Биографии Характеристики Анализ

Воду и пар он сам. Что такое водяной пар? Вода, водяной пар и его свойства

3. Водяной пар и его свойства

3.1. Водяной пар. Основные понятия и определения.

Одним из распространенным рабочим телом в паровых турбинах, паровых машинах, в атомных установках, теплоносителем в различных теплообменниках является водяной пар. Пар - газообразное тело в состоянии, близкое к кипящей жидкости.Парообразование – процесс превращения вещества из жидкого состояния в парообразное.Испарение – парообразование, происходящее всегда при любой температуре с поверхности жидкости. При некоторой определенной температуре, зависящей от природы жидкости и давления, под которым она находится, начинается парообразование во всей массе жидкости. Этот процесс называетсякипением . Обратный процесс парообразования называетсяконденсацией . Она также протекает при постоянной температуре. Процесс перехода твердого вещества непосредственно в пар называетсясублимацией . Обратный процесс перехода пара в твердое состояние называетсядесублимацией . При испарении жидкости в ограниченном пространстве (в паровых котлах) одновременно происходит обратное явление – конденсация пара. Если скорость конденсации станет равной скорости испарения, то наступает динамическое равновесие. Пар в этом случае имеет максимальную плотность и называетсянасыщенным паром . Если температура пара выше температуры насыщенного пара того же давления, то такой пар называетсяперегретым . Разность между температурой перегретого пара и температурой насыщенного пара того же давления называетсястепенью перегрева . Так как удельный объем перегретого пара больше удельного объема насыщенного пара, то плотность перегретого пара меньше плотности насыщенного пара. Поэтому перегретый пар являетсяненасыщенным паром . В момент испарения последней капли жидкости в ограниченном пространстве без изменения температуры и давления образуетсясухой насыщенный пар . Состояние такого пара определяется одним параметром - давлением. Механическая смесь сухого и мельчайших капелек жидкости называетсявлажным паром . Массовая доля сухого пара во влажном паре называетсястепенью сухости х .

х = m сп / m вп,

m сп - масса сухого пара во влажном; m вп - масса влажного пара. Массовая доля жидкости во влажном паре нызваетсястепенью влажности у .

у = 1 –.

Для кипящей жидкости при температуре насыщения = 0, для сухого пара –= 1.

3.2 Влажный воздух. Абсолютная и относительная влажность.

Атмосферный воздух широко используется в технике: в качестве рабочего тела (в воздушных холодильных установках, кондиционерах, теплообменниках и сушильных устройствах) и составной части для горения топлива (в двигателях внутреннего сгорания, газотурбинных установках, в парогенераторах).

Сухим воздухом называется воздух, не содержащий водяных паров. В атмосферном воздухе всегда содержится некоторое количество водяного пара.

Влажным воздухом называется смесь сухого воздуха с водяным паром.

В теплотехнике некоторые газообразные тела принято называть паром. Так, например, вода в газообразном состоянии называется водяным паром, аммиак – аммиачным паром.

Рассмотрим более подробно термодинамические свойства воды и водяного пара. (1-6).

Образование пара из одноименной жидкости происходит посредством испарения и кипения . Между данными процессами существует принципиальное различие. Испарение жидкости происходит лишь с открытой поверхности. Отдельные молекулы, имеющие большую скорость, преодолевают притяжение соседних молекул и вылетают в окружающее пространство. Интенсивность испарения возрастает с увеличением температуры жидкости. Сущность кипения состоит в том, что генерация пара происходит в основном в объеме самой жидкости за счет испарения ее внутрь пузырьков пара. Различают следующие состояния водяного пара:

    влажный пар;

    сухой насыщенный пар;

    перегретый пар.

Атмосферный воздух (влажный воздух) может быть:

    пересыщенный влажный воздух;

    насыщенный влажный воздух;

    ненасыщенный влажный воздух.

Пересыщенный влажный воздух – смесь сухого воздуха и влажного водяного пара. Явление в природе – туман.Насыщенный влажный воздух – смесь сухого воздуха и сухого насыщенного водяного пара.Ненасыщенный влажный воздух – смесь сухого воздуха и перегретого водяного пара.

Следует отметить принципиально разные значения термина “влажный” применительно к пару и к воздуху. Пар называется влажным, если содержит мелкодисперсную жидкость. Влажный воздух во всех представляющих интерес для техники случаях содержит перегретый или сухой насыщенный водяной пар. В общем случае влажный воздух может содержать и влажный водяной пар (например, облака), но этот случай технического интереса не представляет и далее не рассматривается.

В атмосферном (влажном) воздухе каждый компонент находится под своим парциальным давлением, имеет температуру, равную температуре влажного воздуха и равномерно распределен по всему объему.

Термодинамические свойства влажного воздуха как газовой смеси сухого воздуха и водяного пара определяются по закономерностям, характерным для идеальных газов.

Расчет процессов с влажным воздухом обычно проводится при условии, что количество сухого воздуха в смеси не изменяется. Переменной величиной является количество содержащегося в смеси водяного пара. Поэтому удельные величины, характеризующие влажный воздух, относятся к 1 кг сухого воздуха.

Давление влажного воздуха определяется по закону Дальтона:

Р=Рв+Рп, (3.1)

Где Рв – парциальное давление сухого воздуха, кПа; Рп – парциальное давление водяного пара, кПа.

Запишем уравнение Клапейрона - Менделеева

влажный воздух PV=MRT; (3.2)

сухой воздух P B V=M B R B T; (3.3)

водяной пар Р П V=M П R П Т, (3.4)

где V – объем влажного воздуха, м 3 ; М, М В, М П – масса соответственно влажного, сухого воздуха и водяного пара, кг; R, R В, R П – газовая постоянная соответственно влажного, сухого воздуха и водяного пара, кДж/(кгК); Т – абсолютная температура влажного воздуха, К.

Абсолютная влажность воздуха – количество водяного пара, содержащееся в 1 м 3 влажного воздуха. Она обозначается через П и измеряется в кг/м 3 или г/м 3 . Иначе говоря, она представляет собой плотность водяного пара в воздухе: П =Р П /(R П Т). Очевидно, что

 П =М П /V, где V – объем влажного воздуха массой М.

Относительной влажностью воздуха называется отношение абсолютной влажности воздуха в данном состоянии к абсолютной влажности насыщенного воздуха (Н) при той же температуре.

Можно отметить два характерных состояния воздуха по величине :<100 %, при этом Р П <Р Н и водяной пар перегретый, а влажный воздух ненасыщенный;=100 %, при этом Р П =Р Н и водяной пар сухой насыщенный, а влажный воздух насыщенный. Температура, до которой необходимо охлаждать ненасыщенный влажный воздух, чтобы содержащийся в нем перегретый пар стал сухим насыщенным, называется температурой точки росы t Н.

3.3 i d – диаграмма влажного воздуха

Впервые id - диаграмма для влажного воздуха была предложена проф. Л.К. Рамзиным. В настоящее время она применяется в расчетах систем кондиционирования, сушки, вентиляции и отопления. Вid – диаграмме по оси абсцисс откладывается влагосодержание d, г/кг сухого воздуха, а по оси ординат - удельная энтальпия влажного воздухаi, кДж/кг сухого воздуха. Для более удобного расположения отдельных линий, наносимых наid - диаграмму, она строится в косоугольных координатах, в которых ось абсцисс проводится под углом 135° к оси ординат.

При таком расположении осей координат линии i=const, которые должны быть параллельны оси абсцисс, идут наклонно. Для удобства расчетов значения d сносят на горизонтальную ось координат.

Линии d=const идут в виде прямых параллельных оси ординат, т.е. вертикально. Кроме того, на id.-диаграмме наносят изотермы t С =const, t M =const (штриховые линии на диаграмме) в линии постоянных значений относительной влажности (начиная от.=5% до=100%). Линии постоянных значений относительной влажности=const строят только до изотермы 100° , т. е. до тех пор, пока парциальное давление пара в воздухе Р П меньше атмосферного давления Р. В тот момент, когда Р П станет равным Р, эти линии теряют физический смысл, что видно из уравнения (10), в котором при Р П =Р влагосодержание d=const.

Кривая постоянной относительной влажности =100% делит всю диаграмму на две части. Та ее часть, которая расположена выше этой линии –область ненасыщенного влажного воздуха, в котором пар находятся в перегретом состоянии. Часть диаграммы ниже линии=100% - область насыщенного влажного воздуха.

Так как при =100% показания сухого и мокрого термометров одинаковы, t C =t M , то изотермы t C =t M =const пересекаются на линии=100%..

Чтобы найти на диаграмме точку, соответствующую состоянию данного влажного воздуха, достаточно знать два его параметра из числа изображенных на диаграмме. При проведении эксперимента целесообразно использовать те параметры, которые проще и точнее измеряются в опыте. В нашем случае такими параметрами являются температура сухого и мокрого термометров.

Зная эти температуры, можно найти на диаграмме точку пересечения соответствующих изотерм. Найденная таким образом точка определит состояние влажного воздуха и по id - диаграмме можно определить все остальные параметры воздуха: влагосодержание - d; относительную влажность -, энтальпию воздуха -i; парциальное давление пара – Р П, температуру точки росы – t М.

ВОДЯНОЙ ПАР В АТМОСФЕРЕ

ВЛАЖНОСТЬ ВОЗДУХА. ХАРАКТЕРИСТИКИ СОДЕРЖАНИЯ ВОДЯНОГО ПАРА В АТМОСФЕРЕ

Влажностью воздуха называют содержание водяного пара в атмосфере. Водяной пар является одной из важнейших состав­ных частей земной атмосферы.

Водяной пар непрерывно поступает в атмосферу вследствие испарения воды с поверхности водоемов , почвы, снега, льда и растительного покрова, на что затрачивается в среднем 23 % солнечной радиации, приходящей на земную поверхность.

В атмосфере содержится в среднем 1,29 1013 т влаги (водяно­го пара и жидкой воды), что эквивалентно слою воды 25,5 мм.

Влажность воздуха характеризуется следующими величинами: абсолютной влажностью , парциальным давлением водяного пара, давлением насыщенного пара, относительной влажнос­тью, дефицитом насыщения водяного пара, температурой точки росы и удельной влажностью.

Абсолютная влажность а (г/м3) - количество водяного пара, выраженное в граммах, содержащееся в 1 м3 воздуха.

Парциальное давление (упругость) водяного пара е - фактичес­кое давление водяного пара, находящегося в воздухе, измеряют в миллиметрах ртутного столба (мм рт. ст.), миллибарах (мб) и гектопаскалях (гПа). Упругость водяного пара часто называют абсолютной влажностью. Однако смешивать эти разные понятия нельзя, так как они отражают разные физические величины ат­мосферного воздуха.

Давление насыщенного водяного пара, или упругость насыщения, Е- максимально возможное значение парциального давления при данной температуре; измеряют в тех же единицах, что и е. Упру­гость насыщения возрастает с увеличением температуры. Это зна­чит, что при более высокой температуре воздух способен содер­жать больше водяного пара, чем при более низкой температуре.

Относительная влажность f - это отношение парциального давления водяного пара, содержащегося в воздухе, к давлению насыщенного водяного пара при данной температуре. Выража­ют ее обычно в процентах с точностью до целых:

Относительная влажность выражает степень насыщения воз­духа водяными парами.

Дефицит насыщения водяного пара (недостаток насыщения) d - разность между упругостью насыщения и фактической упругос­тью водяного пара:

= E - e .

Дефицит насыщения выражают в тех же единицах и с той же точностью, что и величины е и Е. При увеличении относитель­ной влажности дефицит насыщения уменьшается и при/= 100 % становится равным нулю.

Так как Е зависит от температуры воздуха, а е - от содержа­ния в нем водяного пара, то дефицит насыщения является комп­лексной величиной, отражающей тепло - и влагосодержание воз­духа. Это позволяет шире, чем другие характеристики влажнос­ти, использовать дефицит насыщения для оценки условий про­израстания сельскохозяйственных растений.

Точка росы td (°С) - температура, при которой водяной пар, со­держащийся в воздухе при данном давлении, достигает состояния насыщения относительно химически чистой плоской поверхности воды. При/= 100 % фактическая температура воздуха совпадает с точкой росы. При температуре ниже точки росы начинается кон­денсация водяных паров с образованием туманов, облаков, а на поверхности земли и предметов образуются роса, иней, изморозь.

Удельная влажность q (г/кг) - количество водяного пара в граммах, содержащееся в 1 кг влажного воздуха:

q = 622 е/Р,

где е - упругость водяного пара, гПа; Р- атмосферное давление, гПа.

Удельную влажность учитывают в зоометеорологических рас­четах, например, при определении испарения с поверхности ор­ганов дыхания у сельскохозяйственных животных и при опреде­лении соответствующих затрат энергии.

ИЗМЕНЕНИЕ ХАРАКТЕРИСТИК ВЛАЖНОСТИ ВОЗДУХА В АТМОСФЕРЕ С ВЫСОТОЙ

Наибольшее количество водяного пара содержится в нижних слоях воздуха, непосредственно прилегающих к испаряющей поверхности. В вышележащие слои водяной пар проникает в ре­зультате турбулентной диффузии

Проникновению водяного пара в вышележащие слои способ­ствует то обстоятельство, что он легче воздуха в 1,6 раза (плот­ность водяного пара по отношению к сухому воздуху при 0 "С равна 0,622), поэтому воздух, обогащенный водяным паром, как менее плотный стремится подняться вверх.

Распределение упругости водяного пара по вертикали зависит от изменения давления и температуры с высотой, от процессов конденсации и облакообразования. Поэтому трудно теоретичес­ки установить точную закономерность изменения упругости во­дяного пара с высотой.

Парциальное давление водяного пара с высотой уменьшается в 4...5 раз быстрее, чем атмосферное давление. Уже на высоте 6 км парциальное давление водяного пара в 9раз меньше, чем на уровне моря. Это объясняется тем, что в приземный слой атмосферы водяной пар поступает непрерывно в результате ис­парения с деятельной поверхности и его диффузии за счет тур­булентности. Кроме того, температура воздуха с высотой пони­жается, а возможное содержание водяного пара ограничивается температурой, так как понижение ее способствует насыщению пара и его конденсации.

Уменьшение упругости пара с высотой может чередоваться с ее ростом. Например, в слое инверсии упругость пара обычно растет с высотой.

Относительная влажность распределяется по вертикали не­равномерно, но с высотой в среднем она уменьшается. В при­земном слое атмосферы в летние дни она несколько возрастает с высотой за счет быстрого понижения температуры воздуха, за­тем начинает убывать вследствие уменьшения поступления во­дяного пара и снова возрастает до 100 % в слое образования об­лаков. В слоях инверсии она резко уменьшается с высотой в ре­зультате повышения температуры. Особенно неравномерно из­меняется относительная влажность до высоты 2...3 км.

СУТОЧНЫЙ И ГОДОВОЙ ХОД ВЛАЖНОСТИ ВОЗДУХА

В приземном слое атмосферы наблюдается хорошо выражен­ный суточный и годовой ход влагосодержания, связанный с со­ответствующими периодическими изменениями температуры.

Суточный ход упругости водяного пара и абсолютной влажности над океанами, морями и в прибрежных районах суши аналогичен суточному ходу температуры воды и воздуха: минимум перед вос­ходом Солнца и максимум в 14...15 ч. Минимум обусловлен очень слабым испарением (или его отсутствием вообще) в это время су­ток. Днем по мере увеличения температуры и соответственно ис­парения влагосодержание в воздухе растет. Таков же суточный ход упругости водяного пара и над материками зимой.

В теплое время года в глубине материков суточный ход влаго-содержания имеет вид двойной волны (рис. 5.1). Первый мини­мум наступает рано утром вместе с минимумом температуры. После восхода Солнца температура деятельной поверхности по­вышается, увеличивается скорость испарения, и количество во­дяного пара в нижнем слое атмосферы быстро растет. Такой рост продолжается до 8...10 ч, пока испарение преобладает над переносом пара снизу в более высокие слои. После 8...10ч воз­растает интенсивность турбулентного перемешивания, в связи с чем водяной пар быстро переносится вверх. Этот отток водяного пара уже не успевает компенсироваться испарением, в результа­те чего влагосодержание и, следовательно, упругость водяного пара в приземном слое уменьшаются и достигают второго мини­мума в 15...16 ч. В предвечерние часы турбулентность ослабева­ет, тогда как довольно интенсивное поступление водяного пара в атмосферу путем испарения еще продолжается. Упругость пара и абсолютная влажность в воздухе начинают увеличиваться и в 20...22ч достигают второго максимума. В ночные часы испаре­ние почти прекращается, в результате чего содержание водяного пара уменьшается.

Годовой ход упругости водяного пара и абсолютной влажности совпадают с годовым ходом температуры воздуха как над океа­ном, так и над сушей. В Северном полушарии максимум влаго-содержания воздуха наблюдается в июле, минимум - в январе. Например, в Санкт-Петербурге средняя месячная упругость пара в июле составляет 14,3 гПа, а в январе - 3,3 гПа.

Суточный ход относительной влажности зависит от упруго­сти пара и упругости насыщения. С повышением температуры испаряющей поверхности увеличивается скорость испарения и, следовательно, увеличивается е. Но Е растет значительно быстрее, чем е, поэтому с повышением температуры поверх­ности, а с ней и температуры воздуха относительная влаж­ность уменьшается [см. формулу (5.1)]. В итоге ход ее вблизи земной поверхности оказывается обратным ходу температуры поверхности и воздуха: максимум относительной влажности наступает перед восходом Солнца, а минимум - в 15ч (рис. 5.2). Дневное ее понижение особенно резко выражено над континентами в летнее время, когда в результате турбу­лентной диффузии пара вверх е у поверхности уменьшается, а вследствие роста температуры воздуха Е увеличивается. По­этому амплитуда суточных колебаний относительной влажно­сти на материках значительно больше, чем над водными по­верхностями.

В годовом ходе относительная влажность воздуха, как правило, также меняется обратно ходу температуры. Например, в Санкт-Петербурге относительная влажность в мае в среднем составляет 65 %, а в декабре - 88 % (рис. 5.3). В районах с муссонным кли­матом минимум относительной влажности приходится на зиму, а максимум - на лето вследствие летнего переноса на сушу масс влажного морского воздуха: например, во Владивостоке летом /= 89%, зимой/= 68 %.

Ход дефицита насыщения водяного пара параллелен ходу температуры воздуха. В течение суток дефицит бывает наи­большим в 14...15 ч, а наименьшим - перед восходом Солнца. В течение года дефицит насыщения водяного пара имеет мак­симум в самый жаркий месяц и минимум в самый холодный. В засушливых степных районах России летом в 13 ч ежегодно отмечается дефицит насыщения, превышающий 40 гПа. В Санкт-Петербурге дефицит насыщения водяного пара в июне в среднем составляет 6,7 гПа, а в январе - только 0,5 гПа

ВЛАЖНОСТЬ ВОЗДУХА В РАСТИТЕЛЬНОМ ПОКРОВЕ

Растительный покров оказывает большое влияние на влаж­ность воздуха. Растения испаряют большое количество воды и тем самым обогащают водяным паром приземный слой атмос­феры, в нем наблюдается повышенное влагосодержание воздуха по сравнению с оголенной поверхностью. Этому способствует еще и уменьшение растительным покровом скорости ветра, а следовательно, и турбулентной диффузии пара. Особенно резко это выражено в дневные часы. Упругость пара внутри крон дере­вьев в ясные летние дни может быть на 2...4 гПа больше, чем на открытом месте, в отдельных случаях даже на 6...8 гПа. Внутри агрофитоценозов возможно повышение упругости пара по срав­нению с паровым полем на 6...11 гПа. В вечерние и ночные часы влияние растительности на влагосодержание меньше.

Большое влияние растительный покров оказывает и на отно­сительную влажность. Так, в ясные летние дни внутри посевов ржи и пшеницы относительная влажность на 15...30 % больше, чем над открытым местом, а в посевах высокостебельных куль­тур (кукуруза, подсолнечник, конопля) - на 20...30 % больше, чем над оголенной почвой. В посевах наибольшая относитель­ная влажность наблюдается у поверхности почвы, затененной растениями, а наименьшая - в верхнем ярусе листьев (табл. 5.1).. Распределение по вертикали относительной влажности и дефицита насыщения

Дефицит насыщения водяного пара соответственно в посевах значительно меньше, чем над оголенной почвой. Его распреде­ление характеризуется понижением от верхнего яруса листьев к нижнему (см. табл. 5.1).

Ранее отмечалось, что растительный покров значительно влияет на радиационный режим (см. гл. 2), температуру почвы и воздуха (см. гл. 3 и 4), существенно изменяя их по сравнению с открытым местом, т. е. в растительном сообществе формируется свой, особый метеорологический режим - фитоклимат. На­сколько сильно он выражен, зависит от вида, габитуса и возрас­та растений, густоты насаждения, способа посева (посадки).

Влияют на фитоклимат и погодные условия - в малооблачную и ясную погоду фитоклиматические особенности проявляются сильнее.

ЗНАЧЕНИЕ ВЛАЖНОСТИ ВОЗДУХА ДЛЯ СЕЛЬСКОХОЗЯЙСТВЕННОГО ПРОИЗВОДСТВА

Водяной пар, содержащийся в атмосфере, имеет, как отмеча­лось в главе 2, большое значение в сохранении тепла на земной поверхности, так как он поглощает излучаемое ею тепло. Влаж­ность воздуха относится к числу элементов погоды, имеющих су­щественное значение и для сельскохозяйственного производства.

Влажность воздуха оказывает большое влияние на растение. Она в значительной степени обусловливает интенсивность транспирации. При высокой температуре и пониженной влаж­ности (/"< 30 %) транспирация резко увеличивается и у растений возникает большой недостаток воды, что отражается на их росте и развитии. Например, отмечается недоразвитие генеративных органов, задерживается цветение.

Низкая влажность в период цветения обусловливает пересы­хание пыльцы и, следовательно, неполное оплодотворение, что у зерновых, например, вызывает череззерницу. В период налива зерна чрезмерная сухость воздуха приводит к тому, что зерно получается щуплым, урожай снижается.

Малое влагосодержание воздуха приводит к мелкоплодности плодовых, ягодных культур, винограда , слабой закладке почек под урожай будущего года и, следовательно, снижению урожая.

Влажность воздуха отражается и на качестве урожая. Отмече­но, что низкая влажность снижает качество льноволокна, но по­вышает хлебопекарные качества пшеницы, технические свой­ства льняного масла, содержание сахара в плодах и т. д.

Особенно неблагоприятно снижение относительной влажно­сти воздуха при недостатке почвенной влаги. Если жаркая и су­хая погода длится продолжительное время, то растения могут за­сохнуть.

Отрицательно сказывается на росте и развитии растений и длительное повышение влагосодержания (/> 80 %). Избыточно высокая влажность воздуха обусловливает крупноклеточное строение ткани растений, что приводит в дальнейшем к полега­нию зерновых культур. В период цветения такая влажность воз­духа препятствует нормальному опылению растений и снижает урожай, так как меньше раскрываются пыльники, уменьшается лёт насекомых.

Повышенная влажность воздуха задерживает наступление полной спелости зерна, увеличивает содержание влаги в зерне и соломе, что, во-первых, неблагоприятно отражается на работе уборочных машин, а во-вторых, требует дополнительных затрат на просушку зерна (табл. 5.2).

Снижение дефицита насыщения до 3 гПа и более приводит практически к прекращению уборочных работ из-за плохих ус­ловий.

В теплое время года повышенная влажность воздуха способ­ствует развитию и распространению ряда грибных заболеваний сельскохозяйственных культур (фитофтороз картофеля и тома­тов, милдью винограда, белая гниль подсолнечника, различные виды ржавчины зерновых культур и др.). Особенно усиливается влияние этого фактора с увеличением температуры (табл. 5.3).

5.3. Число растений яровой пшеницы Цезиум 111, пораженных головней в зависимости от влажности и температуры воздуха (по, От влажности воздуха зависят и сроки проведения ряда сель­скохозяйственных работ: борьбы с сорняками, закладки кормов на силос, проветривания складских помещений, сушки зерна и ДР-

В тепловом балансе сельскохозяйственных животных и чело­века с влажностью воздуха связан теплообмен. При температуре воздуха ниже 10 "С повышенная влажность усиливает теплоотда­чу организмов, а при высокой температуре - замедляет.

Свойства водяного пара

В качестве реального газа рассмот­рим водяной пар, который широко ис­пользуется во многих отраслях техники, и, прежде всего в теплоэнергетике, где он является основным рабочим телом. По­этому исследование термодинамических свойств воды и водяного пара имеет большое практическое значение.

Во всех областях промышленного производства получили большое применение пары различных веществ: воды, аммиака, углекислоты и др. Из них наибольшее распространение получил водяной пар, яв­ляющийся рабочим телом в паровых турбинах, паровых машинах, в атомных установках, теплоносителем в различных теплообменниках и т. п.

Процесс превращения вещества из жидкого состояния в газообраз­ное называется парообразованием. Испарением называется парообра­зование, которое происходит всегда при любой температуре со свобод­ной поверхности жидкости или твердого тела. Процесс испарения за­ключается в том, что отдельные молекулы с большими скоростями преодолевают притяжение соседних молекул и вылетают в окружающее пространство. Интенсивность испарения возрастает с увеличением температуры жидкости.

Процесс кипения заключается в том, что если к жидкости подводить теплоту, то при некоторой температуре, зависящей от физических свойств рабочего тела и давления, наступает процесс парообразования как на свободной поверхности жидкости, так и внутри её.

Переход вещества из газообразного состояния в жидкое или твердое называется конденсацией. Процесс конденсации, так же как и процесс парообразования, протекает при постоянной температуре, если при этом давление не меняется. Жидкость, полученную при конденсации пара, называют конденсатом.

Процесс перехода твердого вещества непосредственно в пар назы­вается сублимацией. Обратный процесс перехода пара в твердое состоя­ние называется десублимацией.

Процесс парообразования. Основные понятия и определения. Рассмотрим про­цесс получения пара. Для этого 1 кг во­ды при температуре О °С поместим в ци­линдр с подвижным поршнем. Приложим к поршню извне некоторую постоянную силу Р. Тогда при площади поршня Fдавление будет постоянным и равным р = Р/F. Изобразим процесс парообразо­вания, т. е. превращения вещества из жидкого состояния в газообразное, в р,v диаграмме (рис.14).

Рис. 14. Процесс парообразования в pv- диаграмме

Начальное состояние воды, находя­щейся под давлением р и имеющей тем­пературу 0 °С, изобразится на диаграм­ме точками a 1 , a 2 , a 3. При подводе теплоты к воде ее температура постепенно повышается до тех пор, пока не достигнет температу­ры кипения t s , соответствующей данному давлению. При этом удельный объем жидкости сначала уменьшается, дости­гает минимального значения при t = 4°С, а затем начинает возрастать. (Такой аномалией - увеличением плот­ности при нагревании в некотором диа­пазоне температур - обладают немногие жидкости). У большинства жидкостей удельный объем при нагревании увели­чивается монотонно.) Состояние жидко­сти, доведенной до температуры кипения, изображается на диаграмме точками b 1 , b 2 , b 3 .

При дальнейшем подводе теплоты начинается кипение воды с сильным увеличением объема. В цилиндре теперь на­ходится двухфазная среда - смесь воды и пара, называемая влажным насы­щенным паром. Насыщенным называется пар, находящийся в термическом и динамиче­ском равновесии с жидкостью, из кото­рой он образуется. Динамическое равно­весие заключается в том, что количество молекул, вылетающих из воды в паровое пространство, равно количеству молекул, конденсирующихся на ее поверхности. В паровом пространстве при этом равно­весном состоянии находится максималь­но возможное при данной температуре число молекул. При увеличении темпера­туры количество молекул, обладающих энергией, достаточной для вылета в па­ровое пространство, увеличивается. Рав­новесие восстанавливается за счет воз­растания давления пара, которое ведет к увеличению его плотности и, следова­тельно, количества молекул, в единицу времени конденсирующихся на поверхности воды. Отсюда следует, что давление насыщенного пара является монотонно возрастающей функцией его температу­ры, или, что то же самое, температура насыщенного пара есть монотонно воз­растающая функция его давления.

При увеличении объема над повер­хностью жидкости, имеющей температу­ру насыщения, некоторое количество жидкости переходит в пар, при уменьше­нии объема «излишний» пар снова пере­ходит в жидкость, но в обоих случаях давление пара остается постоянным.

Если парообразование жидкости происходит в неограниченном пространстве, то вся она может превратиться в пар. Если же паро­образование жидкости происходит в закрытом сосуде, то вылетающие из жидкости молекулы заполняют свободное пространство над ней, при этом часть молекул, движущихся в паровом пространстве над по­верхностью, возвращается обратно в жидкость. В некоторый момент между парообразованием и обратным переходом молекул из пара в жидкость может наступить равенство, при котором число молекул, вылетающих из жидкости, равно числу молекул, возвращающихся обратно в жидкость. В этот момент в пространстве над жидкостью бу­дет находиться максимально возможное количество молекул. Пар в этом состоянии принимает максимальную плотность при данной тем­пературе и называется насыщенным.

Таким образом, пар, соприкасающийся с жидкостью и находящий­ся в термическом с ней равновесии, называется насыщенным. С изме­нением температуры жидкости равновесие нарушается, вызывая со­ответствующее изменение плотности и давления насыщенного пара.

Двухфазная смесь, представляющая собой пар с взвешенными в нем капель­ками жидкости, называется влажным насыщенным паром . Таким образом, влажный насыщенный водяной пар можно рассматривать как смесь сухого насыщенного пара с мельчайши­ми капельками воды, взвешенными в его массе.

Массовая до­ля сухого насыщенного пара во влажном называется степенью сухости па­ра и обозначается буквой х. Массовая доля кипящей воды во влажном паре, равная 1-х, называется степенью влажности. Для кипящей жидкости x = 0, а для сухого насыщенного пара х= 1. Состояние влажного пара характе­ризуется двумя параметрами: давлением (или температурой насыщения t s , опре­деляющей это давление) и степенью су­хости пара.

По мере подвода теплоты количество жидкой фазы умень­шается, а паровой - растет. Температу­ра смеси при этом остается неизменной и равной t s , так как вся теплота расходу­ется на испарение жидкой фазы. Следо­вательно, процесс парообразования на этой стадии является изобарно-изотермическим. Наконец, последняя капля во­ды превращается в пар, и цилиндр ока­зывается заполненным только паром, ко­торый называется сухим насыщен­ным.



Насыщенный пар, в котором отсут­ствуют взвешенные частицы жидкой фа­зы, называется сухим насыщенным паром. Его удельный объем, и темпера­тура являются функциями давления. По­этому состояние сухого пара можно за­дать любым из параметров - давлением, удельным объемом или температурой.

Состояние его изображается точ­ками c 1 , с 2 , с 3 .

Точками изображается перегретый пар. При сообщении сухому пару теплоты при том же давлении его температура будет увеличиваться, пар будет перегре­ваться. Точка d (d 1 , d 2 , d 3) изображает состояние перегретого пара и в зависимости от температуры пара может лежать на разных расстояниях от точки c.

Таким образом, перегретым называется пар, температура которого превышает температуру насыщенного пара того же давления.

Так как удельный объем перегретого пара при том же давлении больше, чем насыщенного, то в единице объема пере­гретого пара содержится меньшее коли­чество молекул, значит, он обладает меньшей плотностью. Состояние перегретого пара, как и любого газа, определя­ется двумя любыми независимыми пара­метрами.

Процесс получения сухого насыщенного пара при постоянном давлении изображается в общем случае графиком abc, а перегретого пара в общем случае - графиком abсd, при этом ab - процесс подогрева воды до температуры кипения, bс - процесс парообразования, протекающий одновременно при постоянном давлении и при постоянной температуре, т. е. процесс bс являет­ся изобарным и одновременно изотермическим и, наконец, cd - процесс перегрева пара при постоянном давлении, но при воз­растающей температуре. Между точками b и с находится влаж­ный пар с различными промежуточными значениями степени сухости.

Кривая I холодной воды изображается линией, параллельной оси ординат, если исходить из предположения, что вода несжи­маема и, следовательно, удельный объем воды почти не зависит от давления. Кривую II называют нижней пограничной кривой, или кривой жидкости, а кривую III - верх­ней пограничной кривой, или кривой сухого насыщенного пара. Кривая II отделяет на диаграмме область жидкости от области насыщенных паров, а кривая III - область насыщенных от области перегретых паров.

Точки а 1 , а 2 и а 3 , изображающие состояние 1 кг холодной воды при температуре 0°С и разных давлениях, располагаются прак­тически на одной вертикали. Точки b 1 , b 2 и b 3 с увеличением дав­ления смещаются вправо, так как при этом соответственно уве­личиваются также температуры кипения t H и, следовательно, удельные объемы кипящей воды. Точки c 1 , с 2 и с 3 смещаются влево, так с увеличением давления удельный объем пара умень­шается несмотря на возрастание температуры.

Из pv -диаграммы видно, что с повышением давления точки b 1 , b 2 и b 3 и c 1 с 2 и с 3 сближаются, т. е. постепенно уменьшается разность удельных объемов сухого насыщенного пара и кипящей воды (отрезки bc). Наконец, при некотором давлении эта раз­ность становится равной нулю, т. е. точки б и с совпадают, а ли­нии II и III сходятся. Точка встречи обеих кривых называется критической точкой и обозначается буквой k. Состояние, соответствующее точке k, называется критическим со­стоянием.

Параметры водяного пара критического состояния следую­щие: давление р к = 225,65 ата; температура t = 374,15° С, удель­ный объем v K = 0,00326 м 3 /кг.

В критической точке кипящая вода и пар имеют одинаковые параметры состояния, а изменение агрегатного состояния не сопровождается изменением объема. Иными словами, в крити­ческом состоянии исчезает условная граница, разделяющая эти две фазы вещества. При температурах, выше критической (t > t K), никаким повышением давления перегретый пар (газ) не может быть обращен в жидкость.

Критическая температура - это мак­симально возможная температура сосу­ществования двух фаз: жидкости и на­сыщенного пара. При температурах, больших критической, возможно су­ществование только одной фазы. Назва­ние этой фазы (жидкость или перегретый пар) в какой-то степени условно и определяется обычно ее температурой. Все газы являются сильно перегретыми сверх T кр парами. Чем выше температура перегрева (при данном давлении), тем ближе пар по своим свойствам к идеаль­ному газу.

Вода, водяной пар и их свойства

Вода - самое распространенное на Земле вещество, представляет собой химическое соединение водорода с кислородом. Вода является прекрасным растворителем, и поэтому все природные воды - это растворы, содержащие разнообразные вещества - соли, газы и другие примеси.
Вода и водяной пар получили наибольшее применение в промышленности в качестве рабочего тела и теплоносителя. Это объясняется, в первую очередь, доступностью благодаря распространению воды в природе, а также тем, что вода и водяной пар обладают относительно хорошими термодинамическими характеристиками.
Так, удельная теплоемкость воды выше по сравнению с многими жидкостями и твердыми телами (при повышении температуры до температуры кипения, т. е. в интервале температур 0... 100 °С при атмосферном давлении с = 4,19 кДжДкг-К)). В отличие от других жидких и твердых тел теплопроводность воды с повышением температуры до 120... 140 °С увеличивается в зависимости от давления, а при дальнейшем повышении температуры - уменьшается. Наибольшая плотность воды (1,000 г/см3) достигается при 4 °С. Температура плавления (таяния льда) 0 °С.
Изменение агрегатного состояния воды из жидкого в газообразное называется парообразованием, а из газообразного в жидкое - конденсацией.
Превращение жидкой воды в пар - парообразование - возможно при испарении и при кипении воды.
Испарение воды - процесс парообразования путем отрыва и улетучивания молекул воды с открытой ее поверхности, происходящий при температуре ниже точки кипения при данном давлении. При испарении с поверхности жидкости отрываются и улетают молекулы, обладающие повышенными относительно равновесного значения скоростями движения, вследствие чего средняя скорость движения молекул в массе жидкости снижается и, как следствие, снижается температура всей массы воды.
При подводе теплоты к массе жидкости, т.е. при нагревании воды, ее температура и интенсивность испарения увеличиваются, и наступает момент, соответствующий определенным значениям температуры и давления, когда испарение начинается в объеме воды - вода закипает.
Кипение воды - процесс интенсивного испарения не только на ее свободной поверхности, но и внутри образующихся пузырьков пара, при определенной температуре нагрева воды, называемой температурой кипения. При атмосферном давлении температура кипения составляет приблизительно 100 °С, с повышением давления температура кипения возрастает.
Количество теплоты, которое необходимо сообщить 1 кг воды для ее превращения из жидкого состояния в парообразное при температуре кипения, называется скрытой теплотой парообразования г. С повышением давления скрытая теплота парообразования уменьшается (табл. 1.1).

Конденсация - обратный процесс превращения пара в жидкость. Такую жидкость называют конденсатом. Данный процесс сопровождается выделением теплоты. Количество теплоты, выделяющееся при конденсации 1 кг пара, называется теплотой конденсации пара, она численно равна скрытой теплоте парообразования.

Водяной пар - вода в газообразном агрегатном состоянии. Водяной пар, имеющий максимальную плотность при данном давлении, называется насыщенным. Насыщенным является пар, находящийся в термодинамическом равновесии с жидкой фазой, т.е. имеющий одинаковые температуру и давление с кипящей водой. Насыщенный водяной пар может быть влажным и сухим. В объеме влажного насыщенного пара в виде мельчайших капелек находится вода, которая образуется при разрыве оболочек паровых пузырьков. Сухой насыщенный пар не содержит капелек воды, он характеризуется температурой насыщения. Свойства насыщенного пара (плотность, удельная теплоемкость и др.) определяются только давлением. Пар, температура которого для определенного давления превышает температуру насыщенного пара, называется перегретым. Разность температур между перегретым и сухим насыщенным паром при том же давлении называется перегревом пара.
Отношение массы сухого насыщенного пара к массе влажного насыщенного пара называется паросодержанием, или степенью сухости пара х. Эта важная характеристика влажного насыщенного водяного пара определяет долю пара в пароводяной смеси, где у - доля жидкости:
X = 1 - у.
Отделение капель воды от пара называется сепарацией, а устройства, предназначенные для этой цели, - сепараторами.
Энтальпия влажного насыщенного пара hx, кДж/кг, выражается через степень сухости следующим образом:
hx= h" + rx,
где h" - энтальпия воды при температуре кипения, кДж/кг.
Таблица 1.1
Свойства воды и сухого насыщенного пара в зависимости от давления

Энтальпия перегретого пара /гпп, кДж/кг: