Биографии Характеристики Анализ

Закон электромагнитной индукции гласит. Законы Фарадея в химии и физике — краткое объяснение простыми словами

Что может быть лучше, чем вечером понедельника почитать про основы электродинамики . Правильно, можно найти множество вещей, которые будут лучше. Тем не менее, мы все равно предлагаем Вам прочесть эту статью. Времени занимает не много, а полезная информация останется в подсознании. Например, на экзамене, в условиях стресса, можно будет успешно извлечь из недр памяти закон Фарадея. Так как законов Фарадея несколько, уточним, что здесь мы говорим о законе индукции Фарадея.

Электродинамика – раздел физики, изучающий электромагнитное поле во всех его проявлениях.

Это и взаимодействие электрического и магнитного полей, электрический ток, электро-магнитное излучение, влияние поля на заряженные тела.

Здесь мы не ставим целью рассмотреть всю электродинамику. Упаси Боже! Рассмотрим лучше один из основных ее законов, который называется законом электромагнитной индукции Фарадея .

История и определение

Фарадей, параллельно с Генри, открыл явление электромагнитной индукции в 1831 году. Правда, успел опубликовать результаты раньше. Закон Фарадея повсеместно используется в технике, в электродвигателях, трансформаторах, генераторах и дросселях. В чем суть закона Фарадея для электромагнитной индукции, если говорить просто? А вот в чем!

При изменении магнитного потока через замкнутый проводящий контур, в контуре возникает электрический ток. То есть, если мы скрутим из проволоки рамку и поместим ее в изменяющееся магнитное поле (возьмем магнит, и будем крутить его вокруг рамки), по рамке потечет ток!

Этот ток Фарадей назвал индукционным, а само явление окрестил электромагнитной индукцией.

Электромагнитная индукция – возникновение в замкнутом контуре электрического тока при изменении магнитного потока, проходящего через контур.

Формулировка основного закона электродинамики – закона электромагнитной индукции Фарадея, выглядит и звучит следующим образом:

ЭДС , возникающая в контуре, пропорциональна скорости изменения магнитного потока Ф через контур.

А откуда в формуле минус, спросите Вы. Для объяснения знака минус в этой формуле есть специальное правило Ленца . Оно гласит, что знак минус, в данном случае, указывает на то, как направлена возникающая ЭДС. Дело в том, что создаваемое индукционным током магнитное поле направлено так, что препятствует изменению магнитного потока, который вызвал индукционный ток.

Примеры решения задач

Вот вроде бы и все. Значение закона Фарадея фундаментально, ведь на использовании данного закона построена основа почти всей электрической промышленности. Чтобы понимание пришло быстрее, рассмотрим пример решения задачи на закон Фарадея.

И помните, друзья! Если задача засела, как кость в горле, и нет больше сил ее терпеть - обратитесь к нашим авторам! Теперь вы знаете . Мы быстро предоставим подробное решение и разъясним все вопросы!

В результате многочисленных опытов Фарадей установил основной количественный закон электромагнитной индукции. Он показал, что всякий раз, когда происходит изменение сцепленного с контуром потока магнитной индукции, в контуре возникает индукционный ток. Возникновение индукционного тока указывает на наличие в цепи электродвижущей силы, называемой электродвижущей силой электромагнитной индукции. Фарадей установил, что значение ЭДС электромагнитной индукции E i пропорционально скорости изменения магнитного потока:

E i = -К , (27.1)

где К – коэффициент пропорциональности, зависящий только от выбора единиц измерения.

В системе единиц СИ коэффициент К = 1, т.е.

E i = - . (27.2)

Эта формула и представляет собой закон электромагнитной индукции Фарадея. Знак минус в этой формуле соответствует правилу (закону) Ленца.

Закон Фарадея можно сформулировать еще таким образом: ЭДС электромагнитной индукции E i в контуре численно равна и противоположна по знаку скорости изменения магнитного потока сквозь поверхность, ограниченную этим контуром. Этот закон является универсальным: ЭДС E i не зависит от способа изменения магнитного потока.

Знак минус в (27.2) показывает, что увеличение потока ( > 0) вызывает ЭДС E i < 0, т.е. магнитный поток индукционного тока направлен навстречу потоку, вызвавшему его; уменьшение потока ( < 0) вызывает E i > 0 т. е. направления магнитного потока индукционного тока и потока, вызвавшего его, совпадают. Знак минус в формуле (27.2) является математическим выражением правила Ленца - общего правила для нахождения направления индукционного тока (а значит и знака и ЭДС индукции), выведенного в 1833 г. Правило Ленца: индукционный ток всегда направлен так, чтобы противодействовать причине, его вызывающей. Иначе говоря, индукционный ток создает магнитный поток, препятствующий изменению магнитного потока, вызывающего ЭДС индукции.

ЭДС индукции выражается в вольтах (В). Действительно, учитывая, что единицей магнитного потока является вебер (Вб), получим:



Если замкнутый контур, в котором индуцируется ЭДС индукции, состоит из N витков, то E i будет равна сумме ЭДС, индуцируемых в каждом из витков. И если магнитный поток, охватываемый каждым витком, одинаков и равен Ф, то суммарный поток сквозь поверхность N витков, равен (NФ) – полный магнитный поток (потокосцепление). В этом случае ЭДС индукции равна:

E i = -N× , (27.3)

Формула (27.2) выражает закон электромагнитной индукции в общей форме. Она применима как к неподвижным контурам, так и к движущимся проводникам в магнитном поле. Входящая в нее производная от магнитного потока по времени в общем случае состоит из двух частей, одна из которых обусловлена изменением магнитной индукции во времени, а другая – движением контура относительно магнитного поля (или его деформацией). Рассмотрим некоторые примеры применения этого закона.

Пример 1. Прямолинейный проводник длиной l движется параллельно самому себе в однородном магнитном поле (рисунок 38). Этот проводник может входить в состав замкнутой цепи, остальные части которой неподвижны. Найдем ЭДС, возникающую в проводнике.

Если мгновенное значение скорости проводника есть v , то за время dt он опишет площадь dS = l×v ×dt и за это время пересечет все линии магнитной индукции, проходящие через dS. Поэтому изменение магнитного потока через контур, в состав которого входит движущийся проводник, будет dФ = B n ×l×v ×dt. Здесь B n - составляющая магнитной индукции, перпендикулярная к dS. Подставляя это в формулу (27.2) получаем величину ЭДС:

E i = B n ×l×v . (27.4)

Направление индукционного тока и знак ЭДС определяются правилом Ленца: индукционный ток в контуре всегда имеет такое направление, что создаваемое им магнитное поле препятствует изменению магнитного потока, вызвавшего этот индукционный ток. В некоторых случаях возможно определение направления индукционного тока (полярности ЭДС индукции) согласно другой формулировке правила Ленца: индукционный ток в движущемся проводнике направлен таким образом, что возникающая при этом сила Ампера противоположна вектору скорости (тормозит движение).

Разберем численный пример. Вертикальный проводник (автомобильная антенна) длиной l = 2 м движется с востока на запад в магнитном поле Земли со скоростью v = 72 км/час = 20 м/с. Вычислим напряжение между концами проводника. Так как проводник разомкнут, то тока в нем не будет и напряжение на концах будет равно ЭДС индукции. Учитывая, что горизонтальная составляющая магнитной индукции поля Земли (т.е. составляющая, перпендикулярная к направлению движения) для средних широт равна 2×10 -5 Тл, по формуле (27.4) находим

U = B n ×l×v = 2×10 -5 ×2×20 = 0,8×10 -3 В,

т.е. около 1 мВ. Магнитное поле Земли направлено с юга на север. Поэтому мы находим, что ЭДС направлена сверху вниз. Это значит, что нижний конец провода будет иметь более высокий потенциал (зарядится положительно), а верхний – более низкий (зарядится отрицательно).

Пример 2. В магнитном поле находится замкнутый проволочный контур, пронизываемый магнитным потоком Ф. Предположим, что этот поток уменьшается до нуля, и вычислим полную величину заряда, прошедшего по цепи. Мгновенное значение ЭДС в процессе исчезновения магнитного потока выражается формулой (27.2). Следовательно, согласно закону Ома мгновенное значение силы тока есть

где R – полное сопротивление цепи.

Величина прошедшего заряда равна

q = = - = . (27.6)

Полученное соотношение выражает закон электромагнитной индукции в форме, найденной Фарадеем, который из своих опытов заключил, что величина заряда, прошедшего по цепи, пропорциональна полному числу линий магнитной индукции, пересеченных проводником (т.е. изменению магнитного потока Ф 1 -Ф 2), и обратно пропорциональна сопротивлению цепи R. Соотношение (27.6) позволяет дать определение единицы магнитного потока в системе СИ: вебер – магнитный поток, при убывании которого до нуля в сцепленном с ним контуре сопротивлением 1 Ом проходит заряд 1 Кл.

Согласно закону Фарадея, возникновение ЭДС электромагнитной индукции возможно и в случае неподвижного контура, находящегося в переменном магнитном поле. Однако сила Лоренца на неподвижные заряды не действует, поэтому в данном случае она не может быть причиной возникновения ЭДС индукции. Максвелл для объяснения ЭДС индукции в неподвижных проводниках предположил, что всякое переменное магнитное поле возбуждает в окружающем пространстве вихревое электрическое поле, которое и является причиной возникновения индукционного тока в проводнике. Циркуляция вектора напряженности этого поля по любому неподвижному контуру L проводника представляет собой ЭДС электромагнитной индукции:

E i = = - . (27.7)

Линии напряженности вихревого электрического поля представляют собой замкнутые кривые, поэтому при перемещении заряда в вихревом электрическом поле по замкнутому контуру совершается отличная от нуля работа. В этом заключается отличие вихревого электрического поля от электростатического, линии напряженности которого начинаются и заканчиваются на зарядах.

Закон электромагнитной индукции (з.Фарадея-Максвелла). Правила Ленца

Обобщая результат опытов, Фарадей сформулировал закон электромагнитной индукции. Он показал, что при всяком изменении магнитного потока в замкнутом проводящем контуре возбуждается индукционный ток. Следовательно, в контуре возникает ЭДС индукции.

ЭДС индукции прямо пропорциональна скорости изменения магнитного потока во времени . Математическую запись этого закона оформил Максвелл и поэтому он называется законом Фарадея-Максвелла (законом электромагнитной индукции).

4.2.2. Правило Ленца

В законе электромагнитной индукции не говорится о направлении индукционного тока. Этот вопрос решил Ленц в 1833г. Он установил правило, позволяющее определить направление индукционного тока.

Индукционный ток имеет такое направление, что созданное им магнитное поле препятствует изменению магнитного потока, пронизывающего данный контур, т.е. индукционный ток. Он направлен так, чтобы противодействовать причине, его вызывающей. Например, пусть в замкнутый контур вдвигается постоянный магнит NS (рис.250).


Рис.250 Рис.251

Число силовых линий, пересекающих замкнутый контур увеличивается, следовательно, увеличивается магнитный поток. В контуре возникает индукционный ток I i , который создает магнитное поле, силовые линии которого (пунктирные линии, перпендикулярные плоскости контура) направлены против силовых линий магнита. При выдвижении магнита магнитный поток, пронизывающий контур, уменьшается (рис.251), а индукционный ток I i создает поле, силовые линии которого направлены в сторону линии индукции магнита (на рис.251 пунктирные линии).

С учетом правила Ленца, закон Фарадея-Максвелла запишется в виде

Для решения физической задачи используют формулу (568).

Среднее по времени значение ЭДС индукции определяется формулой

Выясним способы изменения магнитного потока.

Первый способ . В=const и α=const . Изменяется площадь S .

Пример. Пусть в однородном магнитном поле В=const перпендикулярно силовым линиям движется проводник длиной l со скоростью (рис.252) Тогда на концах проводника возникает разность потенциалов , равная ЭДС индукции. Найдем её.



Изменение магнитного потока равно

В формуле (570) α - это угол между нормалью плоскости, омываемой при движении проводника, и вектором индукции .

Закон электромагнитной индукции Фарадея.

Мы достаточно подробно рассмотрели три различных, на первый взгляд, варианта явления электромагнитной индукции, возникновения электрического тока в проводящем контуре под действием магнитного поля: при движении проводника в постоянном магнитном поле; при движении источника магнитного поля; при изменении во времени магнитного поля. Во всех этих случаях закон электромагнитной индукции одинаков:
 ЭДС электромагнитной индукции в контуре равна скорости изменения магнитного потока через контур, взятой с противоположным знаком

независимо от причин, приводящих к изменению этого потока.
 Уточним некоторые детали приведенной формулировки.
Первое . Магнитный поток через контур может изменяться произвольным образом, то есть функция Ф(t) не обязана всегда быть линейной, а может быть любой. Если магнитный поток изменяется по линейному закону, то ЭДС индукции в контуре постоянна, в этом случае величина интервала времени Δt может быть произвольной, значение отношения (1) в этом случае не зависит от величины этого интервала. Если же поток изменяется более сложным образом, то величина ЭДС не является постоянной, а зависит от времени. В этом случае рассматриваемый интервал времени следует считать бесконечно малым, тогда отношение (1) с математической точки зрения превращается в производную от функции магнитного потока по времени. Математически этот переход полностью аналогичен переходу от средней к мгновенной скорости в кинематике.
Второе . Понятие потока векторного поля применимо только к поверхности, поэтому необходимо уточнять о какой поверхности идет речь в формулировке закона. Однако, поток магнитного поля через любую замкнутую поверхность равен нулю. Поэтому для двух различных поверхностей, опирающихся на контур магнитные потоки одинаковы. Представьте себе поток жидкости, вытекающий из отверстия. Какую бы вы не выбрали поверхность, границей которого являются границы отверстия, потоки через них будут одинаковы. Здесь уместна еще одна аналогия: если работа силы по замкнутому контуру равна нулю, то работа этой силы не зависит от формы траектории, а определяется только ее начальной и конечной точками.
Третье . Знак минус в формулировке закона имеет глубокий физический смысл, фактически он обеспечивает выполнение закона сохранения энергии в этих явлениях. Этот знак является выражением правила Ленца. Пожалуй, это единственный случай в физике, когда один знак удостоился собственного имени.
 Как мы показали, во всех случаях физическая сущность явления электромагнитной индукции одинакова и кратко формулируется следующим образом: переменное магнитное поле порождает вихревое электрическое поле . С этой, полевой, точки зрения закон электромагнитной индукции выражается через характеристики электромагнитного поля:циркуляция вектора напряженности электрического поля по любому контуру равна скорости изменения магнитного потока через этот контур

В этой трактовке явления существенно, что вихревое электрическое поле возникает при изменении магнитного поля, независимо от того, имеется ли реальный замкнутый проводник (контур), в котором возникает ток или нет. Это реальный контур может играть роль прибора, для обнаружения индуцированного поля.
 Наконец, еще раз подчеркнем − электрические и магнитные поля относительны, то есть их характеристики зависят выбора системы отсчета, в которой дается их описание. Однако, этот произвол в выборе системы отсчета, в выборе способа описания не приводит к каким-либо противоречиям. Измеряемые физические величины инвариантны, не зависят от выбора системы отсчета. Например, сила, действующая на заряженное тело со стороны электромагнитного поля, не зависит от выбора системы отсчета. Но при ее описании в одних системах она может трактоваться как сила Лоренца, в других к ней может «добавляться» электрическая сила. Аналогично (даже как следствие) ЭДС индукции в контуре (сила индуцированного тока, количество выделившейся теплоты, возможная деформация контура и т.д.) не зависят от выбора системы отсчета.
 Как всегда предоставляемой свободой выбора можно и необходимо пользоваться − всегда есть возможность выбрать тот метод описания, который вам больше нравится − как наиболее простой, наиболее наглядный, наиболее привычный и т.д.

Явление электромагнитной индукции было открыто выдающимся английским физиком М. Фарадеем в 1831 г. Оно заключается в возникновении электрического тока в замкнутом проводящем контуре при изменении во времени магнитного потока , пронизывающего контур.

Магнитным потоком Φ через площадь S контура называют величину

где B – модуль вектора магнитной индукции , α – угол между вектором и нормалью к плоскости контура (рис. 1.20.1).

Определение магнитного потока нетрудно обобщить на случай неоднородного магнитного поля и неплоского контура. Единица магнитного потока в системе СИ называетсявебером (Вб). Магнитный поток, равный 1 Вб, создается магнитным полем с индукцией 1 Тл, пронизывающим по направлению нормали плоский контур площадью 1 м 2:

Фарадей экспериментально установил, что при изменении магнитного потока в проводящем контуре возникает ЭДС индукции инд, равная скорости изменения магнитного потока через поверхность, ограниченную контуром, взятой со знаком минус:

Эта формула носит название закона Фарадея .

Опыт показывает, что индукционный ток, возбуждаемый в замкнутом контуре при изменении магнитного потока, всегда направлен так, что создаваемое им магнитное поле препятствует изменению магнитного потока, вызывающего индукционный ток. Это утверждение, сформулированное в 1833 г., называется правилом Ленца .

Рис. 1.20.2 иллюстрирует правило Ленца на примере неподвижного проводящего контура, который находится в однородном магнитном поле, модуль индукции которого увеличивается во времени.

Правило Ленца отражает тот экспериментальный факт, что инд и всегда имеют противоположные знаки (знак «минус» в формуле Фарадея). Правило Ленца имеет глубокий физический смысл – оно выражает закон сохранения энергии.



Изменение магнитного потока, пронизывающего замкнутый контур, может происходить по двум причинам.

1. Магнитный поток изменяется вследствие перемещения контура или его частей в постоянном во времени магнитном поле. Это случай, когда проводники, а вместе с ними и свободные носители заряда, движутся в магнитном поле. Возникновение ЭДС индукции объясняется действием силы Лоренца на свободные заряды в движущихся проводниках. Сила Лоренца играет в этом случае роль сторонней силы.

Рассмотрим в качестве примера возникновение ЭДС индукции в прямоугольном контуре, помещенном в однородное магнитное поле перпендикулярное плоскости контура. Пусть одна из сторон контура длиной l скользит со скоростью по двум другим сторонам (рис. 1.20.3).

На свободные заряды на этом участке контура действует сила Лоренца. Одна из составляющих этой силы, связанная с переносной скоростью зарядов, направлена вдоль проводника. Эта составляющая указана на рис. 1.20.3. Она играет роль сторонней силы. Ее модуль равен

По определению ЭДС

Для того, чтобы установить знак в формуле, связывающей инд и нужно выбрать согласованные между собой по правилу правого буравчика направление нормали и положительное направление обхода контура как это сделано на рис. 1.20.1 и 1.20.2. Если это сделать, то легко прийти к формуле Фарадея.

Если сопротивление всей цепи равно R , то по ней будет протекать индукционный ток, равный I инд = инд /R . За время Δt на сопротивлении R выделится джоулево тепло

Возникает вопрос: откуда берется эта энергия, ведь сила Лоренца работы не совершает! Этот парадокс возник потому, что мы учли работу только одной составляющей силы Лоренца. При протекании индукционного тока по проводнику, находящемуся в магнитном поле, на свободные заряды действует еще одна составляющая силы Лоренца, связанная с относительной скоростью движения зарядов вдоль проводника. Эта составляющая ответственна за появление силы Ампера . Для случая, изображенного на рис. 1.20.3, модуль силы Ампера равен F A = I B l . Сила Ампера направлена навстречу движению проводника; поэтому она совершает отрицательную механическую работу. За время Δt эта работа A мех равна

Движущийся в магнитном поле проводник, по которому протекает индукционный ток, испытывает магнитное торможение . Полная работа силы Лоренца равна нулю . Джоулево тепло в контуре выделяется либо за счет работы внешней силы, которая поддерживает скорость проводника неизменной, либо за счет уменьшения кинетической энергии проводника.

2. Вторая причина изменения магнитного потока, пронизывающего контур, – изменение во времени магнитного поля при неподвижном контуре. В этом случае возникновение ЭДС индукции уже нельзя объяснить действием силы Лоренца. Электроны в неподвижном проводнике могут приводиться в движение только электрическим полем. Это электрическое поле порождается изменяющимся во времени магнитным полем. Работа этого поля при перемещении единичного положительного заряда по замкнутому контуру равна ЭДС индукции в неподвижном проводнике. Следовательно, электрическое поле, порожденное изменяющимся магнитным полем, не являетсяпотенциальным . Его называют вихревым электрическим полем . Представление о вихревом электрическом поле было введено в физику великим английским физикомДж. Максвеллом в 1861 г.

Явление электромагнитной индукции в неподвижных проводниках, возникающее при изменении окружающего магнитного поля, также описывается формулой Фарадея. Таким образом, явления индукции в движущихся и неподвижных проводниках протекают одинаково , но физическая причина возникновения индукционного тока оказывается в этих двух случаях различной: в случае движущихся проводников ЭДС индукции обусловлена силой Лоренца; в случае неподвижных проводников ЭДС индукции является следствием действия на свободные заряды вихревого электрического поля, возникающего при изменении магнитного поля.

Если в магнитном поле находится замкнутый проводящий контур, не содержащий источников тока, то при изменении магнитного поля в контуре возникает электрический ток. Это явление называется электромагнитной индукцией. Появление тока свидетельствует о возникновении в контуре электрического поля, которое может обеспечить замкнутое движение электрических зарядов или, другими словами, о возникновении ЭДС. Электрическое поле, которое возникает при изменении поля магнитного и работа которого при перемещении зарядов по замкнутому контуру не равна нулю, имеет замкнутые силовые линии и называется вихревым.

Для количественного описания электромагнитной индукции вводится понятие магнитного потока (или потока вектора магнитной индукции) через замкнутый контур. Для плоского контура, расположенного в однородном магнитном поле (а только такие ситуации и могут встретиться школьникам на едином государственном экзамене), магнитный поток определяется как

где - индукция поля, - площадь контура, - угол между вектором индукции и нормалью (перпендикуляром) к плоскости контура (см. рисунок; перпендикуляр к плоскости контура показан пунктиром). Единицей магнитного потока в международной системе единиц измерений СИ является Вебер (Вб), который определяется как магнитный поток через контур площади 1 м 2 однородного магнитного поля с индукцией 1 Тл, перпендикулярной плоскости контура.

Величина ЭДС индукции , возникающая в контуре при изменении магнитного потока через этот контур, равна скорости изменения магнитного потока

Здесь - изменение магнитного потока через контур за малый интервал времени . Важным свойством закона электромагнитной индукции (23.2) является его универсальность по отношению к причинам изменения магнитного потока: магнитный поток через контур может меняться из-за изменения индукции магнитного поля, изменения площади контура или изменения угла между вектором индукции и нормалью, что происходит при вращении контура в поле. Во всех этих случаях по закону (23.2) в контуре будет возникать ЭДС индукции и индукционный ток.

Знак минус в формуле (23.2) «отвечает» за направление тока, возникающего в результате электромагнитной индукции (правило Ленца). Однако понять на языке закона (23.2), к какому направлению индукционного тока приведет этот знак при том или ином изменении магнитного потока через контур, не так-то просто. Но достаточно легко запомнить результат: индукционный ток будет направлен таким образом, что созданное им магнитное поле будет «стремиться» компенсировать то изменение внешнего магнитного поля, которое этот ток и породило. Например, при увеличении потока внешнего магнитного поля через контур в нем возникнет индукционный ток, магнитное поле которого будет направлено противоположно внешнему магнитному полю так, чтобы уменьшить внешнее поле и сохранить, таким образом, первоначальную величину магнитного поля. При уменьшении потока поля через контур поле индукционного тока будет направлено так же, как и внешнее магнитное поле.

Если в контуре с током ток в силу каких-то причин изменяется, то изменяется и магнитный поток через контур того магнитного поля, которое создано самим этим током. Тогда по закону (23.2) в контуре должна возникать ЭДС индукции. Явление возникновения ЭДС индукции в некоторой электрической цепи в результате изменения тока в самой этой цепи называется самоиндукцией. Для нахождения ЭДС самоиндукции в некоторой электрической цепи необходимо вычислить поток магнитного поля, создаваемого этой цепью через нее саму. Такое вычисление представляет собой сложную проблему из-за неоднородности магнитного поля. Однако одно свойство этого потока является очевидным. Поскольку магнитное поле, создаваемого током в цепи, пропорционально величине тока, то и магнитный поток собственного поля через цепь пропорционален току в этой цепи

где - сила тока в цепи, - коэффициент пропорциональности, который характеризует «геометрию» цепи, но не зависит от тока в ней и называется индуктивностью этой цепи. Единицей индуктивности в международной системе единиц СИ является Генри (Гн). 1 Гн определяется как индуктивность такого контура, поток индукции собственного магнитного поля через который равен 1 Вб при силе тока в нем 1 А. С учетом определения индуктивности (23.3) из закона электромагнитной индукции (23.2) получаем для ЭДС самоиндукции

Благодаря явлению самоиндукции ток в любой электрической цепи обладает определенной «инерционностью» и, следовательно, энергией. Действительно, для создания тока в контуре необходимо совершить работу по преодолению ЭДС самоиндукции. Энергия контура с током и равна этой работе. Необходимо запомнить формулу для энергии контура с током

где - индуктивность контура, - сила тока в нем.

Явление электромагнитной индукции широко применяется в технике. На нем основано создание электрического тока в электрических генераторах и электростанциях. Благодаря закону электромагнитной индукции происходит преобразование механических колебаний в электрические в микрофонах. На основе закона электромагнитной индукции работает, в частности, электрическая цепь, которая называется колебательным контуром (см. следующую главу), и которая является основой любой радиопередающей или радиопринимающей техники.

Рассмотрим теперь задачи.

Из перечисленных в задаче 23.1.1 явлений только одно есть следствие закона электромагнитной индукции - появление тока в кольце при проведении сквозь него постоянного магнита (ответ 3 ). Все остальное - результат магнитного взаимодействия токов.

Как указывалось во введении к настоящей главе, явление электромагнитной индукции лежит в основе работы генератора переменного тока (задача 23.1.2 ), т.е. прибора, создающего переменный ток, заданной частоты (ответ 2 ).

Индукция магнитного поля, создаваемого постоянным магнитом, уменьшается с увеличением расстояния до него. Поэтому при приближении магнита к кольцу (задача 23.1.3 ) поток индукции магнитного поля магнита через кольцо изменяется, и в кольце возникает индукционный ток. Очевидно, это будет происходить при приближении магнита к кольцу и северным, и южным полюсом. А вот направление индукционного тока в этих случаях будет различным. Это связано с тем, что при приближении магнита к кольцу разными полюсами, поле в плоскости кольца в одном случае будет направлено противоположно полю в другом. Поэтому для компенсации этих изменений внешнего поля магнитное поле индукционного тока должно быть в этих случаях направлено по-разному. Поэтому и направления индукционных токов в кольце будут противоположными (ответ 4 ).

Для возникновения ЭДС индукции в кольце необходимо, чтобы менялся магнитный поток через кольцо. А поскольку магнитная индукция поля магнита зависит от расстояния до него, то в рассматриваемом в задаче 23.1.4 случае поток через кольцо будет меняться, в кольце возникнет индукционный ток (ответ 1 ).

При вращении рамки 1 (задача 23.1.5 ) угол между линиями магнитной индукции (а, значит, и вектором индукции) и плоскостью рамки в любой момент времени равен нулю. Следовательно, магнитный поток через рамку 1 не изменяется (см. формулу (23.1)), и индукционный ток в ней не возникает. В рамке 2 индукционный ток возникнет: в положении показанном на рисунке, магнитный поток через нее равен нулю, когда рамка повернется на четверть оборота - будет равен , где - индукция, - площадь рамки. Еще через четверть оборота поток снова будет равен нулю и т.д. Поэтому поток магнитной индукции через рамку 2 изменяется в процессе ее вращения, следовательно, в ней возникает индукционный ток (ответ 2 ).

В задаче 23.1.6 индукционный ток возникает только в случае 2 (ответ 2 ). Действительно, в случае 1 рамка при движении остается на одном и том же расстоянии от проводника, и, следовательно, магнитное поле, созданное этим проводником в плоскости рамки, не изменяется. При удалении рамки от проводника магнитная индукция поля проводника в области рамки изменяется, меняется магнитный поток через рамку, и возникает индукционный ток

В законе электромагнитной индукции утверждается, что индукционный ток в кольце будет течь в такие моменты времени, когда изменяется магнитный поток через это кольцо. Поэтому пока магнит покоится около кольца (задача 23.1.7 ) индукционный ток в кольце течь не будет. Поэтому правильный ответ в этой задаче - 2 .

Согласно закону электромагнитной индукции (23.2) ЭДС индукции в рамке определяется скоростью изменения магнитного потока через нее. А поскольку по условию задачи 23.1.8 индукция магнитного поля в области рамки изменяется равномерно, скорость ее изменения постоянна, величина ЭДС индукции не изменяется в процессе проведения опыта (ответ 3 ).

В задаче 23.1.9 ЭДС индукции, возникающая в рамке во втором случае, вчетверо больше ЭДС индукции, возникающей в первом (ответ 4 ). Это связано с четырехкратным увеличением площади рамки и, соответственно, магнитного потока через нее во втором случае.

В задаче 23.1.10 во втором случае в два раза увеличивается скорость изменения магнитного потока (индукция поля меняется на ту же величину, но за вдвое меньшее время). Поэтому ЭДС электромагнитной индукции, возникающая в рамке во втором случае, в два раза больше, чем в первом (ответ 1 ).

При увеличении тока в замкнутом проводнике в два раза (задача 23.2.1 ), величина индукции магнитного поля возрастет в каждой точке пространства в два раза, не изменившись по направлению. Поэтому ровно в два раза изменится магнитный поток через любую малую площадку и, соответственно, и весь проводник (ответ 1 ). А вот отношение магнитного потока через проводник к току в этом проводнике, которое и представляет собой индуктивность проводника , при этом не изменится (задача 23.2.2 - ответ 3 ).

Используя формулу (23.3) находим в задаче 32.2.3 Гн (ответ 4 ).

Связь между единицами измерений магнитного потока, магнитной индукции и индуктивности (задача 23.2.4 ) следует из определения индуктивности (23.3): единица магнитного потока (Вб) равна произведению единицы тока (А) на единицу индуктивности (Гн) - ответ 3 .

Согласно формуле (23.5) при двукратном увеличении индуктивности катушки и двукратном уменьшении тока в ней (задача 23.2.5 ) энергия магнитного поля катушки уменьшится в 2 раза (ответ 2 ).

Когда рамка вращается в однородном магнитном поле, магнитный поток через рамку меняется из-за изменения угла между перпендикуляром к плоскости рамки и вектором индукции магнитного поля. А поскольку и в первом и втором случае в задаче 23.2.6 этот угол меняется по одному и тому же закону (по условию частота вращения рамок одинакова), то ЭДС индукции меняются по одному и тому же закону, и, следовательно, отношение амплитудных значений ЭДС индукции в рамках равно единице (ответ 2 ).

Магнитное поле, создаваемое проводником с током в области рамки (задача 23.2.7 ), направлено «от нас» (см. решение задач главы 22). Величина индукции поля провода в области рамки при ее удалении от провода будет уменьшаться. Поэтому индукционный ток в рамке должен создать магнитное поле, направленное внутри рамки «от нас». Используя теперь правило буравчика для нахождения направления магнитной индукции, заключаем, что индукционный ток в рамке будет направлен по часовой стрелке (ответ 1 ).

При увеличении тока в проводе будет возрастать созданное им магнитное поле и в рамке возникнет индукционный ток (задача 23.2.8 ). В результате возникнет взаимодействие индукционного тока в рамке и тока в проводнике. Чтобы найти направление этого взаимодействия (притяжение или отталкивание) можно найти направление индукционного тока, а затем по формуле Ампера силу взаимодействия рамки с проводом. Но можно поступить и по-другому, используя правило Ленца. Все индукционные явления должны иметь такое направление, чтобы компенсировать вызывающую их причину. А поскольку причина - увеличение тока в рамке, сила взаимодействия индукционного тока и провода должна стремиться уменьшить магнитный поток поля провода через рамку. А поскольку магнитная индукция поля провода убывает с увеличением расстояния до него, то эта сила будет отталкивать рамку от провода (ответ 2 ). Если бы ток в проводе убывал, то рамка притягивалась бы к проводу.

Задача 23.2.9 также связана с направлением индукционных явлений и правилом Ленца. При приближении магнита к проводящему кольцу в нем возникнет индукционный ток, причем направление его будет таким, чтобы компенсировать вызывающую его причину. А поскольку эта причина - приближение магнита, кольцо будет отталкиваться от него (ответ 2 ). Если магнит отодвигать от кольца, то по тем же причинам возникло бы притяжение кольца к магниту.

Задача 23.2.10 - единственная вычислительная задача в этой главе. Для нахождения ЭДС индукции нужно найти изменение магнитного потока через контур . Это можно сделать так. Пусть в некоторый момент времени перемычка находилась в положении, показанном на рисунке, и пусть прошел малый интервал времени . За этот интервал времени перемычка переместится на величину . Это приведет к увеличению площади контура на величину . Поэтому изменение магнитного потока через контур будет равно , а величина ЭДС индукции (ответ 4 ).