии скорость транспортировки веществ значительно возрастает в сравнении с простой диффузией.

Кроме белков-переносчиков, в облегченной диффузии принимают участие некоторые антибиотики, например, грамицидин и валиномицин.

Поскольку они обеспечивают транспорт ионов, их называют ионофорами .

Активный транспорт веществ в клетке. Этот вид транспорта всегда идет с затратой энергии. Источником энергии, необходимой для активного транспорта, является АТФ. Характерной особенностью этого вида транспорта является то, что он осуществляется двумя способами:

    с помощью ферментов, называемых АТФ-азами;

    транспорт в мембранной упаковке (эндоцитоз).

В наружной клеточной мембране присутствуют такие белки-ферменты, как АТФ-азы, функция которых заключается в обеспечении активного транспорта ионов против градиента концентрации. Поскольку они обеспечивают транспорт ионов, то этот процесс называют ионным насосом.

Известны четыре основные системы транспорта ионов в животной клетке. Три из них обеспечивают перенос через биологические мембраны.Na+ и К + , Са + , Н + , а четвертый - перенос протонов при работе дыхательной цепи митохондрии.

Примером механизма активного транспорта ионов может служить натрий-калиевый насос в животных клетках. Он поддерживает в клетке постоянную концентрацию ионов натрия и калия, которая отличается от кон­центрации этих веществ в окружающей среде: в норме в клетке ионов натрия бывает меньше, чем в окружающей среде, а калия - больше.

Вследствие этого по законам простой диффузии калий стремится уйти из клетки, а натрий диффундирует в клетку. В противовес простой диффузии натрий - калиевый насос постоянно выкачивает из клетки натрий и вводит калий: на три молекулы выбрасываемого наружу натрия приходится две молекулы вводимого в клетку калия.

Обеспечивает этот транспорт ионов натрий-калий зависимая АТФ-аза -фермент локализующийся в мембране таким образом, что пронизывает всю ее толщу, С внутренней стороны мембраны к этому ферменту поступает натрий и АТФ, а с наружной - калий.

Перенос натрия и калия через мембрану совершается в результате конформационных изменений, которые претерпевает натрий-калий зависимая АТФ-аза, активизирующаяся при повышении концентрации натрия внутри клетки или калия в окружающей среде.

Для энергообеспечения этого насоса необходим гидролиз АТФ. Этот процесс обеспечивает все тот же фермент натрий-калий зависимая АТФ-аза. При этом более одной трети АТФ, потребляемой животной клеткой в со­стоянии покоя, расходуется на работу натрий - калиевого насоса.

Нарушение правильной работы натрий - калиевого насоса приводит к различным серьезным заболеваниям.

КПД этого насоса превышает 50%, чего не достигают самые совершенные машины, созданные человеком.

Многие системы активного транспорта приводятся в действие за счет энергии, запасенной в ионных градиентах, а не путем прямого гидролиза АТФ. Все они работают как котранспортные системы (способствующие транспор­ту низкомолекулярных соединений). Например, активный транспорт некото­рых сахаров и аминокислот внутрь животных клеток обусловливается гра­диентом иона натрия, причем чем выше градиент ионов натрия, тем больше скорость всасывания глюкозы. И, наоборот, если концентрация натрия в межклеточном пространстве заметно уменьшается, транспорт глюкозы останавливается. При этом натрий должен присоединиться к натрий - зависимому белку-переносчику глюкозы, который имеет два участка связывания: один для глюкозы, другой для натрия. Ионы натрия, проникающие в клетку, способствуют введению в клетку и белка-переносчика вместе с глюкозой. Ионы на­трия, проникшие в клетку вместе с глюкозой, выкачиваются обратно натрий -калий зависимой АТФ-азой, которая, поддерживая градиент концентрации натрия, косвенным путем контролирует транспорт глюкозы.

Транспорт веществ в мембранной упаковке. Крупные молекулы биополимеров практически не могут проникать через плазмалемму ни одним из вышеописанных механизмов транспорта веществ в клетку. Они захватываются клеткой и поглощаются в мембранной упаковке, что получило название эндоцитоза . Последний формально разделяют на фагоцитоз и пиноцитоз. Захват клеткой твердых частиц - это фагоцитоз , а жидких - пиноцитоз . При эндоцитозе наблюдаются следующие стадии:

    рецепция поглощаемого вещества за счет рецепторов в мембране клеток;

    инвагинация мембраны с образованием пузырька (везикулы);

    отрыв эндоцитозного пузырька от мембраны с затратой энергии – образование фагосомы и восстановление целостности мембраны;

Слияние фагосомы с лизосомой и образование фаголизосомы (пищеварительной вакуоли ) в которой происходит переваривание поглощенных частиц;

    выведение непереваренного в фаголизосоме материала из клетки (экзоцитоз ).

В животном мире эндоцитоз является характерным способом питания многих одноклеточных организмов (например, у амеб), а среди много­ клеточных этот вид переваривания пищевых частиц встречается в энтодермальных клетках у кишечнополостных. Что касается млекопитающих и человека, то у них имеется ретикуло-гистио-эндотелиальная система клеток, обладающих способностью к эндоцитозу. Примером могут служить лейкоциты крови и купферовские клетки печени. Последние выстилают так называемые синусоидные капилляры печени и захватывают взвешенные в крови различные чужеродные частицы. Экзоцитоз - это и способ выведения из клетки многоклеточного организма секретируемого ею субстрата, необходимого для функции других клеток, тканей и органов.

Ни для кого не секрет, что все живые существа на нашей планете состоят их клеток, этих бесчисленных « » органической материи. Клетки же в свою очередь окружены специальной защитной оболочкой – мембраной, играющей очень важную роль в жизнедеятельности клетки, причем функции клеточной мембраны не ограничиваются только лишь защитой клетки, а представляют собой сложнейший механизм, участвующий в размножении, питании, регенерации клетки.

Что такое клеточная мембрана

Само слово «мембрана» с латыни переводится как «пленка», хотя мембрана представляет собой не просто своего роду пленку, в которую обернута клетка, а совокупность двух пленок, соединенных между собой и обладающих различными свойствами. На самом деле клеточная мембрана это трехслойная липопротеиновая (жиро-белковая) оболочка, отделяющая каждую клетку от соседних клеток и окружающей среды, и осуществляющая управляемый обмен между клетками и окружающей средой, так звучит академическое определение того что, представляет собой клеточная мембрана.

Значение мембраны просто огромно, ведь она не просто отделяет одну клетку от другой, но и обеспечивает взаимодействие клетки, как с другими клетками, так и окружающей средой.

История исследования клеточной мембраны

Важный вклад в исследование клеточной мембраны был сделан двумя немецкими учеными Гортером и Гренделем в далеком 1925 году. Именно тогда им удалось провести сложный биологический эксперимент над красными кровяными тельцами – эритроцитами, в ходе которых ученые получили так званые «тени», пустые оболочки эритроцитов, которые сложили в одну стопку и измерили площадь поверхности, а также вычислили количество липидов в них. На основании полученного количества липидов ученые пришли к выводу, что их как раз хватаем на двойной слой клеточной мембраны.

В 1935 году еще одна пара исследователей клеточной мембраны, на этот раз американцы Даниэль и Доусон после целой серии долгих экспериментов установили содержание белка в клеточной мембране. Иначе никак нельзя было объяснить, почему мембрана обладает таким высоким показателем поверхностного натяжения. Ученые остроумно представили модель клеточной мембраны в виде сэндвича, в котором роль хлеба играют однородные липидо-белковые слои, а между ними вместо масла – пустота.

В 1950 году с появлением электронного теорию Даниэля и Доусона удалось подтвердить уже практическими наблюдениями – на микрофотографиях клеточной мембраны были отчетливо видны слои из липидных и белковых головок и также пустое пространство между ними.

В 1960 году американский биолог Дж. Робертсон разработал теорию о трехслойном строении клеточных мембран, которая долгое время считалась единственной верной, но с дальнейшим развитием науки, стали появляться сомнения в ее непогрешимости. Так, например, с точки зрения клеткам было бы сложно и трудозатратно транспортировать необходимые полезные вещества через весь «сэндвич»

И только в 1972 году американские биологи С. Сингер и Г. Николсон смогли объяснить нестыковки теории Робертсона с помощью новой жидкостно-мозаичной модели клеточной мембраны. В частности они установили что клеточная мембрана не однородна по своему составу, более того – ассиметрична и наполнена жидкостью. К тому же клетки пребывают в постоянном движении. А пресловутые белки, которые входят в состав клеточной мембраны имеют разные строения и функции.

Свойства и функции клеточной мембраны

Теперь давайте разберем, какие функции выполняет клеточная мембрана:

Барьерная функция клеточной мембраны — мембрана как самый настоящий пограничник, стоит на страже границ клетки, задерживая, не пропуская вредные или попросту неподходящие молекулы

Транспортная функция клеточной мембраны – мембрана является не только пограничником у ворот клетки, но и своеобразным таможенным пропускным пунктом, через нее постоянно проходит обмен полезными веществами с другими клетками и окружающей средой.

Матричная функция – именно клеточная мембрана определяет расположение относительно друг друга, регулирует взаимодействие между ними.

Механическая функция – отвечает за ограничение одной клетки от другой и параллельно за правильно соединение клеток друг с другом, за формирование их в однородную ткань.

Защитная функция клеточной мембраны является основой для построения защитного щита клетки. В природе примером этой функции может быть твердая древесина, плотная кожура, защитный панцирь у , все это благодаря защитной функции мембраны.

Ферментативная функция – еще одна важная функция, осуществляемая некоторыми белками клетки. Например, благодаря этой функции в эпителии кишечника происходит синтез пищеварительных ферментов.

Также помимо всего этого через клеточную мембрану осуществляется клеточный обмен, который может проходить тремя разными реакциями:

  • Фагоцитоз – это клеточный обмен, при котором встроенные в мембрану клетки-фагоциты захватывают и переваривают различные питательные вещества.
  • Пиноцитоз – представляет собой процесс захвата мембраной клетки, соприкасающиеся с ней молекулы жидкости. Для этого на поверхности мембраны образуются специальные усики, которые как будто окружают каплю жидкости, образуя пузырек, которые впоследствии «проглатывается» мембраной.
  • Экзоцитоз – представляет собой обратный процесс, когда клетка через мембрану выделяет секреторную функциональную жидкость на поверхность.

Строение клеточной мембраны

В клеточной мембране имеются липиды трех классов:

  • фосфолипиды (представляются собой комбинацию жиров и фосфора),
  • гликолипиды (представляют собой комбинацию жиров и углеводов),
  • холестерол.

Фосфолипиды и гликолипиды в свою очередь состоят из гидрофильной головки, в которую отходят два длинных гидрофобных хвостика. Холестерол же занимает пространство между этими хвостиками, не давая им изгибаться, все это в некоторых случаях делает мембрану определенных клеток весьма жесткой. Помимо всего этого молекулы холестерола упорядочивают структуру клеточной мембраны.

Но как бы там ни было, а самой важной частью строения клеточной мембраны является белок, точнее разные белки, играющие различные важные роли. Несмотря на разнообразие белков содержащихся в мембране есть нечто, что их объединяет – вокруг всех белков мембраны расположены аннулярные липиды. Аннулярные липиды – это особые структурированные жиры, которые служат своеобразной защитной оболочкой для белков, без которой они бы попросту не работали.

Структура клеточной мембраны имеет три слоя: основу клеточной мембраны составляет однородный жидкий билипидный слой. Белки же покрывают его с обеих сторон наподобие мозаики. Именно белки помимо описанных выше функций также играют роль своеобразных каналов, по которым сквозь мембрану проходят вещества, неспособные проникнуть через жидкий слой мембраны. К таким относятся, например, ионы калия и натрия, для их проникновения через мембрану природой предусмотрены специальные ионные каналы клеточных мембран. Иными словами белки обеспечивают проницаемость клеточных мембран.

Если смотреть на клеточную мембрану через микроскоп, мы увидим слой липидов, образованный маленькими шарообразными молекулами по которому плавают словно по морю белки. Теперь вы знаете, какие вещества входят в состав клеточной мембраны.

Клеточная мембрана, видео

И в завершение образовательное видео о клеточной мембране.

Клеточная мембрана.

Клеточная мембрана отделяет содержимое любой клетки от внешней среды, обеспечивая ее целостность; регулирует обмен между клеткой и средой; внутриклеточные мембраны разделяют клетку на специализированные замкнутые отсеки - компартменты или органеллы, в которых поддерживаются определенные условия среды.

Строение.

Клеточная мембрана представляет собой двойной слой (бислой) молекул класса липидов (жиров), большинство из которых представляет собой так называемые сложные липиды - фосфолипиды. Молекулы липидов имеют гидрофильную («головка») и гидрофобную («хвост») часть. При образовании мембран гидрофобные участки молекул оказываются обращены внутрь, а гидрофильные - наружу. Мембраны - структуры весьма сходные у разных организмов. Толщина мембраны составляет 7-8 нм. (10−9 метра)

Гидрофильность – способность вещества смачиваться водой.
Гидрофобность – неспособность вещества смачиваться водой.

Биологическая мембрана включает и различные белки:
- интегральные (пронизывающие мембрану насквозь)
- полуинтегральные (погруженные одним концом во внешний или внутренний липидный слой)
- поверхностные (расположенные на внешней или прилегающие к внутренней сторонам мембраны).
Некоторые белки являются точками контакта клеточной мембраны с цитоскелетом внутри клетки, и клеточной стенкой (если она есть) снаружи.

Цитоскелет – клеточный каркас внутри клетки.

Функции.

1) Барьерная - обеспечивает регулируемый, избирательный, пассивный и активный обмен веществ с окружающей средой.

2) Транспортная - через мембрану происходит транспорт веществ в клетку и из клетки.матричная - обеспечивает определенное взаиморасположение и ориентацию мембранных белков, их оптимальное взаимодействие.

3) Механическая - обеспечивает автономность клетки, ее внутриклеточных структур, также соединение с другими клетками (в тканях).Большую роль в обеспечение механической функции имеет межклеточное вещество.

4) Рецепторная - некоторые белки, находящиеся в мембране, являются рецепторами (молекулами, при помощи которых клетка воспринимает те или иные сигналы).

Например, гормоны, циркулирующие в крови, действуют только на такие клетки-мишени, у которых есть соответствующие этим гормонам рецепторы. Нейромедиаторы (химические вещества, обеспечивающие проведение нервных импульсов) тоже связываются с особыми рецепторными белками клеток-мишеней.

Гормоны - биологически активные сигнальные химические вещества.

5) Ферментативная - мембранные белки нередко являются ферментами. Например, плазматические мембраны эпителиальных клеток кишечника содержат пищеварительные ферменты.

6) Осуществление генерации и проведения биопотенциалов.
С помощью мембраны в клетке поддерживается постоянная концентрация ионов: концентрация иона К+ внутри клетки значительно выше, чем снаружи, а концентрация Na+ значительно ниже, что очень важно, так как это обеспечивает поддержание разности потенциалов на мембране и генерацию нервного импульса.

Нервный импульс волна возбуждения, передающаяся по нервному волокну.

7) Маркировка клетки - на мембране есть антигены, действующие как маркеры - «ярлыки», позволяющие опознать клетку. Это гликопротеины (то есть белки с присоединенными к ним разветвленными олигосахаридными боковыми цепями), играющие роль «антенн». Из-за бесчисленного множества конфигурации боковых цепей возможно сделать для каждого типа клеток свой особый маркер. С помощью маркеров клетки могут распознавать другие клетки и действовать согласованно с ними, например, при формировании органов и тканей. Это же позволяет иммунной системе распознавать чужеродные антигены.

Особенности проницаемости.

Клеточные мембраны обладают избирательной проницаемостью: через них медленно проникают разными способами:

  • Глюкоза – основной источник энергии.
  • Аминокислоты - строительные элементы, из которых состоят все белки организма.
  • Жирные кислоты – структурная, энергетическая и др. функции.
  • Глицерол – аставляет организм удерживать воду и уменьшает выработку мочи.
  • Ионы – ферменты для реакций.
Причем сами мембраны в известной мере активно регулируют этот процесс - одни вещества пропускают, а другие нет. Существует четыре основных механизма для поступления веществ в клетку или вывода их из клетки наружу:

Пассивные механизмы проницаемости:

1) Диффузия.

Вариантом этого механизма является облегчённая диффузия, при которой веществу помогает пройти через мембрану какая-либо специфическая молекула. У этой молекулы может быть канал, пропускающий вещества только одного типа.

Диффузия- процесс взаимного проникновения молекул одного вещества между молекулами другого.

Осмос процесс односторонней диффузии через полупроницаемую мембрану молекул растворителя в сторону бо́льшей концентрации растворённого вещества.

Мембрана, окружающая нормальную клетку крови, проницаема лишь для молекул воды, кислорода, некоторых из растворенных в крови питательных веществ и продуктов клеточной жизнедеятельности

Активные механизмы проницаемости:

1) Активный транспорт.

Активный транспорт перенос вещества из области низкой концентрации в область высокой.

Активный транспорт требует затрат энергии, так как происходит из области низкой концентрации в область высокую. На мембране существуют специальные белки-насосы, которые активно вкачивают в клетку ионы калия (K+) и выкачивают из неё ионы натрия (Na+), в качестве энергии служат АТФ.

АТФ универсальный источник энергии для всех биохимических процессов. .(подробнее позже)

2) Эндоцитоз.

Частицы, по какой-либо причине не способные пересечь клеточную мембрану, но необходимые для клетки, могут проникнуть сквозь мембрану путем эндоцитоза.

Эндоцитоз процесс захвата внешнего материала клеткой.

Избирательная проницаемость мембраны при пассивном транспорте обусловлена специальными каналами - интегральными белками. Они пронизывают мембрану насквозь, образовывая своего рода проход. Для элементов K, Na и Cl есть свои каналы. Относительно градиента концентрации молекулы этих элементов движутся в клетку и из неё. При раздражении каналы натриевых ионов раскрываются, и происходит резкое поступление в клетку ионов натрия. При этом происходит дисбаланс мембранного потенциала. После чего мембранный потенциал восстанавливается. Каналы калия всегда открыты, через них в клетку медленно попадают ионы калия.

Строение мембраны

Проницаемость

Активный транспорт

Осмос

Эндоцитоз