Биографии Характеристики Анализ

Статистика средние величины и показатели вариации. Средние величины и показатели вариации

Вариация -- это различие в значениях какого-либо признака у разных единиц данной совокупности в один и тот же период или момент времени.

Например, работники фирмы различаются по доходам, затратам времени на работу, росту, весу, любимому занятию в свободное время и т.д.

Вариация возникает в результате того, что индивидуальные значения признака складываются под совокупным влиянием разнообразных факторов (условий), которые по-разному сочетаются в каждом отдельном случае. Таким образом, величина каждого варианта объективна.

Исследование вариации в статистике имеет большое значение, помогает познать сущность изучаемого явления. Особенно актуально оно в период формирования многоукладной экономики. Измерение вариации, выяснение ее причины, выявление влияния отдельных факторов дает важную информацию (например, о продолжительности жизни людей, доходах и расходах населения, финансовом положении предприятия и т.п.) для принятия научно обоснованных управленческих решений.

Средняя величина дает обобщающую характеристику признака изучаемой совокупности, но она не раскрывает строения совокупности, которое весьма существенно для ее познания. Средняя не показывает, как располагаются около нее варианты осредняемого признака, сосредоточены ли они вблизи средней или значительно отклоняются от нее. Средняя величина признака в двух совокупностях может быть одинаковой, но в одном случае все индивидуальные значения отличаются от нее мало, а в другом -- эти отличия велики, т.е. в одном случае вариация признака мала, а в другом -- велика, это имеет весьма важное значение для характеристики надежности средней величины.

Чем больше варианты отдельных единиц совокупности различаются между собой, тем больше они отличаются от своем средней, и наоборот, -- чем меньше варианты отличаются друг от друга, тем меньше они отличаются от средней, которая в тан ком случае будет более реально представлять всю совокупность. Вот почему ограничиваться вычислением одной средней в ряде случаев нельзя. Нужны и другие показатели, характеризующие отклонения отдельных значений от общей средней.

Это можно показать на таком примере. Предположим, что одинаковую работу выполняют две бригады, каждая -- из трех человек. Пусть количество деталей, шт., изготовленных за смену отдельными рабочими, составляло:

в первой бригаде -- 95, 100, 105 (= 100 шт.);

во второй бригаде -- 75, 100, 125 (= 100 шт.).

Средняя выработка на одного рабочего в обеих бригадах одинакова и составляет= = 100 шт., однако колеблемость выработки отдельных рабочих в первой бригаде значительно меньше, чем во второй.

Поэтому возникает необходимость измерять вариацию признака в совокупностях. Для этой цели в статистике применяют ряд обобщающих показателей.

  • Ш К показателям вариации относятся: размах вариации, среднее линейное отклонение, дисперсия и среднее квадратическое отклонение, коэффициент вариации.
  • Ш Самым элементарным показателем вариации признака является размах вариации R, представляющий собой разность между максимальным и минимальным значениями признака:

В нашем примере размах вариации сменной выработки деталей составляет: в первой бригаде -- R1= 10 шт. (т.е. 105 -- 95); во второй бригаде -- R2= 50 шт. (т.е. 125 -- 75), что в 5 раз больше.

Это свидетельствует о том, что при численном равенстве средняя выработка первой бригады более «устойчива». Размах вариации может служить базой расчета возможных резервов роста выработки. Таких резервов больше у второй бригады, поскольку в случае достижения всеми рабочими максимальной для этой бригады выработки деталей, ею может быть изготовлено 375 шт., т.е. (3x125), а в первой - только 315 шт., т.е. (3 х 105).

Однако размах вариации показывает лишь крайние отклонения признака и не отражает отклонений всех вариантов в ряду. При изучении вариации нельзя ограничиваться только определением ее размаха. Для анализа вариации необходим показатель, который отражает все колебания варьирующего признака и даёт обобщённую характеристику. Простейший показатель такого типа - среднее линейное отклонение

Ш Среднее линейное отклонение d представляет собой среднюю арифметическую абсолютных значений отклонений отдельных вариантов от их средней арифметической (при этом всегда предполагают, что среднюю вычитают из варианта: ().

Среднее линейное отклонение:

Для несгруппированных данных

где n - число членов ряда;

Для сгруппированных данных

где -- сумма частот вариационного ряда.

В формулах (5.18) и (5,19) разности в числителе взяты по модулю, (иначе в числителе всегда будет ноль -- алгебраическая сумма отклонений вариантов от их средней арифметической). Поэтому среднее линейное отклонение как меру вариации признака применяют в статистической практике редко (только в тех случаях, когда суммирование показателей без учета знаков имеет экономический смысл). С его помощью, например, анализируется состав работающих, ритмичность производства, оборот внешней торговли.

Дисперсия признака представляет собой средний квадрат отклонений вариантов от их средней величины, она вычисляется по формулам простой и взвешенной дисперсий (в зависимости от исходных данных):

§ простая дисперсия для несгруппированных данных

§ взвешенная дисперсия для вариационного ряда

Формула (5.21) применяется при наличии у вариантов своих весов (или частот вариационного ряда).

Формулу для расчета дисперсии (5.20) можно преобразовать, учитывая, что


т.е. дисперсия равна разности средней из квадратов вариантов и квадрата их средней.

Техника вычисления дисперсии по формулам (5.20), (5.21) достаточно сложна, а при больших значениях вариантов и частот может быть громоздкой.

Расчет можно упростить, используя свойства дисперсии (доказываемые в математической статистике). Приведем два из них:

первое -- если все значения признака уменьшить или увеличить на одну и ту же постоянную величину А, то дисперсия от этого не изменится;

второе -- если все значения признака уменьшить или увеличить в одно и то же число раз (i раз), то дисперсия соответственно уменьшится или увеличится в i2 раз. Используя второе свойство дисперсии, разделив все варианты на величину интервала, получим следующую формулу вычисления дисперсии в вариационных рядах с равными интервалами по способу моментов:

где -- дисперсия, исчисленная по способу моментов;

i - величина интервала;

новые (преобразованные) значения вариантов (А -- условный ноль, в качестве которого удобно использовать середину интервала, обладающего наибольшей частотой);

Момент второго порядка;

Квадрат момента первого порядка.

Расчет дисперсии по формуле (5.23) менее трудоемок.

Дисперсия имеет большое значение в экономическом анализе. В математической статистике важную роль для характеристики качества статистических оценок играет их дисперсия. Ниже, в частности, будет показано разложение дисперсии на соответствующие элементы, позволяющие оценить влияние различных факторов, обуславливающих вариацию признака; использование дисперсии для построения показателей тесноты корреляционной связи при оценке результатов выборочных наблюдений.

  • Ш Среднее квадратическое отклонение равно корню квадратному из дисперсии:
    • § для несгруппированных данных

§ для вариационного ряда

Среднее квадратическое отклонение -- это обобщающая характеристика размеров вариации признака в совокупности; оно показывает, на сколько в среднем отклоняются конкретные варианты от их среднего значения; является абсолютной мерой колеблемости признака и выражается в тех же единицах, что и варианты, поэтому экономически хорошо интерпретируется.

Обозначим: 1 -- наличие интересующего нас признака; 0 -- его отсутствие; р -- доля единиц, обладающих данным признаком; q -- доля единиц, не обладающих данным признаком; p + q =1. Исчислим среднее значение альтернативного признака и его дисперсию. Среднее значение альтернативного признака

вариация средний величина квадратический

так как р + q = 1.

Дисперсия альтернативного признака

Подставив в формулу дисперсии q = 1- р, получим

Таким образом, = pq -- дисперсия альтернативного признака равна произведению доли единиц, обладающих признаком, на долю единиц, не обладающих данным признаком.

Например, если на 10 000 человек населения района приходится 4500 мужчин и 5500 женщин, то

Дисперсия альтернативного признака = pq = 0,45*0,55 = 0,2475.

Предельное значение дисперсии альтернативного признака равно 0,25. Оно получается при р = 0,5.

Среднее квадратическое отклонение альтернативного признака

Если, например, 2% всех деталей бракованные (р = 0,02), то 98% -- годные (q = 0,98), тогда дисперсия доли брака

0,02- 0,98 = 0,0196.

Среднее квадратическое отклонение доли брака составит:

0,14, т.е. = 14%.

При вычислении средних величин и дисперсии для интервальных рядов распределения истинные значения признака заменяются центральными (серединными) значениями интервалов, которые отличаются от средней арифметической значений, включенных в интервал. Это приводит к появлению систематической погрешности при расчете дисперсии. В.Ф.Шеппард установил, что погрешность в расчете дисперсии, вызванная применением сгруппированных данных, составляет 1/12 квадрата величины интервала (т.е. i2/12) как в сторону занижения, так и в сторону завышения величины дисперсии.

Поправка Шеппарда должна применяться, если распределение близко к нормальному, относится к признаку с непрерывным характером вариации, построено по большому количеству исходных данных (n>500). Однако исходя из того, что в ряде случаев обе погрешности, действуя в противоположных направлениях, нейтрализуются и компенсируют друг друга, можно иногда отказаться от введения поправок.

Чем меньше значение дисперсии и среднего квадратического отклонения, тем однороднее (количественно) совокупность и тем более типичной будет средняя величина.

В статистической практике часто возникает необходимость сравнения вариаций различных признаков. Например, большой интерес представляет сравнение вариаций возраста рабочих и их квалификации, стажа работы и размера заработной платы, себестоимости и прибыли, стажа работы и производительности труда и т.д. Для подобных сопоставлений показатели абсолютной колеблемости признаков непригодны: нельзя сравнивать колеблемость стажа работы, выраженного в годах, с вариацией заработной платы, выраженной в рублях.

Для осуществления такого рода сравнений, а также сравнений колеблемости одного и того же признака в нескольких совокупностях с различным средним арифметическим используют относительный показатель вариации -- коэффициент вариации.

Коэффициент вариации представляет собой выраженное в процентах отношение среднего квадратического отклонения к средней арифметической:

Коэффициент вариации используют не только для сравнительной оценки вариации единиц совокупности, но и как характеристику однородности совокупности. Совокупность считается количественно однородной, если коэффициент вариации не превышает 33 %.

Покажем расчет различными способами показателей вариации на примере данных о сменной выработке рабочих бригады, представленных интервальным рядом распределения (табл. 5.7).

Исчислим среднесменную выработку, шт.:

Рассчитаем дисперсию выработки по (5.21):

Найдем среднее квадратическое отклонение, шт.:

Определим коэффициент вариации, %:

Таким образом, данная бригада рабочих достаточно однородна по выработке, поскольку вариация признака составляет лишь 8%.

Теперь выполним расчет дисперсии по формуле (5.22) и по способу моментов по формуле (5.23), для расчета воспользуемся данными табл. 5.7, графы 8-11.

Расчет дисперсии по формуле (5.20):


Расчет дисперсии по способу моментов, см. формулу (5.21):

где А = 50 -- центральный вариант с наибольшей частотой;

i = 20 -- величина интервала данного ряда;

Таблица 5.7

Распределение рабочих по сменной выработке изделия А и расчетные значения для исчисления показателей вариации

Группы рабочих по сменной выработке изделий, шт.

Число рабочих

Середина интервала x

Расчетные значения

Как видим, наименее трудоемким является метод исчисления дисперсии способом моментов.

Средние величины относятся к обобщающим статистическим показателям, которые дают сводную (итоговую) характеристику массовых общественных явлений, так как строятся на основе большого количества индивидуальных значений варьирующего признака. Для выяснения сущности средней величины необходимо рассмотреть особенности формирования значений признаков тех явлений, по данным которых исчисляют среднюю величину.

Известно, что единицы каждого массового явления обладают многочисленными признаками. Какой бы из этих признаков мы ни взяли, его значения у отдельных единиц будут различными, они изменяются, или, как говорят в статистике , варьируют от одной единицы к другой. Так, например, заработная плата работника определяется его квалификацией, характером труда, стажем работы и целым рядом других факторов, поэтому изменяется в весьма широких пределах. Совокупное влияние всех факторов определяет размер заработка каждого работника, тем не менее можно говорить о среднемесячной заработной плате работников разных отраслей экономики . Здесь мы оперируем типичным, характерным значением варьирующего признака, отнесенным к единице многочисленной совокупности.

Средняя величина отражает то общее, что характерно для всех единиц изучаемой совокупности. В то же время она уравновешивает влияние всех факторов, действующих на величину признака отдельных единиц совокупности, как бы взаимно погашая их. Уровень (или размер) любого общественного явления обусловлен действием двух групп факторов. Одни из них являются общими и главными, постоянно действующими, тесно связанными с природой изучаемого явления или процесса, и формируют то типичное для всех единиц изучаемой совокупности, которое и отражается в средней величине. Другие являются индивидуальными, их действие выражено слабее и носит эпизодический, случайный характер. Они действуют в обратном направлении, обусловливают различия между количественными признаками отдельных единиц совокупности, стремясь изменить постоянную величину изучаемых признаков. Действие индивидуальных признаков погашается в средней величине. В совокупном влиянии типичных и индивидуальных факторов, которое уравновешивается и взаимно погашается в обобщающих характеристиках, проявляется в общем виде известный из математической статистики фундаментальный закон больших чисел.

В совокупности индивидуальные значения признаков сливаются в общую массу и как бы растворяются. Отсюда и средняя величина выступает как «обезличенная», которая может отклоняться от индивидуальных значений признаков, не совпадая количественно ни с одним из них. Средняя величина отражает общее, характерное и типичное для всей совокупности благодаря взаимопогашению в ней случайных, нетипичных различий между признаками отдельных ее единиц, так как ее величина определяется как бы общей равнодействующей из всех причин.

Однако для того, чтобы средняя величина отражала наиболее типичное значение признака, она должна определяться не для любых совокупностей, а только для совокупностей, состоящих из качественно однородных единиц. Это требование является основным условием научно обоснованного применения средних величин и предполагает тесную связь метода средних величин и метода группировок в анализе социально-экономических явлений. Следовательно, средняя величина - это обобщающий показатель, характеризующий типичный уровень варьирующего признака в расчете на единицу однородной совокупности в конкретных условиях места и времени.

Определяя, таким образом, сущность средних величин, необходимо подчеркнуть, что правильное исчисление любой средней величины предполагает выполнение следующих требований:

  • качественная однородность совокупности, по которой вычислена средняя величина. Это означает, что исчисление средних величин должно основываться на методе группировок, обеспечивающем выделение однородных, однотипных явлений;
  • исключение влияния на вычисление средней величины случайных, сугубо индивидуальных причин и факторов. Это достигается в том случае, когда вычисление средней основывается на достаточно массовом материале, в котором проявляется действие закона больших чисел, и все случайности взаимно погашаются;
  • при вычислении средней величины важно установить цель ее расчета и так называемый определяющий показа-телъ (свойство), на который она должна быть ориентирована.

Определяющий показатель может выступать в виде суммы значений осредняемого признака, суммы его обратных значений, произведения его значений и т. п. Связь между определяющим показателем и средней величиной выражается в следующем: если все значения осредняемого признака заменить средним значением, то их сумма или произведение в этом случае не изменит определяющего показателя. На основе этой связи определяющего показателя со средней величиной строят исходное количественное отношение для непосредственного расчета средней величины. Способность средних величин сохранять свойства статистических совокупностей называют определяющим свойством.

Средняя величина, рассчитанная в целом по совокупности, называется общей средней; средние величины, рассчитанные для каждой группы, - групповыми средними. Общая средняя отражает общие черты изучаемого явления, групповая средняя дает характеристику явления, складывающуюся в конкретных условиях данной группы.

Способы расчета могут быть разные, поэтому в статистике различают несколько видов средней величины, основными из которых являются средняя арифметическая, средняя гармоническая и средняя геометрическая.

В экономическом анализе использование средних величин является основным инструментом для оценки результатов научно-технического прогресса, социальных мероприятий, поиска резервов развития экономики. В то же время следует помнить о том, что чрезмерное увлечение средними показателями может привести к необъективным выводам при проведении экономико-статистического анализа. Это связано с тем, что средние величины, будучи обобщающими показателями, погашают, игнорируют те различия в количественных признаках отдельных единиц совокупности, которые реально существуют и могут представлять самостоятельный интерес.

Виды средних величин

В статистике используют различные виды средних величин, которые делятся на два больших класса:

  • степенные средние (средняя гармоническая, средняя геометрическая, средняя арифметическая, средняя квадра-тическая, средняя кубическая);
  • структурные средние (мода, медиана).

Для вычисления степенных средних необходимо использовать все имеющиеся значения признака. Мода и медиана определяются лишь структурой распределения, поэтому их называют структурными, позиционными средними. Медиану и моду часто используют как среднюю характеристику в тех совокупностях, где расчет средней степенной невозможен или нецелесообразен.

Самый распространенный вид средней величины - средняя арифметическая. Под средней арифметической понимается такое значение признака, которое имела бы каждая единица совокупности, если бы общий итог всех значений признака был распределен равномерно между всеми единицами совокупности. Вычисление данной величины сводится к суммированию всех значений варьирующего признака и делению полученной суммы на общее количество единиц совокупности. Например, пять рабочих выполняли заказ на изготовление деталей, при этом первый изготовил 5 деталей, второй - 7, третий - 4, четвертый - 10, пятый- 12. Поскольку в исходных данных значение каждого варианта встречалось только один раз, для определения средней выработки одного рабочего следует применить формулу простой средней арифметической:

т. е. в нашем примере средняя выработка одного рабочего равна

Наряду с простой средней арифметической изучают среднюю арифметическую взвешенную. Например, рассчитаем средний возраст студентов в группе из 20 человек , возраст которых варьируется от 18 до 22 лет, где xi - варианты осредняемого признака, fi - частота, которая показывает, сколько раз встречается i-е значение в совокупности (табл. 5.1).

Таблица 5.1

Средний возраст студентов

Применяя формулу средней арифметической взвешенной, получаем:

Для выбора средней арифметической взвешенной существует определенное правило: если имеется ряд данных по двум показателям, для одного из которых надо вычислить

среднюю величину, и при этом известны численные значения знаменателя ее логической формулы, а значения числителя неизвестны, но могут быть найдены как произведение этих показателей, то средняя величина должна высчитывать-ся по формуле средней арифметической взвешенной.

В некоторых случаях характер исходных статистических данных таков, что расчет средней арифметической теряет смысл и единственным обобщающим показателем может служить только другой вид средней величины - средняя гармоническая. В настоящее время вычислительные свойства средней арифметической потеряли свою актуальность при расчете обобщающих статистических показателей в связи с повсеместным внедрением электронно-вычислительной техники. Большое практическое значение приобрела средняя гармоническая величина, которая тоже бывает простой и взвешенной. Если известны численные значения числителя логической формулы, а значения знаменателя неизвестны, но могут быть найдены как частное деление одного показателя на другой, то средняя величина вычисляется по формуле средней гармонической взвешенной.

Например, пусть известно, что автомобиль прошел первые 210 км со скоростью 70 км/ч, а оставшиеся 150 км со скоростью 75 км/ч. Определить среднюю скорость автомобиля на протяжении всего пути в 360 км, используя формулу средней арифметической, нельзя. Так как вариантами являются скорости на отдельных участках xj = 70 км/ч и Х2 = 75 км/ч, а весами (fi) считаются соответствующие отрезки пути, то произведения вариантов на веса не будут иметь ни физического, ни экономического смысла. В данном случае смысл приобретают частные от деления отрезков пути на соответствующие скорости (варианты xi), т. е. затраты времени на прохождение отдельных участков пути (fi/ xi). Если отрезки пути обозначить через fi, то весь путь выразиться как Σfi, а время, затраченное на весь путь, - как Σ fi/ xi , Тогда средняя скорость может быть найдена как частное от деления всего пути на общие затраты времени:

В нашем примере получим:

Если при использовании средней гармонической веса всех вариантов (f) равны, то вместо взвешенной можно использовать простую (невзвешенную) среднюю гармоническую:

где xi - отдельные варианты; n - число вариантов осредняемого признака. В примере со скоростью простую среднюю гармоническую можно было бы применить, если бы были равны отрезки пути, пройденные с разной скоростью.

Любая средняя величина должна вычисляться так, чтобы при замене ею каждого варианта осредняемого признака не изменялась величина некоторого итогового, обобщающего показателя, который связан с осредняемым показателем. Так, при замене фактических скоростей на отдельных отрезках пути их средней величиной (средней скоростью) не должно измениться общее расстояние.

Форма (формула) средней величины определяется характером (механизмом) взаимосвязи этого итогового показателя с осредняемым, поэтому итоговый показатель, величина которого не должна изменяться при замене вариантов их средней величиной, называется определяющим показателем. Для вывода формулы средней нужно составить и решить уравнение, используя взаимосвязь осредняемого показателя с определяющим. Это уравнение строится путем замены вариантов осредняемого признака (показателя) их средней величиной.

Кроме средней арифметической и средней гармонической в статистике используются и другие виды (формы) средней величины. Все они являются частными случаями степенной средней. Если рассчитывать все виды степенных средних величин для одних и тех же данных, то значения

их окажутся одинаковыми, здесь действует правило мажо-рантности средних. С увеличением показателя степени средних увеличивается и сама средняя величина. Наиболее часто применяемые в практических исследованиях формулы вычисления различных видов степенных средних величин представлены в табл. 5.2.

Таблица 5.2

Средняя геометрическая применяется, когда имеется n коэффициентов роста, при этом индивидуальные значения признака представляют собой, как правило, относительные величины динамики, построенные в виде цепных величин, как отношение к предыдущему уровню каждого уровня в ряду динамики. Средняя характеризует, таким образом, средний коэффициент роста. Средняя геометрическая простая рассчитывается по формуле

Формула средней геометрической взвешенной имеет следующий вид:

Приведенные формулы идентичны, но одна применяется при текущих коэффициентах или темпах роста, а вторая - при абсолютных значениях уровней ряда.

Средняя квадратическая применяется при расчете с величинами квадратных функций, используется для измерения степени колеблемости индивидуальных значений признака вокруг средней арифметической в рядах распределения и вычисляется по формуле

Средняя квадратическая взвешенная рассчитывается по другой формуле:

Средняя кубическая применяется при расчете с величинами кубических функций и вычисляется по формуле

средняя кубическая взвешенная:

Все рассмотренные выше средние величины могут быть представлены в виде общей формулы:

где - средняя величина; - индивидуальное значение; n - число единиц изучаемой совокупности; k - показатель степени, определяющий вид средней.

При использовании одних и тех же исходных данных, чем больше k в общей формуле степенной средней, тем больше средняя величина. Из этого следует, что между величинами степенных средних существует закономерное соотношение:

Средние величины, описанные выше, дают обобщенное представление об изучаемой совокупности и с этой точки зрения их теоретическое, прикладное и познавательное значение бесспорно. Но бывает, что величина средней не совпадает ни с одним из реально существующих вариантов, поэтому кроме рассмотренных средних в статистическом анализе целесообразно использовать величины конкретных вариантов, занимающие в упорядоченном (ранжированном) ряду значений признака вполне определенное положение. Среди таких величин наиболее употребительными являются структурные, или описательные, средние - мода (Мо) и медиана (Ме).

Мода - величина признака, которая чаще всего встречается в данной совокупности. Применительно к вариационному ряду модой является наиболее часто встречающееся значение ранжированного ряда, т. е. вариант, обладающий наибольшей частотой. Мода может применяться при определении магазинов, которые чаще посещаются, наиболее распространенной цены на какой-либо товар. Она показывает размер признака, свойственный значительной части совокупности, и определяется по формуле

где х0 - нижняя граница интервала; h - величина интервала; fm - частота интервала; fm_ 1 - частота предшествующего интервала; fm+ 1 - частота следующего интервала.

Медианой называется вариант, расположенный в центре ранжированного ряда. Медиана делит ряд на две равные части таким образом, что по обе стороны от нее находится одинаковое количество единиц совокупности. При этом у одной половины единиц совокупности значение варьирующего признака меньше медианы, у другой - больше ее. Медиана используется при изучении элемента, значение которого больше или равно или одновременно меньше или равно половине элементов ряда распределения. Медиана дает общее представление о том, где сосредоточены значения признака, иными словами, где находится их центр.

Описательный характер медианы проявляется в том, что она характеризует количественную границу значений варьирующего признака, которыми обладает половина единиц совокупности. Задача нахождения медианы для дискретного вариационного ряда решается просто. Если всем единицам ряда придать порядковые номера, то порядковый номер медианного варианта определяется как (п +1) / 2 с нечетным числом членов п. Если же количество членов ряда является четным числом, то медианой будет являться среднее значение двух вариантов, имеющих порядковые номера n / 2 и n / 2 + 1.

При определении медианы в интервальных вариационных рядах сначала определяется интервал, в котором она находится (медианный интервал). Этот интервал характерен тем, что его накопленная сумма частот равна или превышает полусумму всех частот ряда. Расчет медианы интервального вариационного ряда производится по формуле

где X0 - нижняя граница интервала; h - величина интервала; fm - частота интервала; f - число членов ряда;

∫m-1 - сумма накопленных членов ряда, предшествующих данному.

Наряду с медианой для более полной характеристики структуры изучаемой совокупности применяют и другие значения вариантов, занимающих в ранжированном ряду вполне определенное положение. К ним относятся квартили и децили. Квартили делят ряд по сумме частот на 4 равные части, а децили - на 10 равных частей. Квартилей насчитывается три, а децилей - девять.

Медиана и мода в отличие от средней арифметической не погашают индивидуальных различий в значениях варьирующего признака и поэтому являются дополнительными и очень важными характеристиками статистической совокупности. На практике они часто используются вместо средней либо наряду с ней. Особенно целесообразно вычислять медиану и моду в тех случаях, когда изучаемая совокупность содержит некоторое количество единиц с очень большим или очень малым значением варьирующего признака. Эти, не очень характерные для совокупности значения вариантов, влияя на величину средней арифметической, не влияют на значения медианы и моды, что делает последние очень ценными для экономико-статистического анализа показателями.

Показатели вариации

Целью статистического исследования является выявление основных свойств и закономерностей изучаемой статистической совокупности. В процессе сводной обработки данных статистического наблюдения строят ряды распределения. Различают два типа рядов распределения - атрибутивные и вариационные, в зависимости от того, является ли признак, взятый за основу группировки, качественным или количественным.

Вариационными называют ряды распределения, построенные по количественному признаку. Значения количественных признаков у отдельных единиц совокупности не постоянны, более или менее различаются между собой. Такое различие в величине признака носит название вариации. Отдельные числовые значения признака, встречающиеся в изучаемой совокупности, называют вариантами значений. Наличие вариации у отдельных единиц совокупности обусловлено влиянием большого числа факторов на формирование уровня признака. Изучение характера и степени вариации признаков у отдельных единиц совокупности является важнейшим вопросом всякого статистического исследования. Для описания меры изменчивости признаков используют показатели вариации.

Другой важной задачей статистического исследования является определение роли отдельных факторов или их групп в вариации тех или иных признаков совокупности. Для решения такой задачи в статистике применяются специальные методы исследования вариации, основанные на использовании системы показателей, с помощью которых измеряется вариация. В практике исследователь сталкивается с достаточно большим количеством вариантов значений признака, что не дает представления о распределении единиц по величине признака в совокупности. Для этого проводят расположение всех вариантов значений признака в возрастающем или убывающем порядке. Этот процесс называют ранжированием ряда. Ранжированный ряд сразу дает общее представление о значениях, которые принимает признак в совокупности.

Недостаточность средней величины для исчерпывающей характеристики совокупности заставляет дополнять средние величины показателями, позволяющими оценить типичность этих средних путем измерения колеблемости (вариации) изучаемого признака. Использование этих показателей вариации дает возможность сделать статистический анализ более полным и содержательным и тем самым глубже понять сущность изучаемых общественных явлений.

Самыми простыми признаками вариации являются минимум и максимум - это наименьшее и наибольшее значение признака в совокупности. Число повторений отдельных вариантов значений признаков называют частотой повторения. Обозначим частоту повторения значения признака fi, сумма частот, равная объему изучаемой совокупности будет:

где k - число вариантов значений признака. Частоты удобно заменять частостями - wi. Частость - относительный показатель частоты - может быть выражен в долях единицы или процентах и позволяет сопоставлять вариационные ряды с различным числом наблюдений. Формально имеем:

Для измерения вариации признака применяются различные абсолютные и относительные показатели. К абсолютным показателям вариации относятся среднее линейное отклонение, размах вариации, дисперсия, среднее квадратическое отклонение.

Размах вариации (R) представляет собой разность между максимальным и минимальным значениями признака в изучаемой совокупности: R = Xmax - Xmin. Этот показатель дает лишь самое общее представление о колеблемости изучаемого признака, так как показывает разницу только между предельными значениями вариантов. Он совершенно не связан с частотами в вариационном ряду, т. е. с характером распределения, а его зависимость может придавать ему неустойчивый, случайный характер только от крайних значений признака. Размах вариации не дает никакой информации об особенностях исследуемых совокупностей и не позволяет оценить степень типичности полученных средних величин. Область применения этого показателя ограничена достаточно однородными совокупностями, точнее, характеризует вариацию признака показатель, основанный на учете изменчивости всех значений признака.

Для характеристики вариации признака нужно обобщить отклонения всех значений от какой-либо типичной для изучаемой совокупности величины. Такие показатели

вариации, как среднее линейное отклонение, дисперсия и среднее квадратическое отклонение, основаны на рассмотрении отклонений значений признака отдельных единиц совокупности от средней арифметической.

Среднее линейное отклонение представляет собой среднюю арифметическую из абсолютных значений отклонений отдельных вариантов от их средней арифметической:

Абсолютное значение (модуль) отклонения варианта от средней арифметической; f- частота.

Первая формула применяется, если каждый из вариантов встречается в совокупности только один раз, а вторая - в рядах с неравными частотами.

Существует и другой способ усреднения отклонений вариантов от средней арифметической. Этот очень распространенный в статистике способ сводится к расчету квадратов отклонений вариантов от средней величины с их последующим усреднением. При этом мы получаем новый показатель вариации - дисперсию.

Дисперсия (σ 2) - средняя из квадратов отклонений вариантов значений признака от их средней величины:

Вторая формула применяется при наличии у вариантов своих весов (или частот вариационного ряда).

В экономико-статистическом анализе вариацию признака принято оценивать чаще всего с помощью среднего квадратического отклонения. Среднее квадратическое отклонение (σ) представляет собой корень квадратный из дисперсии:

Среднее линейное и среднее квадратическое отклонения показывают, на сколько в среднем колеблется величина признака у единиц исследуемой совокупности, и выражаются в тех же единицах измерения, что и варианты.

В статистической практике часто возникает необходимость сравнения вариации различных признаков. Например, большой интерес представляет сравнение вариаций возраста персонала и его квалификации, стажа работы и размера заработной платы и т. д. Для подобных сопоставлений показатели абсолютной колеблемости признаков - среднее линейное и среднее квадртическое отклонение - не пригодны. Нельзя, в самом деле, сравнивать колеблемость стажа работы, выражаемую в годах, с колеблемостью заработной платы, выражаемой в рублях и копейках.

При сравнении изменчивости различных признаков в совокупности удобно применять относительные показатели вариации. Эти показатели вычисляются как отношение абсолютных показателей к средней арифметической (или медиане). Используя в качестве абсолютного показателя вариации размах вариации, среднее линейное отклонение, среднее квадратическое отклонение, получают относительные показатели колеблемости:

Наиболее часто применяемый показатель относительной колеблемости, характеризующий однородность совокупности. Совокупность считается однородной, если коэффициент вариации не превышает 33 % для распределений, близких к нормальному.

Общая теория статистики: конспект лекции Коник Нина Владимировна

ЛЕКЦИЯ №5. Средние величины и показатели вариации

1. Средние величины и общие принципы их исчисления

Средние величины относятся к обобщающим статистическим показателям, которые дают сводную (итоговую) характеристику массовых общественных явлений, так как строятся на основе большого количества индивидуальных значений варьирующего признака. Для выяснения сущности средней величины необходимо рассмотреть особенности формирования значений признаков тех явлений, по данным которых исчисляют среднюю величину.

Известно, что единицы каждого массового явления обладают многочисленными признаками. Какой бы из этих признаков не был взят, его значения у отдельных единиц будут различными, они изменяются, или, как говорят в статистике, варьируют от одной единицы к другой. Так, например, заработная плата работника определяется его квалификацией, характером труда, стажем работы и целым рядом других факторов, поэтому изменяется в весьма широких пределах. Совокупное влияние всех факторов определяет размер заработка каждого работника. Тем не менее можно говорить о среднемесячной заработной плате работников разных отраслей экономики. Здесь мы оперируем типичным, характерным значением варьирующего признака, отнесенным к единице многочисленной совокупности.

Средняя величина отражает то общее, что характерно для всех единиц изучаемой совокупности. В то же время она уравновешивает влияние всех факторов, действующих на величину признака отдельных единиц совокупности, как бы взаимно погашая их. Уровень (или размер) любого общественного явления обусловлен действием двух групп факторов. Одни из них являются общими и главными, постоянно действующими, тесно связанными с природой изучаемого явления или процесса, и формируют то типичное для всех единиц изучаемой совокупности, которое и отражается в средней величине. Другие являются индивидуальными, их действие выражено слабее и носит эпизодический, случайный характер. Они действуют в обратном направлении, обусловливают различия между количественными признаками отдельных единиц совокупности, стремясь изменить постоянную величину изучаемых признаков. Действие индивидуальных признаков погашается в средней величине. В совокупном влиянии типичных и индивидуальных факторов, которое уравновешивается и взаимно погашается в обобщающих характеристиках, проявляется в общем виде известный из математической статистики фундаментальный закон больших чисел.

В совокупности индивидуальные значения признаков сливаются в общую массу и как бы растворяются. Отсюда и средняя выступает как «обезличенная» величина, которая может отклоняться от индивидуальных значений признаков, не совпадая количественно ни с одним из них. Таким образом, средняя отражает общее, характерное и типичное для всей совокупности благодаря взаимопогашению в ней случайных, нетипичных различий между признаками отдельных ее единиц, так как ее величина определяется как бы общей равнодействующей из всех причин.

Однако для того чтобы средняя отражала наиболее типичное значение признака, она должна определяться не для любых совокупностей, а только для совокупностей, состоящих из качественно однородных единиц. Это требование является основным условием научно обоснованного применения средних величин и предполагает тесную связь метода средних и метода группировок в анализе социально-экономических явлений.

Следовательно, средняя величина – это обобщающий показатель, характеризующий типичный уровень варьирующего признака в расчете на единицу однородной совокупности в конкретных условиях места и времени.

Определяя таким образом сущность средних величин, необходимо подчеркнуть, что правильное исчисление любой средней предполагает выполнение следующих требований:

1) качественная однородность совокупности, по которой исчислена средняя. Исчисление средней для разнокачественных (разнотипных) явлений противоречит самой сущности средней, так как развитие таких явлений подчиняется разным, а не общим закономерностям и причинам. Это означает, что исчисление средних величин должно основываться на методе группировок, обеспечивающем выделение однородных, однотипных явлений;

2) исключение влияния на исчисление средней величины случайных, сугубо индивидуальных причин и факторов. Это достигается в том случае, когда исчисление средней основывается на достаточно массовом материале, в котором проявляется действие закона больших чисел, и все случайности взаимно погашаются;

3) при вычислении средней величины важно установить цель ее расчета и так называемый определяющий показатель (свойство), на который она должна быть ориентирована. Определяющий показатель может выступать в виде суммы значений осредняемого признака, суммы его обратных значений, произведения его значений и т. п. Связь между определяющим показателем и средней выражается в следующем: если все значения осредняемого признака заменить их средним значением, то сумма или произведение в этом случае не изменят определяющего показателя. На основе этой связи определяющего показателя со средней величиной строят исходное количественное отношение для непосредственного расчета средней величины. Способность средних величин сохранять свойства статистических совокупностей называют определяющим свойством.

Средняя, рассчитанная по совокупности в целом, называется общей средней, средние, исчисленные для каждой группы, – групповыми средними. Общая средняя отражает общие черты изучаемого явления, групповая средняя дает характеристику размера явления, складывающуюся в конкретных условиях данной группы.

Способы расчета могут быть разные, и в связи с этим в статистике различают несколько видов средней величины, основными из которых являются средняя арифметическая, средняя гармоническая и средняя геометрическая.

В экономическом анализе использование средних величин является действенным инструментом для оценки результатов научно-технического прогресса, социальных мероприятий, изыскания скрытых и неиспользуемых резервов развития экономики.

В то же время следует помнить о том, что чрезмерное увлечение средними показателями может привести к необъективным выводам при проведении экономико-статистического анализа. Это связано с тем, что средние величины, будучи обобщающими показателями, погашают, игнорируют те различия в количественных признаках отдельных единиц совокупности, которые реально существуют и могут представлять самостоятельный интерес.

Из книги Больше, чем вы знаете. Необычный взгляд на мир финансов автора Мобуссин Майкл

Глава 24 Прострация от экстраполяции Использовать средние показатели цены/прибыли – глупо Чтобы средние исторические показатели были полезны, данные, на основе которых они вычисляются, должны происходить из той же совокупности. В ином случае – если данные происходят из

Из книги История экономических учений: конспект лекций автора Елисеева Елена Леонидовна

ЛЕКЦИЯ № 15. Экономическое развитие Руси в средние века 1. Причины и последствия феодальной раздробленности. Рост феодального землевладения Период политической раздробленности наступил в XII – XV вв. Это закономерный исторический этап в развитии феодализма. Одной из

автора Щербина Лидия Владимировна

23. Средние величины и общие принципы их исчисления Средние величины относятся к обобщающим статистическим показателям, которые дают сводную (итоговую) характеристику массовых общественных явлений, так как строятся на основе большого количе–ства индивидуальных

Из книги Общая теория статистики автора Щербина Лидия Владимировна

26. Показатели вариации Вариационными называют ряды распределени построенные по количественному признаку. Значени количественных признаков у отдельных единиц сов купности непостоянны, более или менее различают между собой. Такое различие в величине признака н сит

Из книги Общая теория статистики автора Щербина Лидия Владимировна

54. Средние показатели динамики С течением времени изменяются не только уров–ни явлений, но и показатели их динамики – абсолют–ные приросты и темпы развития. Поэтому для обоб–щающей характеристики развития, для выявления и измерения типичных основных тенденций и

автора Коник Нина Владимировна

ЛЕКЦИЯ № 4. Статистические величины и показатели 1. Назначение и виды статистических показателей и величин Природа и содержание статистических показателей соответствуют тем экономическим и социальным явлениям и процессам, которые их отражают. Все экономические и

Из книги Общая теория статистики: конспект лекции автора Коник Нина Владимировна

1. Средние величины и общие принципы их исчисления Средние величины относятся к обобщающим статистическим показателям, которые дают сводную (итоговую) характеристику массовых общественных явлений, так как строятся на основе большого количества индивидуальных значений

Из книги Общая теория статистики: конспект лекции автора Коник Нина Владимировна

3. Показатели вариации Целью статистического исследования является выявление основных свойств и закономерностей изучаемой статистической совокупности. В процессе сводной обработки данных статистического наблюдения строят ряды распределения. Различают два типа рядов

Из книги Общая теория статистики: конспект лекции автора Коник Нина Владимировна

3. Средние показатели динамики С течением времени изменяются не только уровни явлений, но и показатели их динамики – абсолютные приросты и темпы развития. Поэтому для обобщающей характеристики развития, для выявления и измерения типичных основных тенденций и

Из книги Экономический анализ. Шпаргалки автора Ольшевская Наталья

59. Относительные и средние величины Экономический анализ начинается по своей сути с исчисления величины относительной. Относительные величины незаменимы при анализе явлений динамики. Понятно, что эти явления можно выразить и в абсолютных величинах, но доходчивость,

Из книги Теория статистики автора

31. Структурные средние величины. Мода и медиана Для характеристики структуры статистической совокупности применяются показатели, которые называют структурными средними. К ним относятся мода и медиана.Мода (Мо) – чаще всего встречающийся вариант.Модой называется

Из книги Искусство коммуникации в сетевом маркетинге автора Пиз Алан

Правило № 5: улучшай свои средние показатели Работая в страховом бизнесе, я понимал, что каждый раз, снимая трубку и разговаривая с любым клиентом, зарабатываю 30 долларов. Однако пятеро клиентов на каждые десять звонков казались мне не самым лучшим показателем, поскольку

автора Бурханова Инесса Викторовна

ЛЕКЦИЯ № 7. Средние величины 1. Общая характеристика В целях анализа и получения статистических выводов по результатом сводки и группировки исчисляют обобщающие показатели – средние и относительные величины.Задача средних величин – охарактеризовать все единицы

Из книги Теория статистики: конспект лекций автора Бурханова Инесса Викторовна

3. Структурные средние величины. Мода и медиана Для характеристики структуры статистической совокупности применяются показатели, которые называют структурными средними. К ним относятся мода и медиана.Мода (Мо) – чаще всего встречающийся вариант. Модой называется

Из книги Теория статистики: конспект лекций автора Бурханова Инесса Викторовна

ЛЕКЦИЯ № 8. Показатели вариации 1. Понятие вариации Различие индивидуальных значений признака внутри изучаемой совокупности в статистике называется вариацией признака. Она возникает в результате того, что его индивидуальные значения складываются под совокупным

Из книги Результативность. Секреты эффективного поведения автора Стюарт-Котце Робин

Средние показатели поведенческого профиля индивидуума Усредненные показатели всегда скрывают различия.Предыдущие графики показывают среднее поведение команд продавцов и средний уровень поведенческих ожиданий и ценностей группы клиентов. На рис. 14.5 стиль продаж

По данным выборочного обследования произведена группировка вкладчиков по размеру вклада в Сбербанке города:

Определите:

1) размах вариации;

2) средний размер вклада;

3) среднее линейное отклонение;

4) дисперсию;

5) среднее квадратическое отклонение;

6) коэффициент вариации вкладов.

Решение:

Данный ряд распределения содержит открытые интервалы. В таких рядах условно принимается величина интервала первой группы равна величине интервала последующей, а величина интервала последней группы равна величине интервала предыдущей.

Величина интервала второй группы равна 200, следовательно, и величина первой группы также равна 200. Величина интервала предпоследней группы равна 200, значит и последний интервал будет иметь величину, равную 200.

1) Определим размах вариации как разность между наибольшим и наименьшим значением признака:

Размах вариации размера вклада равен 1000 рублей.

2) Средний размер вклада определим по формуле средней арифметической взвешенной.

Предварительно определим дискретную величину признака в каждом интервале. Для этого по формуле средней арифметической простой найдём середины интервалов.

Среднее значение первого интервала будет равно:

второго - 500 и т. д.

Занесём результаты вычислений в таблицу:

Размер вклада, руб. Число вкладчиков, f Середина интервала, х xf
200-400 32 300 9600
400-600 56 500 28000
600-800 120 700 84000
800-1000 104 900 93600
1000-1200 88 1100 96800
Итого 400 - 312000

Средний размер вклада в Сбербанке города будет равен 780 рублей:

3) Среднее линейное отклонение есть средняя арифметическая из абсолютных отклонений отдельных значений признака от общей средней:

Порядок расчёта среднего линейонго отклонения в интервальном ряду распределения следующий:

1. Вычисляется средняя арифметическая взвешенная, как показано в п. 2).

2. Определяются абсолютные отклонения вариант от средней:

3. Полученные отклонения умножаются на частоты:

4. Находится сумма взвешенных отклонений без учёта знака:

5. Сумма взвешенных отклонений делится на сумму частот:

Удобно пользоваться таблицей расчётных данных:

Размер вклада, руб. Число вкладчиков, f Середина интервала, х
200-400 32 300 -480 480 15360
400-600 56 500 -280 280 15680
600-800 120 700 -80 80 9600
800-1000 104 900 120 120 12480
1000-1200 88 1100 320 320 28160
Итого 400 - - - 81280

Среднее линейное отклонение размера вклада клиентов Сбербанка составляет 203,2 рубля.

4) Дисперсия - это средняя арифметическая квадратов отклонений каждого значения признака от средней арифметической.

Расчёт дисперсии в интервальных рядах распределения производится по формуле:

Порядок расчёта дисперсии в этом случае следующий:

1. Определяют среднюю арифметическую взвешенную, как показано в п. 2).

2. Находят отклонения вариант от средней:

3. Возводят в квадрат отклонения каждой варианты от средней:

4. Умножают квадраты отклонений на веса (частоты):

5. Суммируют полученные произведения:

6. Полученная сумма делится на сумму весов (частот):

Расчёты оформим в таблицу:

Размер вклада, руб. Число вкладчиков, f Середина интервала, х
200-400 32 300 -480 230400 7372800
400-600 56 500 -280 78400 4390400
600-800 120 700 -80 6400 768000
800-1000 104 900 120 14400 1497600
1000-1200 88 1100 320 102400 9011200
Итого 400 - - - 23040000

Понятие средней величины большинству людей хорошо известно. Обычно среднюю величину воспринимают как отражение общего в значениях признака у множества единиц. Таковы, например, средний возраст жителя страны, средний размер семьи в районе, средний размер прибыли предприятия.

Действительно, средняя величина - это обобщающая оценка признака у множества объектов, которая отражает его характерное значение. Характерное значение фиксирует типическую величину признака, в котором находит выражение своеобразие данной группы объектов и ее отличие от значений признака у других групп.

Например, средняя заработная плата работников в разных видах деятельности в 2015 г. в России составила, тыс. руб. :

  • сельское хозяйство - 19,5;
  • добыча полезных ископаемых - 63,7;
  • обрабатывающие производства - 31,8;
  • строительство - 29,9.

В разном уровне оплаты, т.е. в разной средней заработной плате работника, проявляются особенности организации труда в разных видах деятельности и в конечном счете - общественное признание того или иного труда.

В приведенном примере даны средние, которые рассчитаны по группам, состоящим из объектов одного вида деятельности и которые в этом смысле могут быть названы однородными. Подобные средние называются групповыми. Они интересны тем, что связаны с конкретными объектами и условиями их существования. Когда производится расчет групповых средних, то при одинаковых, например, условиях труда происходит взаимное погашение влияния случайных причин на заработную плату. В то же время при расчете групповой средней усиливается влияние особых, специфических условий, поскольку они действуют постоянно и в одном направлении. В групповой средней отражаются особенности однородных объектов и погашается случайность. Именно но этим причинам групповые средние находят широкое практическое применение.

Когда речь заходит об общей средней но множеству, включающему несколько однородных групп, то при ее расчете погашается действие не только случайных, но и групповых особенностей. Так, общая средняя заработная плата занятого в экономике страны в 2015 г. составила 34 тыс. руб. В ней не отражаются особенности оплаты труда в разных видах деятельности, а показывается лишь общий уровень оплаты труда занятых в ЭКОНОМИКС.

Сравним среднюю заработную плату работников разных видов деятельности в 2010 и 2015 гг. в экономике РФ (табл. 6.1).

Таблица 6.1

Средняя заработная плата в разных видах деятельности и ее изменения,

Источник: Россия в цифрах. 2016. Табл. 7.7.

В темпах изменения средних по видам деятельности, т.е. в групповых средних, проявляются частные закономерности изменения заработной платы: в интервале от 1,41 до 1,82 раза. Сравнивая изменение общей средней, устанавливаем общую закономерность изменения уровня заработной платы в экономике страны: увеличение в 1,62 раза.

Всесторонний анализ предполагает совместное использование общих и групповых средних: это позволяет характеризовать общие закономерности развития и особенности их проявления в конкретных условиях.

Расчет средней выполняется в два этапа. На первом этапе производится обобщение индивидуальных значений изучаемого признаках, у множества, состоящего из п единиц: {х-}. На втором этапе полученный результат распределяется между множеством этих п единиц: {х,} + п - х.

При обобщении значений признака у п объектов множества {х,} происходит взаимное погашение влияния случайных причин и усиливается действия неслучайных систематических факторов. При распределении обобщенного значения признака между п единицами множества {х; -} п определяется средняя типическая его величина х у одной абстрактной единицы. В результате имеем либо групповую среднюю по группе однородных объектов: {х; }-н п = х, либо общую среднюю для всего изучаемого множества {х,} -г- п = х.

Для расчета средних существуют несколько способов, которые отличаются порядком обобщения и распределения.

Средняя арифметическая обобщает индивидуальные значения x f суммированием, а равномерное распределение - делением суммы дг, на число

единиц, участвующих в расчете:

Частое использование арифметической средней объясняется ее особыми свойствами, которые делают ее расчет более простым, а результат - легко проверяемым.

Сумма отклонений значений признака от арифметической средней равна нулю:

Если значения признака х, изменить на число Л, то арифметическая

средняя изменится на это же число:

Если значения признака х, увеличить в А раз, то арифметическая средняя увеличится в А раз:

Если значения признака Xj уменьшить в А раз, то арифметическая средняя также уменьшится в

Средняя гармоническая используется в тех случаях, когда расчет выполняется по значениям признака, который связан с изучаемым признаком обратной зависимостью, т.е. при условии, что V определяется по значениям признака

Например, показатель выработки продукции на работника:

Показатель трудоемкости единицы продукции:

Показатели выработки и трудоемкости находятся в обратной зависимости: . Поэтому при расчете средней выработки по значениям трудоемкости следует применять гармоническую среднюю

Средняя квадратическая применяется в случаях, когда при обобщении значений признака А/, необходимо избежать нулевого результата, так как квадратов рассчитывают среднюю: , а из полученной

средней извлекают квадратный корень:

Наиболее часто квадратическая средняя применяется при расчете показателей вариации и оценок различий структур множества.

Средняя геометрическая обобщает значения признака путем расчета

их произведения: , а из результата извлекается

корень п -й степени:

Наиболее логически оправдано применение геометрической средней при расчете из цепных темпов роста среднего темпа роста:

Разный порядок расчета средних объясняет разные значения результата. Свойство мажорантности средних величин устанавливает зависимость величины средней от показателя ее степени: чем выше показатель степени средней, тем больше ее значение. Каждая из рассмотренных средних представляет собой разновидность степенной средней (табл. 6.2).

Таблица 6.2

Формы средних величин

Форма средней

Расчетная формула

Показатель степени средней (с)

Квадратическая

Арифметическая

Геометрическая

Гармоническая

В качестве иллюстрации свойства мажорантности выполним по данным о численности населения федеральных округов РФ расчет разных средних (табл. 6.3).

Приведенный пример подтверждает, что с увеличением степени средней: от наименьшей - для гармонической, до наибольшей - для квадратической, величина средней увеличивается. Свойство мажорантности средних можно представить в виде неравенств: V

Из свойства мажорантности следует вывод о том, что выбор способа расчета средней не может быть произвольным. Он должен основываться на смысловом содержании исходных данных и на условиях применения конкретной формы средней.

Известно, что геометрическая средняя используется для обобщения темпов роста, а квадратическая - в тех случаях, когда сумма значений признака равна нулю. Поэтому наиболее востребованными практикой являются арифметическая и гармоническая формы средних.

По особым правилам проводится расчет средних из абсолютных и относительных значений изучаемых характеристик. Рассмотрим особенности расчета средних на примере данных но федеральным округам РФ за 2014 г. (табл. 6.4).

В табл. 6.4 использованы следующие признаки и их обозначения.

Численность занятых в экономике федерального округа, млн человек Р,.

Численность занятых в процентах от численности всего населения федерального округа, % - С,.

Приходится оборота розничной торговли за год в среднем на одного жителя федерального округа, тыс. руб. - Т г

Приходится инвестиций в среднем на одного занятого в экономике федерального округа, тыс. руб. - R r

Таблица 63

Расчет средней численности населения федеральных округов РФ с применением различных средних

Федеральный

Численность

населения

Центральный

Северо-Западный

Северо-Кавказский

Приволжский

Уральский

Федеральный

Численность населения на 01.01.2016

Сибирский

Дальневосточный

Крымский

И 196 529 418,1

Квадратическая средняя (см. формулу (6.1))

Арифметическая средняя (см. формулу (6.2))

Геометрическая средняя (см. формулу (6.3))

Гармоническая средняя (см. формулу (6.4))

Источник: Россия в цифрах. 2016. Табл. 1.3.

Особенность абсолютных значений признака в том, что они непосредственно относятся к единице совокупности и определяют ее абсолютные размеры. Например, для федерального округа как единицы множества абсолютными значениями будут численность населения, численность занятых, стоимость произведенной продукции, стоимость основного капитала, прибыль от реализации продукции и т.п. Приведенные признаки относятся непосредственно к федеральному округу, называются первичными и по их значениям можно определить размеры каждого изучаемого объекта. При обработке абсолютных значений этих признаков точно учитывается размер каждой единицы и поэтому нет никаких ограничений для обобщения их значений путем непосредственного суммирования. Средняя, при расчете которой обрабатываются значения единственного признака, называется простой. Например, простая средняя применяется для расчета средней численности занятых в экономике одного федерального округа (табл. 6.4).

Таблица 6.4

Расчет средних значений экономических показателей по федеральным

округам РФ, 2014 г.

Федеральный округ

Численность занятых в экономике, млн чел.

Численность занятых, % численности всего населения

Приходится оборота розничной торговли за год в среднем на одного жителя, тыс. руб.

Приходится инвестиций в среднем на одного занятого в экономике, тыс. руб.

Центральный

Северо-Запад! i ы й

Се всро - Ка в казс к и й

Приволжский

Уральский

Сибирский

Дальневосточный

Среднее значение

Источник: Россия в цифрах. 2016. Табл. 1.3.

Примечание : знак «х» означает, что данная ячейка не подлежит заполнению.

Расчет выполняется по следующей формуле:

В экономике федерального округа в среднем за 2014 г. было занято 8,5 млн человек.

Средние из относительных значений определяются но более сложной схеме. Особенность относительных значений в том, что они не связаны непосредственно с размерами изучаемых единиц, а без этого учета подсчет точной средней обычно невозможен. В подобных случаях в расчет должны включаться дополнительные значения характеристик, которые отражают абсолютные размеры каждой из изучаемых единиц. В расчете средней помимо изучаемой участвует дополнительная характеристика или вес , поэтому средняя называется взвешенной. При расчете взвешенной средней в качестве веса всегда выступает абсолютная характеристика или первичный признак. Вес позволяет учесть абсолютные размеры каждой единицы и обеспечивает расчет точного значения средней.

В приведенном примере характеристики С, Г, и являются относительными, поэтому прямое суммирование их значений недопустимо. Для определения схемы расчета их средних значений установим порядок расчета их индивидуальных значений.

Расчет процента занятых от численности всего населения выполняется но следующей формуле: В расчетной формуле

неизвестна по условию задачи численность населения. Для определения

ее значения выразим численность населения через численность занятых Р, и известные значения процента занятых от численности всего населения С,:

или

Чтобы определить численность населения в млн человек, необходимо разделить численность занятых в экономике Р, на их долю в численности всего населения С,. Поэтому необходимо значения С, перевести из процентов в доли единицы:

Рассчитаем неизвестное значение численности населения в дополнительной расчетной графе (табл. 6.5, гр. 2).

При известных значениях численности занятых Р, и численности всего

населения расчет процента занятых в буквенной форме имеет вид

Общая средняя С рассчитывается по той же схеме, что и индивидуальные значения характеристики С,-. Разница лишь в том, что при расчете общей средней С используются итоговые значения сравниваемых признаков: численности занятых, млн человек и численности всего населения, млн человек То есть расчет общей средней С но восьми

федеральным округам выполняется по формуле

Расчет средних значений относительных характеристик по экономике РФ в 2014 г.

Таблица 6.5

Федеральный округ

Среднегодовая численность занятых в экономике, млн чел.

Численность

% от численности всего населения

Численность всего населения, млн чел.

Приходится оборота розничной торговли за год в среднем на одного жителя, тыс. ov6.

Оборот розничной торговли за год, млрд руб.

Приходится инвестиций в среднем на одного занятого, тыс. руб.

Инвестиции в экономику за год, млрд руб.

Р г 100%

р г т г т%

Центральный

Северо-Западный

Северо-Кавказский

Приволжский

Уральский

Сибирский

Дальневосточный

Средняя арифметическая

Средняя гармоническая

Составлено и рассчитано по: Россия в цифрах. 2016. Табл. 1.3.

В Экономикс России в 2014 г. доля занятого населения составляла в среднем 47,2% численности всего населения. Расчет выполнен по гармонической средней взвешенной , в которой весом выступил первичный признак P t - численность занятых в экономике.

Аналогичные рассуждения лежат в основе расчета средних значений двух других относительных характеристик: средней стоимости оборота розничной торговли на одного жителя, Т тыс. руб., и средней стоимости инвестиций на одного занятого, R тыс. руб.

Индивидуальные значения стоимости оборота розничной торговли на одного жителя, тыс. руб., рассчитываются как результат сравнения оборота розничной торговли за год, млрд руб., с численностью всего населения, млн человек:

По условию задачи неизвестна стоимость оборота розничной торговли. Поэтому выразим неизвестные значения оборота розничной торговли через известные значения численности всего населения и заданные в условии задачи значения Т г Искомый оборот розничной торговли (товарооборот) есть произведение численности всего населения и величины товарооборота на одного жителя:


Величина оборота розничной торговли измеряется в млрд руб., так как при его расчете численность жителей в млн человек умножаем на товарооборот на одного жителя в тыс. руб.

Определим неизвестные значения оборота розничной торговли за год в гр. 5 табл. 6.5.

Расчет общего среднего значения оборота розничной торговли на одного жителя, тыс. руб., Т , выполним по итоговым значениям суммы оборота

розничной торговли, млрд руб., , и суммарной численности всего

населения, млн чел., . Расчетная формула имеет вид

В 2014 г. на одного жителя в Российской Федерации приходилось в среднем 181,5 тыс. руб. оборота розничной торговли. При расчете использована арифметическая взвешенная средняя, а весом выступают абсолютные значения общей численности населения:

Для расчета стоимости инвестиций на одного занятого необходимо стоимость инвестиций, млрд руб., сравнить с численностью занятых в экономике, млн человек:

По условию неизвестна стоимость инвестиций, поэтому для расчета ее значений следует выразить инвестиции через известные значения численности занятых Pj и через заданные в условии задачи величины инвестиций на одного занятого /?,:

Подсчет неизвестного значения общей суммы инвестиций выполним в гр. 7 табл. 6.5.

Рассчитанные значения общей суммы инвестиций позволяют определять индивидуальные значения инвестиций на одного занятого по формуле

Для РФ в целом среднее значение инвестиций в расчете на одного занятого К рассчитаем как отношение суммы инвестиций за год?/? Р к сумме численности занятых


В 2014 г. инвестиции в расчете на одного занятого составили в среднем 198,8 тыс. руб. При расчете использована средняя арифметическая взвешенная, весом являются абсолютные значения численности занятых.

Завершающим этапом расчета средних является проверка правильности результата. Логическая проверка основана на анализе схемы расчета индивидуальных значений характеристики и на определении смысла признака- веса. Счетный контроль устанавливает, находится ли средняя в интервале от минимального до максимального значения изучаемого признака. Если выполняется условие X mjn то расчет средней выполнен верно. Если данное условие не выполняется, то в расчете допущены ошибки, которые необходимо выявить и исправить.

В нашем примере (см. табл. 6.5) для всех значений рассчитанных средних данное условие выполняется:

простая арифметическая Р = 8,5, 3,3 Р

взвешенная гармоническая С = 47,2 , 36,3 С 53,2;

взвешенная арифметическая Т = 181,5, 134,7 Т

взвешенная арифметическая R = 198,8, 142,9 R 383,3 .

Это означает, что в определении средних значений не допущено расчетных ошибок, а использование взвешенных средних для расчета средних из относительных величин позволило учесть размеры изучаемых единиц - федеральных округов РФ.

Подводя итог, напомним основные правила построения средних величин.

По абсолютным значениям признака допустим расчет простой средней. Как правило, в большинстве случаев применяется арифметическая средняя. Например, расчет Р.

По относительным значениям расчет выполняется но взвешенной средней, в которой весом являются абсолютные значения первичного признака, связанного по смыслу с изучаемым признаком. Например, расчет С, Т и R.

В качестве веса используются значения признака, по отношению к которому рассчитаны относительные значения вторичного признака. Вес может отображаться весьма просто, как, например, при расчете С и R, где в качестве веса использована численность занятых Р г Но он может иметь и сложное отображение, как, например, при расчете Г, у которого весом

была численность всего населения. Каким бы образом ни отображался

признак-вес, он всегда должен представлять собой абсолютную оценку изучаемого объекта.

Выбор формы средней в большинстве случаев ограничен арифметической или гармонической, так как квадратическая и геометрическая применяются лишь в строго определенных случаях.

Арифметическая форма средней применяется в тех случаях, когда в условии поставленной задачи отсутствуют значения признака, который связан с изучаемым признаком прямой зависимостью, т.е. когда в расчетной формуле индивидуальных значений отсутствуют сведения о ее числителе. Примером могут быть расчеты Р, Т и R.

Если в расчетной формуле отсутствуют данные о знаменателе отношения, то используется гармоническая средняя. В этом случае изучаемый признак связан с неизвестным признаком обратной зависимостью, как, например, при расчете С.

Правильно выполненные расчеты позволяют получить точные средние значения, которые отражают характерную величину признака и представляют интерес при решении аналитических и прогнозных задач.

  • См.: Россия в цифрах. 2016. Табл. 7.7.