Биографии Характеристики Анализ

Суммарная прямая рассеянная поглощенная солнечная радиация. Измерение солнечной радиации

Количество поступающей к земной поверхности прямой солнечной радиации (S) в условиях безоблачного неба зависит от высоты солнца и прозрачности . В таблице для трех широтных зон приведено распределении месячных сумм прямой радиации при безоблачном небе (возможных сумм) в виде осредненных значений для центральных месяцев сезонов и года.

Повышенный приход прямой радиации в Азиатской части обусловлен более высокой прозрачностью атмосферы в этом регионе. Высокие значения прямой радиации летом в северных районах России объясняются сочетанием высокой прозрачности атмосферы и большой продолжительностью дня

Снижает приход прямой радиации и может существенно изменить ее суточный и годовой ход. Однако при средних условиях облачности астрономический фактор является преобладающим и, следовательно, максимум прямой радиации наблюдается при наибольшей высоте солнца.

В большей части континентальных районов России в весенне-летние месяцы прямая радиация в дополуденные часы больше, чем в послеполуденные. Это связано с развитием конвективной облачности в послеполуденные часы и с уменьшением прозрачности атмосферы в это время суток по сравнению с утренними часами. Зимой соотношение до- и послеполуденных значений радиации обратное - дополуденные значения прямой радиации меньше в связи с утренним максимумом облачности и уменьшением ее во вторую половину дня. Разница между до- и послеполуденными значениями прямой радиации может достигать 25–35%.

В годовом ходе максимум прямой радиации приходится на июнь-июль за исключением районов Дальнего Востока, где происходит его смещение на май, а на юге Приморья в сентябре отмечается вторичный максимум.
Максимальная месячная сумма прямой радиации составляет на территории России 45–65% от возможной при безоблачном небе и даже на юге Европейской части она достигает лишь 70%. Минимальные значения отмечаются в декабре и январе.

Вклад прямой радиации в суммарный приход при действительных условиях облачности достигает максимума в летние месяцы и составляет в среднем 50–60%. Исключением является Приморский край, где наибольший вклад прямой радиации приходится на осенние и зимние месяцы.

Распределение прямой радиации при средних (действительных) условиях облачности по территории России в значительной степени зависит от . Это приводит к заметному нарушению зонального распределения радиации в отдельные месяцы. Особенно это проявляется в весенний период. Так, в апреле отмечается два максимума - один в южных районах

Энергия, излучаемая Солнцем, носит название солнечной радиации. Поступая на Землю, солнечная радиация в большей своей части превращается в тепло.

Солнечная радиация является практически единственным источником энергии для Земли и атмосферы. По сравнению с солнечной энергией значение других источников энергии для Земли ничтожно мало. Например, температура Земли в среднем с глубиной возрастает (примерно 1 о С на каждые 35 м). Благодаря этому поверхность Земли получает некоторое количество тепла из внутренних частей. Подсчитано, что в среднем 1см 2 земной поверхности получает из внутренних частей Земли около 220 Дж в год. Это количество в 5000 раз меньше тепла, получаемого от Солнца. Некоторое количество тепла Земля получает от звезд и планет, но и она во много раз (приблизительно в 30 млн.) меньше тепла, поступающего от Солнца.

Количество энергии, посылаемой Солнцем на Землю, огромно. Так, мощность потока солнечной радиации, поступающей на площадь в 10 км 2, составляет в летний безоблачный (с учетом ослабления атмосферы) 7-9 кВт. Это больше, чем мощность Красноярской ГЭС. Количество лучистой энергии, поступающей от Солнца за 1 секунду на площадь 15Ч15 км (это меньше площади Ленинграда) в околополуденные часы летом, превышает мощность всех электростанций распавшегося СССР (166 млн кВт) .

Рисунок 1 - Солнце - источник радиации

Виды солнечной радиации

В атмосфере солнечная радиация на пути к поверхности земли частично поглощается, а частично рассеивается и отражается от облаков и земной поверхности. В атмосфере наблюдается три вида солнечной радиации: прямая, рассеянная и суммарная.

Прямая солнечная радиация - радиация, приходящая к земной поверхности непосредственно от диска Солнца. Солнечная радиация распространяется от Солнца по всем направлениям. Но расстояние от Земли до Солнца так велико, что прямая радиация падает на любую поверхность на Земле в виде пучка параллельных лучей, исходящего как бы из бесконечности. Даже весь земной шар в целом так мал в сравнении с расстоянием до Солнца, что всю солнечную радиацию, падающую на него, без заметной погрешности можно считать пучком параллельных лучей.

На верхнюю границу атмосферы приходит только прямая радиация. Около 30 % падающей на Землю радиации отражается в космическое пространство. Кислород, азот, озон, диоксид углерода, водяные пары (облака) и аэрозольные частицы поглощают 23 % прямой солнечной радиации в атмосфере. Озон поглощает ультрафиолетовую и видимую радиацию. Несмотря на то, что его содержание в воздухе очень мало, он поглощает всю ультрафиолетовую часть радиации (это примерно 3 %). Таким образом, у земной поверхности ее вообще не наблюдается, что очень важно для жизни на Земле.

Прямая солнечная радиация на пути сквозь атмосферу также рассеивается. Частица (капля, кристалл или молекула) воздуха, находящаяся на пути электромагнитной волны, непрерывно «извлекает» энергию из падающей волны и переизлучает ее по всем направлениям, становясь излучателем энергии.

Около 25 % энергии общего потока солнечной радиации проходя через атмосферу, рассеивается молекулами атмосферных газов и аэрозолем и превращается в атмосфере в рассеянную солнечную радиацию. Таким образом рассеянная солнечная радиация - солнечная радиация, претерпевшая рассеяние в атмосфере. Рассеянная радиация приходит к земной поверхности не от солнечного диска, а от всего небесного свода. Рассеянная радиация отлична от прямой по спектральному составу, так как лучи различных длин волн рассеиваются в разной степени.

Так как первоисточником рассеянной радиации является прямая солнечная радиация, поток рассеянной зависит от тех же факторов, которые влияют на поток прямой радиации. В частности, поток рассеянной радиации возрастает по мере увеличение высоты Солнца и наоборот. Он возрастает также с увеличением в атмосфере количества рассеивающих частиц, т.е. со снижением прозрачности атмосферы, и уменьшается с высотой над уровнем моря в связи с уменьшение количества рассеивающих частиц в вышележащих слоях атмосферы. Очень большое влияние на рассеянную радиацию оказывают облачность и снежный покров, которые за счет рассеяния и отражения падающей на них прямой и рассеянной радиации и повторного рассеяния их в атмосфере могут в несколько раз увеличить рассеянную солнечную радиацию.

Рассеянная радиация существенно дополняет прямую солнечную радиацию и значительно увеличивает поступление солнечной энергии на земную поверхность. Особенно велика ее роль в зимнее время в высоких широтах и в других районах с повышенной облачностью, где доля рассеянной радиации может превышать долю прямой. Например, в годовой сумме солнечной энергии на долю рассеянной радиации приходится в Архангельске - 56 %, в Санкт-Петербурге - 51 %.

Суммарная солнечная радиация - это сумма потоков прямой и рассеянной радиаций, поступающих на горизонтальную поверхность. До восхода и после захода Солнца, а также днем при сплошной облачности суммарная радиация полностью, а при малых высотах Солнца преимущественно состоит из рассеянной радиации. При безоблачном или малооблачном небе с увеличением высоты Солнца доля прямой радиации в составе суммарной быстро возрастает и в дневные часы поток ее многократно превышает поток рассеянной радиации. Облачность в среднем ослабляет суммарную радиацию (на 20-30 %), однако при частичной облачности, не закрывающей солнечного диска, поток ее может быть больше, чем при безоблачном небе. Существенно увеличивает поток суммарной радиации снежный покров за счет увеличения потока рассеянной радиации.

Суммарная радиация, падая на земную поверхность, большей частью поглощается верхним слоем почвы или более толстым слоем воды (поглощенная радиация) и переходит в тепло, а частично отражается (отраженная радиация) .

Солнце является источником корпускуляр­ного и электромагнитного излучений. Корпус­кулярное излучение не проникает в атмосфе­ру ниже 90 км, тогда как электромагнитное достигает земной поверхности. В метеороло­гии его называют солнечной радиацией или просто радиацией. Она составляет одну двух­миллиардную долю от всей энергии Солнца и проходит путь от Солнца до Земли за 8,3 мин. Солнечная радиация - источник энергии поч­ти всех процессов, совершающихся в атмо­сфере и на земной поверхности. Она в основ­ном коротковолновая и состоит из невидимой ультрафиолетовой радиации - 9 %, видимой световой - 47 % и невидимой инфракрасной - 44 %. Поскольку почти половина солнечной радиации представляет собой видимый свет, Солнце служит источником не только тепла, но и света - тоже необходимого условия для жизни на Земле.

Радиацию, приходящую к Земле непосред­ственно от солнечного диска, называют пря­мой солнечной радиацией. Ввиду того что расстояние от Солнца до Земли велико, а Зем­ля мала, радиация падает на любую ее по­верхность в виде пучка параллельных лучей.

Солнечная радиация обладает определен­ной плотностью потока на единицу площади в единицу времени. За единицу измерения ин­тенсивности радиации принято количество энергии (в джоулях или калориях 1), которые получает 1 см 2 поверхности в минуту при пер­пендикулярном падении солнечных лучей. На верхней границе атмосферы при среднем рас­стоянии от Земли до Солнца она составляет 8,3 Дж/см 2 в мин, или 1,98 кал/см 2 в мин. Эта величина принята в качестве международ­ного стандарта и называется солнечной по­стоянной (S 0). Ее периодические колебания в течение года незначительны (+ 3,3 %) и обус­ловлены изменением расстояния от Земли до

1 1 кал=4,19 Дж, 1 ккал=41,9 МДж.

2 Полуденная высота Солнца зависит от географиче­ской широты и склонения Солнца.


Солнца. Непериодические колебания вызваны различной излучательной способностью Солн­ца. Климат на верхней границе атмосферы на­зывают радиационным или солярным. Он рас­считывается теоретически, исходя из угла на­клона солнечных лучей на горизонтальную поверхность.

В общих чертах солярный климат находит отражение на земной поверхности. В то же время реальная радиация и температура на Земле существенно отличаются от солярного климата за счет различных земных факторов. Главный из них - ослабление радиации в ат­мосфере за счет отражения, поглощения и рассеяния, а также в результате отражения радиации от земной поверхности.

На верхнюю границу атмосферы вся ради­ация приходит в виде прямой радиации. По данным С. П. Хромова и М. А. Петросянца, 21 % ее отражается от облаков и воздуха на­зад в космическое пространство. Остальная радиация поступает в атмосферу, где прямая радиация частично поглощается и рассеивает­ся. Оставшаяся прямая радиация (24 %) до­стигает земной поверхности, однако при этом ослабляется. Закономерности ослабления ее в атмосфере выражаются законом Бугера: S=S 0 ·p m (Дж, или кал/см 2 , в мин), где S - количество прямой солнечной радиации, дос­тигшей земной поверхности, на единицу пло­щади (см 2), расположенной перпендикулярно солнечным лучам, S 0 - солнечная постоян­ная, р - коэффициент прозрачности в долях от единицы, показывающий, какая часть ра­диации достигала земной поверхности, т - длина пути луча в атмосфере.


Реально же солнечные лучи падают на зем­ную поверхность и на любой другой уровень атмосферы под углом менее 90°. Поток пря­мой солнечной радиации на горизонтальную поверхность называют инсоляцией (5,). Она вычисляется по формуле S 1 =S·sin h ☼ (Дж, или кал/см 2 , в мин), где h ☼ - высота Солнца 2 . На единицу горизонтальной поверхности, ес­тественно, приходится меньшее количество

энергии, чем на единицу площади, располо­женной перпендикулярно солнечным лучам (рис. 22).

В атмосфере поглощается около 23 % и рассеивается около 32 % прямой солнечной радиации, входящей в атмосферу, причем 26 % рассеянной радиации приходит затем к земной поверхности, а 6 % уходит в Космос.

Солнечная радиация подвергается в атмо­сфере не только количественным, но и каче­ственным изменениям, поскольку газы возду­ха и аэрозоли поглощают и рассеивают сол­нечные лучи избирательно. Основными поглотителями радиации являются водяной пар, облака и аэрозоли, а также озон, кото­рый сильно поглощает ультрафиолетовую ра­диацию. В рассеянии радиации участвуют мо­лекулы разных газов и аэрозоли. Рассеяние - отклонение световых лучей во все стороны от первоначального направления, так что рассе­янная радиация приходит к земной поверх­ности не от солнечного диска, а от всего не­бесного свода. Рассеяние зависит от длины волн: по закону Рэлея, чем короче длина вол­ны, тем интенсивнее рассеяние. Поэтому боль­ше всех остальных рассеиваются ультрафио­летовые лучи, а из видимых - фиолетовые и синие. Отсюда голубой цвет воздуха и соот­ветственно неба в ясную погоду. Прямая же радиация оказывается в основном желтой, по­этому солнечный диск видится желтоватым. При восходе и заходе Солнца, когда путь луча в атмосфере длиннее и рассеяние боль­ше, поверхности достигают только красные лу­чи, отчего Солнце кажется красным. Рассеян­ная радиация обусловливает свет днем при пасмурной погоде и в тени при ясной погоде, с нею связано явление сумерек и белых но­чей. На Луне, где нет атмосферы и соответ­ственно рассеянной радиации, предметы, по­падающие в тень, становятся полностью не­видимыми.

С высотой, по мере уменьшения плотнос­ти воздуха и соответственно количества рас­сеивающих частиц, цвет неба становится тем­нее, переходит сначала в густо-синий, потом в сине-фиолетовый, что хорошо видно в го­рах и отражено на гималайских пейзажах Н. Рериха. В стратосфере цвет воздуха чер­но-фиолетовый. По свидетельству космонав­тов, на высоте 300 км цвет неба черный.

При наличии в атмосфере крупных аэро­золей, капель и кристаллов наблюдается уже не рассеяние, но диффузное отражение, а по­скольку диффузно отраженная радиация пред­ставляет собой белый свет, то цвет неба ста­новится белесым.

Прямая и рассеянная солнечная радиация имеют определенный суточный и годовой ход, который зависит прежде всего от высоты Солн-


Рис. 22. Приток солнечной радиации на поверхность АВ, перпендикулярную к лучам, и на горизонтальную поверх­ность АС (по С. П. Хромову)

ца над горизонтом, от прозрачности воздуха и облачности.

Поток прямой радиации в течение дня от восхода Солнца до полудня нарастает и потом убывает до захода Солнца в связи с измене­нием высоты Солнца и пути луча в атмосфе­ре. Однако, поскольку около полудня умень­шается прозрачность атмосферы за счет уве­личения водяного пара в воздухе и пыли и возрастает конвективная облачность, макси­мальные значения радиации смещены на пред-полуденные часы. Такая закономерность при­суща экваториально-тропическим широтам весь год, умеренным широтам летом. Зимой в умеренных широтах максимум радиации при­ходится на полдень.

Годовой ход среднемесячных значений пря­мой радиации зависит от широты. На эквато­ре годовой ход прямой радиации имеет вид двойной волны: максимумы в периоды весен­него и осеннего равноденствия, минимумы в периоды летнего и зимнего солнцестояния. В умеренных широтах максимальные значения прямой радиации приходятся на весенние (ап­рель в северном полушарии), а не на летние месяцы, так как воздух в это время прозрач­нее из-за меньшего содержания водяного па­ра и пыли, а также незначительной облачно­сти. Минимум радиации наблюдается в декаб­ре, когда наименьшая высота Солнца, короткий световой день, и это самый пасмурный месяц в году.

Суточный и годовой ход рассеянной ра­диации определяется изменением высоты Солнца над горизонтом и продолжительностью дня, а также прозрачностью атмосферы. Мак­симум рассеянной радиации в течение суток наблюдается днем при возрастании радиации в целом, хотя доля ее в утренние и вечерние часы больше, чем прямой, а днем, наоборот, прямая радиация преобладает над рассеянной. Годовой ход рассеянной радиации на экваторе в общем повторяет ход прямой. В остальных широтах она больше летом, чем зимой, из-за увеличения летом общего притока солнечной радиации.

Соотношение между прямой и рассеянной радиацией меняется в зависимости от высо­ты Солнца, прозрачности атмосферы и облач­ности.

Пропорции между прямой и рассеянной радиацией на разных широтах неодинаковы. В полярных и субполярных областях рассеян­ная радиация составляет 70 % от всего пото­ка радиации. На ее величину, кроме низкого положения Солнца и облачности, влияет так­же многократное отражение солнечной ради­ации от снежной поверхности. Начиная с уме­ренных широт и почти до экватора, прямая радиация преобладает над рассеянной. Осо­бенно велико ее абсолютное и относительное значение во внутриконтинентальных тропиче­ских пустынях (Сахара, Аравия), отличающих­ся минимальной облачностью и прозрачным сухим воздухом. Вдоль экватора рассеянная радиация вновь доминирует над прямой в свя­зи с большой влажностью воздуха и наличи­ем кучевых облаков, хорошо рассеивающих солнечную радиацию.

С возрастанием высоты места над уров­нем моря значительно увеличиваются абсолют-Рис. 23. Годовое количество суммарной солнечной ради­ации [МДж/(м 2 xгод)]


ная и относительная величины прямой радиа­ции и уменьшается рассеянная, так как становится тоньше слой атмосферы. На вы­соте 50-60 км поток прямой радиации при­ближается к солнечной постоянной.

Вся солнечная радиация - прямая и рассеянная, приходящая на земную поверх­ность, называется суммарной радиацией: (Q=S ·sinh ¤ +D где Q - суммарная радиация, S - прямая, D- рассеянная, h ¤ - высота Солнца над горизонтом. Суммарная радиация составляет около 50 % от солнечной радиации, приходящей на верхнюю границу атмосферы.

При безоблачном небе суммарная радиа­ция значительна и имеет суточный ход с мак­симумом около полудня и годовой ход с мак­симумом летом. Облачность уменьшает ради­ацию, поэтому летом приход ее в дополуденные часы в среднем больше, чем в послеполуден­ные. По той же причине в первую половину года она больше, чем во вторую.

В распределении суммарной радиации на земной поверхности наблюдается ряд законо­мерностей.

Главная закономерность заключается в том, что суммарная радиация распределяется зонально, убывая от экваториально-тропи-



ческих широт к полюсам в соответствии с уменьшением угла падения солнечных лучей (рис. 23). Отклонения от зонального распре­деления объясняются различной облачностью и прозрачностью атмосферы. Наибольшие го­довые величины суммарной радиации 7200 - 7500 МДж/м 2 в год (около 200 ккал/см 2 в год) приходятся на тропические широты, где малая облачность и небольшая влажность воз­духа. Во внутриконтинентальных тропических пустынях (Сахара, Аравия), где обилие пря­мой радиации и почти нет облаков, суммар­ная солнечная радиация достигает даже более 8000 МДж/м 2 в год (до 220 ккал/см 2 в год). Вблизи экватора величины суммарной радиа­ции снижаются до 5600 - 6500 МДж/м в год (140-160 ккал/см 2 в год) из-за значитель­ной облачности, большой влажности и мень­шей прозрачности воздуха. В умеренных ши­ротах суммарная радиация составляет 5000 - 3500 МДж/м 2 в год (≈ 120 - 80 ккал/см 2 в год), в приполярных - 2500 МДж/м в год (≈60 ккал/см 2 в год). Причем в Антарктиде она в 1,5-2 раза больше, чем в Арктике, прежде всего из-за большей абсолютной вы­соты материка (более 3 км) и потому малой плотности воздуха, его сухости и прозрачнос­ти, а также малооблачной погоды. Зональ­ность суммарной радиации лучше выражена над океанами, чем над континентами.

Вторая важная закономерность суммар­ной радиации заключается в том, что мате­рики получают ее больше, чем океаны, бла­годаря меньшей (на 15-30 %) облачности над


континентами. Исключение составляют лишь приэкваториальные широты, поскольку днем над океаном конвективная облачность мень­ше, чем над сушей.

Третья особенность состоит в том, что в северном, более материковом полушарии суммарная радиация в целом больше, не­жели в южном океаническом.

В июне наибольшие месячные суммы сол­нечной радиации получает северное полуша­рие, особенно внутриконтинентальные тропи­ческие и субтропические области. В умерен­ных и полярных широтах количество радиации по широтам изменяется незначительно, так как уменьшение угла падения лучей компенсиру­ется продолжительностью солнечного сияния, вплоть до полярного дня за Северным поляр­ным кругом. В южном полушарии с увеличе­нием широты радиация быстро убывает и за Южным полярным кругом равна нулю.

В декабре южное полушарие получает боль­ше радиации, чем северное. В это время наи­большие месячные суммы солнечного тепла приходятся на пустыни Австралии и Калаха­ри; далее в умеренных широтах радиация по­степенно уменьшается, но в Антарктиде вновь растет и достигает таких же значений, как в тропиках. В северном полушарии с увеличе­нием широты она быстро убывает и за Се­верным полярным кругом отсутствует.

В целом наибольшая годовая амплитуда суммарной радиации наблюдается за полярны­ми кругами, особенно в Антарктиде, наимень­шая - в экваториальной зоне.

Солнечная радиация (солнечное излучение) – это вся совокупность солнечной материи и энергии, поступающей на Землю. Солнечная радиация состоит из следующих двух основных частей: во-первых, тепловой и световой радиации, представляющей собой совокупность электромагнитных волн; во-вторых, корпускулярной радиации.

На Солнце тепловая энергия ядерных реакций переходит в лучистую энергию. При падении солнечных лучей на земную поверхность лучистая энергия снова превращается в тепловую энергию. Солнечная радиация, таким образом, несет свет и тепло.

Интенсивность солнечной радиации. Солнечная постоянная. Солнечная радиация – это важнейший источник тепла для географической оболочки. Вторым источником тепла для географической оболочки является тепло, идущее от внутренних сфер и слоев нашей планеты.

В связи с тем, что в географической оболочке один вид энергии (лучистая энергия ) эквивалентно переходит в другой вид (тепловая энергия ), то лучистую энергию солнечной радиации можно выражать в единицах тепловой энергии – джоулях (Дж).

Интенсивность солнечной радиации необходимо измерять в первую очередь за пределами атмосферы, т. к. при прохождении через воздушную сферу она преобразуется и ослабевает. Интенсивность солнечной радиации выражается солнечной постоянной.

Солнечная постоянная – это поток солнечной энергии за 1 минуту на площадь сечением в 1 см 2 , перпендикулярную солнечным лучам и расположенную вне атмосферы. Солнечная постоянная может быть также определена как количество тепла, которое получает в 1 минуту на верхней границе атмосферы 1 см 2 черной поверхности, перпендикулярной солнечным лучам.

Солнечная постоянная равна 1, 98 кал / (см 2 х мин), или 1, 352 кВт/ м 2 х мин .

Поскольку верхняя атмосфера поглощает значительную часть радиации, то важно знать величину ее на верхней границе географической оболочки, т. е. в нижней стратосфере. Солнечная радиация на верхней границе географической оболочки выражается условной солнечной постоянной . Величина условной солнечной постоянной равна 1, 90 – 1, 92 кал / (см 2 х мин), или 1,32 – 1, 34 кВт / (м 2 х мин).

Солнечная постоянная, вопреки своему названию, не остается постоянной. Она изменяется в связи с изменением расстояния от Солнца до Земли в процессе движения Земли по орбите. Как бы ни были малы эти колебания, они всегда сказываются на погоде и климате.

В среднем каждый квадратный километр тропосферы получает в год 10,8 х 10 15 Дж. (2,6 х 10 15 кал). Такое количество тепла может быть получено при сжигании 400 000 т каменного угля. Вся Земля за год получает такое количество тепла, которое определяется величиной 5, 74 х 10 24 Дж. (1, 37 х 10 24 кал).



Распределение солнечной радиации «на верхней границе атмосферы» или при абсолютно прозрачной атмосфере. Знание распределения солнечной радиации до ее вступления в атмосферу, или так называемого солярного (солнечного) климата , важно для определения роли и доли участия самой воздушной оболочки Земли (атмосферы) в распределении тепла по земной поверхности и в формировании ее теплового режима.

Количество солнечного тепла и света, поступающее на единицу площади, определяется, во-первых, углом падения лучей, зависящим от высоты Солнца над горизонтом, во-вторых, продолжительностью дня.

Распределение радиации у верхней границы географической оболочки, обусловленное только астрономическими факторами, более равномерно, чем ее реальное распределение у земной поверхности.

При условии отсутствия атмосферы годовая сумма радиации в экваториальных широтах составляла бы 13 480 МДж/см 2 (322 ккал/см 2), а на полюсах 5 560 МДж/м 2 (133 ккал/см 2). В полярные широты Солнце посылает тепла немного меньше половины (около 42 %) того количества, которое поступает на экватор.

Казалось бы, солнечное облучение Земли симметрично относительно плоскости экватора. Но это происходит только два раза в год, в дни весеннего и осеннего равноденствия. Наклон оси вращения и годовое движение Земли обусловливают ассиметричное ее облучение Солнцем. В январскую часть года больше тепла получает южное полушарие, в июльскую – северное. Именно в этом заключается главная причина сезонной ритмики в географической оболочке.

Разница между экватором и полюсом летнего полушария невелика: на экватор поступает 6 740 МДж/м 2 (161 ккал/см 2), а на полюс около 5 560 МДж/м 2 (133 ккал/см 2 в полугодие). Зато полярные страны зимнего полушария в это же время вовсе лишены солнечного тепла и света.

В день солнцестояния полюс получает тепла даже больше, чем экватор - 46,0 МДж/м 2 (1,1 ккал/см 2) и 33.9 МДж/м 2 (0,81 ккал/см 2).

В целом солярный климат на полюсах в годовом выводе в 2,4 раза холоднее, чем на экваторе. Однако надо иметь в виду, что зимой полюсы вообще не нагреваются Солнцем.

Реальный климат всех широт во многом обязан земным факторам. Важнейшими из этих факторов являются: во-первых, ослабление радиации в атмосфере, во-вторых, разная интенсивность усвоения солнечной радиации земной поверхностью в различных географических условиях.

Изменение солнечной радиации при прохождении через атмосферу. Прямые солнечные лучи, пронизывающие атмосферу при безоблачном небе, называются прямой солнечной радиацией . Максимальная ее величина при высокой прозрачности атмосферы на перпендикулярной лучам поверхности в тропическом поясе равна около 1,05 – 1, 19 кВт/м 2 (1,5 – 1,7 кал/см 2 х мин. В средних широтах напряжение полуденной радиации обычно составляет около 0,70 – 0,98 кВт /м 2 х мин (1,0 – 1,4 кал/см 2 х мин). В горах эта величина существенно увеличивается.

Часть солнечных лучей от соприкосновения с молекулами газов и аэрозолями рассеивается и переходит в рассеянную радиацию . На земную поверхность рассеянная радиация поступает уже не от солнечного диска, а от всего небосвода и создает повсеместную дневную освещенность. От нее в солнечные дни светло и там, куда не проникают прямые лучи, например под пологом леса. Наряду с прямой радиацией рассеянная радиация также служит источником тепла и света.

Абсолютная величина рассеянной радиации тем больше, чем интенсивнее прямая. Относительное значение рассеянной радиации возрастает с уменьшением роли прямой: в средних широтах летом она составляет 41%, а зимой 73% общего прихода радиации. Удельный вес рассеянной радиации в общей величине суммарной радиации зависит и от высоты Солнца. В высоких широтах на рассеянную радиацию приходится около 30%, а в полярных - примерно 70% от всей радиации.

В целом же на рассеянную радиацию приходится около 25 % всего потока солнечных лучей, приходящих на нашу планету.

На земную поверхность, таким образом, поступает прямая и рассеянная радиация. В совокупности прямая и рассеянная радиация образуют суммарную радиацию , которая определяет тепловой режим тропосферы .

Поглощая и рассеивая радиацию, атмосфера значительно ее ослабляет. Величина ослабления зависит от коэффициента прозрачности, показывающего, какая доля радиации доходит до земной поверхности. Если бы тропосфера состояла только из газов, то коэффициент прозрачности был бы равен 0,9, т. е. она пропускала бы около 90% идущей к Земле радиации. Однако в воздухе всегда присутствуют аэрозоли, снижающие коэффициент прозрачности до 0,7 – 0,8. Прозрачность атмосферы изменяется вместе с изменением погоды.

Так как плотность воздуха падает с высотой, то слой газа, пронизываемого лучами, не следует выражать в км толщины атмосферы. В качестве единицы измерения принята оптическая масса, равная мощности слоя воздуха при вертикальном падении лучей.

Ослабление радиации в тропосфере легко наблюдать в течение суток. Когда Солнце находится около горизонта, то его лучи пронизывают несколько оптических масс. Их интенсивность при этом так ослабевает, что на Солнце можно смотреть незащищенным глазом. С поднятием Солнца уменьшается число оптических масс, которые проходят его лучи, что приводит к увеличению радиации.

Степень ослабления солнечной радиации в атмосфере выражается формулой Ламберта :

I i = I 0 p m , где

I i – радиация, достигшая земной поверхности,

I 0 – солнечная постоянная,

p – коэффициент прозрачности,

m – число оптических масс.

Солнечная радиация у земной поверхности. Количество лучистой энергии, приходящее на единицу земной поверхности, зависит, прежде всего, от угла падения солнечных лучей. На одинаковые площади на экваторе, в средних и высоких широтах приходится различное количество радиации.

Солнечная инсоляция (освещение) сильно ослабляется облачностью. Большая облачность экваториальных и умеренных широт и малая облачность тропических широт вносят значительные коррективы в зональное распределение лучистой энергии Солнца.

Распределение солнечного тепла по земной поверхности изображается на картах суммарной солнечной радиации. Как показывают эти карты, наибольшее количество солнечного тепла – от 7 530 до 9 200 МДж/м 2 (180-220 ккал/см 2) получают тропические широты. Экваториальные широты из-за большой облачности получают тепла несколько меньше: 4 185 – 5 860 МДж/м 2 (100-140 ккал/см 2).

От тропических широт к умеренным радиация уменьшается. На островах Арктики она составляет не более 2 510 МДж/м 2 (60 ккал/см 2) в год. Распределение радиации по земной поверхности имеет зонально-региональный характер. Каждая зона распадается на отдельные районы (регионы), несколько отличающиеся друг от друга.

Сезонные колебания суммарной радиации.

В экваториальных и тропических широтах высота Солнца и угол падения солнечных лучей по месяцам изменяются незначительно. Суммарная радиация во все месяцы характеризуется большими величинами, сезонная смена тепловых условий или отсутствует, или весьма незначительна. В экваториальном поясе слабо намечаются два максимума, соответствующие зенитальному положению Солнца.

В умеренном поясе в годовом ходе радиации резко выражен летний максимум, в котором месячная величина суммарной радиации не меньше тропической. Число теплых месяцев уменьшается с широтой.

В полярных поясах радиационный режим резко изменяется. Здесь в зависимости от широты от нескольких суток до нескольких месяцев прекращается не только нагревание, но и освещение. Летом же освещение здесь непрерывно, что существенно повышает сумму месячной радиации.

Усвоение радиации земной поверхностью. Альбедо . Суммарная радиация, достигшая земной поверхности, частично поглощается почвой и водоемами и переходит в тепло. На океанах и морях суммарная радиация расходуется на испарение. Часть суммарной радиации отражается в атмосферу (отраженная радиация).

Все виды солнечных лучей достигают земной поверхности тремя путями - в виде прямой, отраженной и рассеянной солнечной радиации.
Прямая солнечная радиация - это лучи, идущие непосредственно от солнца. Её интенсивность (эффективность) зависит от высоты стояния солнца над горизонтом: максимум наблюдается в полдень, а минимум - утром и вечером; от времени года: максимум - летом, минимум - зимой; от высоты местности над уровнем моря (в горах выше, чем на равнине); от состояния атмосферы (загрязнённость воздуха уменьшает её). От высоты стояния солнца над горизонтом зависит и спектр солнечной радиации (чем ниже стоит солнце над горизонтом, тем меньше ультрафиолетовых лучей).
Отраженная солнечная радиация - это лучи солнца, отраженные земной или водной поверхностью. Она выражается процентным отношением отраженных лучей к их суммарному потоку и называется альбедо. Величина альбедо зависит от характера отражающих поверхностей. При организации и проведении солнечных ванн необходимо знать и учитывать альбедо поверхностей, на которых проводятся солнечные ванны. Некоторые из них характеризуются избирательной отражающей способностью. Снег полностью отражает инфракрасные лучи, а ультрафиолетовые - в меньшей степени.

Рассеянная солнечная радиация образуется в результате рассеивания солнечных лучей в атмосфере. Молекулы воздуха и взвешенные в нем частицы (мельчайшие капельки воды, кристаллики льда и т. п.), называемые аэрозолями, отражают часть лучей. В результате многократных отражений часть их все же достигает земной поверхности; это рассеянные солнечные лучи. Рассеиваются в основном ультрафиолетовые, фиолетовые и голубые лучи, что и определяет голубой цвет неба в ясную погоду. Удельный вес рассеянных лучей велик в высоких широтах (в северных районах). Там солнце стоит низко над горизонтом, и потому путь лучей к земной поверхности длиннее. На длинном пути лучи встречают больше препятствий и в большей степени рассеиваются.

(http://new-med-blog.livejournal.com/204

Суммарная солнечная радиация - вся прямая и рассеянная солнечная радиация, поступающая на земную поверхность. Суммарная солнечная радиация характеризуется интенсивностью. При безоблачном небе суммарная солнечная радиация имеет максимальное значение около полудня, а в течение года - летом.

Радиационный баланс
Радиационный баланс земной поверхности - разность между суммарной солнечной радиацией, поглощенной земной поверхностью, и ее эффективным излучением. Для земной поверхности
- приходная часть есть поглощенная прямая и рассеянная солнечная радиация, а также поглощенное встречное излучение атмосферы;
- расходная часть состоит из потери тепла за счет собственного излучения земной поверхности.

Радиационный баланс может быть положительным (днем, летом) и отрицательным (ночью, зимой); измеряется в кВт/кв.м/мин.
Радиационный баланс земной поверхности - важнейший компонент теплового баланса земной поверхности; один из основных климатообразующих факторов.

Тепловой баланс земной поверхности - алгебраическая сумма всех видов прихода и расхода тепла на поверхность суши и океана. Характер теплового баланса и его энергетический уровень определяют особенности и интенсивность большинства экзогенных процессов. Основными составляющими теплового баланса океана являются:
- радиационный баланс;
- затрата тепла на испарение;
- турбулентный теплообмен между поверхностью океана и атмосферой;
- вертикальный турбулентный теплообмен поверхности океана с нижележащими слоями; и
- горизонтальная океаническая адвекция.

(http://www.glossary.ru/cgi-bin/gl_sch2.c gi?RQgkog.outt:p!hgrgtx!nlstup!vuilw)tux yo)

Измерение солнечной радиации.

Для измерения солнечной радиации служат актинометры и пиргелиометры. Интенсивность солнечной радиации обычно измеряется по её тепловому действию и выражается в калориях на единицу поверхности за единицу времени.

(http://www.ecosystema.ru/07referats/slo vgeo/967.htm)

Измерение интенсивности солнечной радиации производится пиранометром Янишевского в комплекте с гальванометром или потенциометром.

При замерах суммарной солнечной радиации пиранометр устанавливают без теневого экрана, при замерах же рассеянной радиации с теневым экраном. Прямая солнечная радиация вычисляется как разность между суммарной и рассеянной радиацией.

При определении интенсивности падающей солнечной радиации на ограждение пиранометр устанавливают на него так, чтобы воспринимаемая поверхность прибора была строго параллельна поверхности ограждения. При отсутствии автоматической записи радиации замеры следует производить через 30 мин в промежутке между восходом и заходом солнца.

Радиация, падающая на поверхность ограждения, полностью не поглощается. В зависимости от фактуры и окраски ограждения некоторая часть лучей отражается. Отношение отраженной радиации к падающей, выраженное в процентах, называется альбедо поверхности и измеряется альбедометром П.К. Калитина в комплекте с гальванометром или потенциометром.

Для большей точности наблюдения следует проводить при ясном небе и при интенсивном солнечном облучении ограждения.

(http://www.constructioncheck.ru/default.a spx?textpage=5)