Биографии Характеристики Анализ

Формула полной вероятности: теория и примеры решения задач. Формула полной вероятности и формулы байеса

Пусть рассматривается полная группа событий (попарно несовместные, которые называются гипотезами), и если событие может наступить только при появлении одной их этих гипотез, то вероятность события вычисляется по формуле полной вероятности:

,

где – вероятность гипотезы . .

– условная вероятность события при этой гипотезе. Если до опыта вероятности гипотез были , а в результате опыта появилось событие , то с учетом этого события «новые», т. е. условные, вероятности гипотез вычисляются по формуле Байеса:

.

Формула Байеса дает возможность переоценить вероятности гипотез с учетом уже известного результата опыта.

Пример 1.

Имеется три одинаковые урны. В первой белых шаров и черных; во второй – белых и черных; в третьей только белые шары. Некто подходит наугад к одной из урн и вынимает из нее шар. Найти вероятность того, что этот шар белый.

Решение.

Пусть событие – появление белого шара. Формулируем гипотезы: – выбор первой урны;

– выбор второй урны;

– выбор третьей урны;

,

, , ;

по формуле полной вероятности

Пример 2.

Имеются две урны: в первой белых шаров и черных, во второй – и черных. Из первой урны во вторую перекладывается один шара шар; шары перемешиваются и затем из второй урны в первую перекладывается один шар. После этого из первой урны берут наугад один шар. Найти вероятность того, что он был белым.

Решение.

Гипотезы: – состав шаров в первой урне не изменился;

– в первой урне один черный шар заменен на белый;

– в первой урне один белый шар заменен черным;

;

Полученное решение говорит о том, что вероятность вынуть белый шар не изменится, если доли белых шаров и черных шаров в обеих урнах одинаковы .

Ответ: .

Пример 3.

Прибор состоит из двух узлов, работа каждого узла безусловно необходима для работы прибора в целом. Надежность (вероятность безотказной работы в течение времени ) первого узла равна , второго . Прибор испытывается в течение времени , в результате чего обнаружено, что он вышел из строя (отказал). Найти вероятность того, что отказал только первый узел, а второй исправен.

Решение.

До опыта возможны четыре гипотезы:

– оба узла исправны;

– первый узел отказал, второй исправен;

– первый исправен, второй отказал;

– оба узла отказали;

Вероятности гипотез:

Наблюдалось событие – прибор отказал:

По формуле Байеса:

Повторение опытов

Если производится независимых опытов в одинаковых условиях, причем в каждом из них с вероятностно появляется событие , то вероятность того, что событие произойдет в этих опытах ровно раз, выражается формулой:

,

Вероятность хотя бы одного появления события при независимых опытах в одинаковых условиях равна:

.

Вероятность того, что событие наступит а) менее раз; б) более раз; в) не менее раз; г) не более раз находим соответственно но формулам:

Общая теорема о повторении опытов

Если производится независимых опытов в различных условиях, причем вероятность события в -м опыте равна , то вероятностьтого, что событие появится в этих опытах ровно раз, равна коэффициенту при в разложении по степеням производящей функции

, где .

Пример 1.

Прибор состоит г из 10 узлов. Надежность (вероятность безотказной работы в течение времени ) для каждого узла . Узлы выходят из строя независимо один от другого. Найти вероятность того, что за время :

а) откажет хотя бы один узел;

б) откажет ровно один узел;

в) откажут ровно два узла;

г) откажет не менее двух узлов.

Решение.

Пример 2.

В урне 30 белых и 15 черных шаров. Вынули подряд 5 шаров, причем каждый вынутый шар возвращают в урну перед извлечением следующего и шары в урне перемешивают. Какова вероятность того, что из 5 вынутых шаров окажется 3 белых.

Решение.

Вероятность извлечения белого шара , можно посчитать одной и той же во всех 5 испытаниях: тогда вероятность непоявления белого шара. Используя формулу Бернулли получаем:

Пример 3.

Монету подбрасывают восемь раз. Какова вероятность того, что шесть раз она упадет гербом вверх?

Решение.

Имеем схемуиспытаний Бернулли. Вероятность появления Ге в одном испытании , тогда

Ответ: 0,107.

Пример 4.

Производится четыре независимых выстрела, причем – вероятность попадания в мишень есть средняя из вероятностей

Найти вероятности: .

Решение.

По формуле Бернулли имеем

Пример 5.

Имеется пять станций, с которыми поддерживается связь. Время от времени связь прерывается из-за атмосферных помех. Вследствие удаленности станций друг от друга перерыв связи с каждой из них происходит независимо от остальных с вероятностью 0,2. Найти вероятность того, что в данный момент времени будет поддерживаться связь не более чем с двумя станциями.

Решение.

Событие – имеется связь не более чем с двумя станциями.

Ответ: 0,72.

Пример 6.

Система радиолокационных станций ведет наблюдение за группой объектов, состоящей из десяти единиц. Каждый из объектов может быть (независимо от других) потерян с вероятностью 0,1. Найти вероятность того, что хотя бы один из объектов будет потерян.

Решение.

Вероятность потери хотя бы одного объекта можно найти по формуле:

но проще воспользоваться вероятностью противоположного события – ни один объект не потерян – и вычесть ее из единицы

Ответ: 0,65.

Варианты заданий для контрольной работы № 5

Вариант 1

1. Подброшены две игральные кости. Найти вероятность того, что сумма выпавших очков равна 7.

2. Пусть – три произвольные события. Записать выражение для событий, состоящих в том, что из этих трёх событий произошло, по крайней мере два события.

3. Монету бросают 5 раз. Найти вероятность того, что «герб» выпадет: а) не менее двух раз, б) менее двух раз.

4. Имеются 2 одинаковые урны. В первой урне находятся 3 белых и 5 чёрных шаров, во второй – 3 белых и 7 чёрных шаров. Из одной наугад выбранной урны извлекается шар. Определить вероятность того, что шар
чёрный.

5. В чемпионате страны по футболу участвуют 18 команд, Каждые две команды встречаются на футбольных полях 2 раза. Сколько матчей играется в сезоне?

Вариант 2

1. Набирая номер телефона, абонент забыл последние 3 цифры, и помня лишь, что эти цифры различны, набрал их наудачу. Найти вероятность того, что, набраны нужные цифры.

2. Верно ли .

3. Найти вероятность того, что событие произойдёт не менее 2 раз в 4 независимых испытаниях, если вероятность наступления события в одном испытании равна 0,6.

4. Электрические приборы поставляются в магазин тремя заводами. Первый поставляет 50 %, второй – 20 %, третий – 30 % всей продукции. Вероятности изготовления прибора высшего качества каждым заводом, соответственно равны: . Определить вероятность того, что купленный в магазине прибор будет высшего качества.

5. Буквы азбуки Морзе образуются как последовательность точек и
тире. Сколько различных букв можно образовать, если использовать 5
символов?

Вариант 3

1. В ящике 10 пронумерованных шаров с номерами от 1 до 10. Вынули один шар. Какова вероятность того, что номер вынутого шара не превышает 10.

2. Верно ли равенство ?

3. Вероятность наступления события хотя бы 1 раз при трёх испытаниях равна 0,936. Найти вероятность наступления события при одном испытании.

4. Имеются три одинаковые урны. В первой урне находятся 5 белых и 5 чёрных шаров, во второй – 3 белых и 2 чёрных шара, в третьей – 7 белых и 3 чёрных. Из одной наугад выбранной урны извлекается шар. Определить вероятность того, что шар будет белый.

5. Сколькими способами можно разместить 12 человек за столом, на котором поставлено 12 приборов.

Вариант 4

1. В цехе работает 6 мужчин и 4 женщины. По табельным номерам наудачу выбраны 7 человек. Найти вероятность того, что среди отобранных лиц окажется 3 женщины.

2. Доказать, что .

3. Пусть вероятность того, что наудачу взятая деталь нестандартная, равна 0,1. Найти вероятность того, что среди взятых наудачу 5 деталей не более двух нестандартных.

4. Имеются три одинаковые урны. В первой урне находятся 3 белых и 3 чёрных шаров, во второй – 2 белых и 6 чёрных шаров, в третьей – 5 белых и 2 чёрных. Из одной наугад выбранной урны извлекается шар. Определить вероятность того, что шар будет чёрный.

5. Требуется составить расписание отправления поездов на различные дни недели. При этом необходимо, чтобы: 3 дня отправлялись 2 поезда в день, 2 дня – по 1 поезду в день, 2 дня – по 3 поезда в день. Сколько можно составить различных расписаний?

Вариант 5

1. Куб, все грани которого окрашены, распилен на 64 кубика одинакового размера, которые затем перемешаны. Найти вероятность того, что случайно извлечённый кубик имеет две окрашенные грани.

2. Доказать, что .

3. Пусть вероятность того, что телевизор потребует ремонта в течение гарантийного срока, равна 0,2. Найти вероятность того, что в течение гарантийного срока из 6 телевизоров: а) не более 1 потребует ремонта, б) хотя бы 1 не потребует ремонта.

4. На трёх автоматических линиях изготавливаются однотипные детали. Вследствие разладки станков возможен выпуск бракованной продукции: первой линией с вероятностью 0,02; второй – с вероятностью 0,01; третьей – с вероятностью 0,05. Первая линия даёт 70 %, вторая – 20 %, третья – 10 % всей продукции. Определить вероятность получения брака.

5. В урне белых и чёрных шаров. Сколькими способами можно выбрать из урны шаров, из которых белых будет штук. (Шары каждого цвета пронумерованы.)

Вариант 6

1. В урне 12 шаров: 3 белых, 4 чёрных и 5 красных шаров. Какова вероятность вынуть из урны красный шар.

2. Доказать, что .

3. Вероятность выиграть по лотерейному билету равна . Найти вероятность выиграть не менее чем по 2 билетам из 6.

4. В двух ящиках лежат однотипные детали: в первом ящике 8 исправных и 2 бракованные, во втором 6 исправных и 4 бракованные. Из первого ящика наугад взяты две детали, а из второго одна деталь. Детали, перемешав, поместили в третий ящик, откуда наугад взяли одну деталь. Определить вероятность того, что эта деталь исправна.

5. Сколькими способами из колоды в 36 карт можно выбрать 2 карты пик?

Вариант 7

1. В урне 15 шаров с номерами от 1 до 15. Какова вероятность вынуть шар с номером 18?

2. Доказать, что .

3. Вероятность попадания при каждом выстреле равна 0,4. Найти вероятность разрушения объекта, если для этого необходимо не менее 3 попаданий, а сделано 15 выстрелов.

4. В двух одинаковых урнах имеется по белых и чёрных шаров. Из первой урны во вторую перекладывают один шар. Во второй урне шары перемешиваются, и один шар перекладывается в первую урну. Затем из первой урны извлекают один шар. Найти вероятность того, что шар белый.

5. Из множества последовательно без возвращения выбирают два числа. Сколько всего таких наборов, в которых второе число больше первого?

Вариант 8

1. Внутри эллипса расположен круг . Найти вероятность попадания точки в кольцо, ограниченного эллипсом и кругом.

2. Пусть – три произвольных события. Найти выражения для событий, состоящих в том, что: а) события и произошли, а событие не произошло; б) произошло ровно 2 события.

3. Найти вероятность того, что в семье, имеющей 6 детей, не менее
2 девочек. (Вероятности рождения мальчика и девочки считать одинаковые.)

4. Имеются две урны. В первой урне находятся 3 белых и 5 чёрных шаров, во второй – 4 белых и 6 чёрных шара. Из первой урны во вторую, не глядя, перекладывают два шара. Шары во второй урне тщательно перемешивают и из неё берётся один шар. Найти вероятность того, что шар будет
белый.

5. Сколькими способами можно обозначить вершины данного треугольника, используя буквы ?

Вариант 9

1. Из пяти букв разрезной азбуки, составлено слово «книга». Ребёнок, не умеющий читать, рассыпал эти буквы, а затем собрал в произвольном порядке. Найти вероятность того, что у него снова получилось слово «книга».

2. Найти все события , такие что , где и – некоторые события.

3. Из 15 лотерейных билетов, выигрышными являются 4. Какова вероятность того, что среди 6 взятых наугад билетов будет два выигрышных?

4. Имеются три одинаковые урны. В первой урне находятся 4 белых и 2 чёрных шара, во второй – 3 белых и 3 чёрных шара, в третьей – 1 белых и 5 чёрных шаров. Из второй и третьей урн, не глядя, перекладывают по два шара в первую урну. Шары в первой урне перемешивают и из неё наугад извлекают два шара. Найти вероятность того, что они будут белые.

5. Из пяти шахматистов для участия в турнире нужно послать двух. Сколькими способами можно это сделать?

Вариант 10

1. Из колоды в 52 карты наудачу вынимают три. Найти вероятность того, что это будет тройка, семёрка и туз.

2. Даны два дублирующих блока и . Запишите событие, состоящее в том, что система исправна.

3. Для сигнализации об аварии установлены два независимо работающих сигнализатора. Вероятность того, что при аварии сигнализатор сработает, равна 0,95 для первого 0,9 – для второго. Найти вероятность того, что при аварии сработает только один сигнализатор.

4. На трёх автоматических линиях изготавливаются одноимённые детали. Первая линия даёт 70 %, вторая – 20 %, третья – 10 % всей продукции. Вероятности получения бракованной продукции на каждой линии, соответственно, равны: 0,02; 0,01; 0,05. Взятая на удачу деталь оказалась бракованной. Определить вероятность того, что деталь была изготовлена на первой линии.

5. На окружности выбрано 10 точек. Сколько можно провести хорд с концами в этих точках.

Вариант 11

1. В урне белых, чёрных и красных шаров. Наудачу вынимаются три шара. Какова вероятность того, что они будут разного цвета.

2. Верно ли равенство ?

3. Отдел технического контроля проверяет изделия на стандартность. Вероятность того, что изделие стандартно равна 0,9. Найти вероятность того, что из двух проверенных изделий только одно стандартное.

4. Три стрелка независимо один от другого стреляют по мишени, делая каждый по одному выстрелу. Вероятность попадания в мишень для первого стрелка равна 0,4 для второго – 0,6 и для третьего – 0,7. После стрельбы в мишени обнаружены два попадания. Определить вероятность того, что они принадлежат первому и третьему стрелкам.

5. Сколькими способами можно расположить в 1 ряд 5 красных, 4 чёрных и 5 белых мячей так, чтобы мячи, лежащие на краях, были одного цвета?

Вариант 12

1. Собрание, на котором присутствует 25 человек, в том числе 5 женщин, выбирает делегацию из 3 человек. Считая, что каждый из присутствующих с одинаковой вероятностью может быть избран. Найти вероятность того, что в делегацию войдут 2 женщины и один мужчина.

3. Найти вероятность по данным вероятностям , .

4. По каналу связи может быть передан код 1111 с вероятностью 0,2, код 0000 с вероятностью 0,3 и код 1001 с вероятностью 0,5. Вследствие влияния помех вероятность правильного приёма каждой цифры (0 или 1) кода равна 0,9, причём цифры искажаются независимо друг от друга. Найти вероятность того, что передан код 1111, если на приёмном устройстве принят код 1011.

5. Сколько различных маршрутов может избрать пешеход, решивший пройти 9 кварталов, 5 из них – на запад, 4 – на север.

Вариант 13

1. Группа из 10 мужчин и 10 женщин делится случайным образом на две равные части. Найти вероятность того, что в каждой части мужчин и женщин одинаково.

2. и – некоторые события. Верно ли равенство ?

3. Найти вероятность по данным вероятностям , , .

4. По линии связи возможна передача кода 1234 с вероятностью 0,6 и кода 4321 с вероятностью 0,4. Код высвечивается на табло, которое может исказить цифры. Вероятность принять 1 за 1 равна 0,8, а 1 за 4 равна 0,2. Вероятность принять 4 за 4 равна 0,9, а 4 за 1 равна 0,1. Вероятность принять 2 за 2 и 3 за 3 равна 0,7. Вероятность принятия 2 за 3 и 3 за 2 равна 0,3. Оператор принял код 4231. Определить вероятность того, что был принят код:
а) 1234; б) 4321.

5. Между тремя лицами – нужно разделить 15 различных предметов, причём должен получить 2 предмета, – 3, а – 10. Сколькими способами можно выполнить это распределение.

Вариант 14

1. В партии из 10 изделий имеется 4 бракованных. Наугад выбирают
5 изделий. Определить вероятность того, что среди этих 5 изделий окажется три бракованных.

2. Доказать, что , , образуют полную группу событий.

3. Студент знает 20 из 25 вопросов программы. Найти вероятность того, что студент ответит на 2 вопроса, предложеных ему экзаменатором.

4. Имеется 4 партии деталей. В первой партии 3 % брака, во второй –4 %, в третьей и четвёртой партиях брака нет. Какова вероятность взять бракованную деталь, если из выбранной наугад партии берётся одна деталь? Какова вероятность того, что взятая деталь принадлежит первой партии, если она оказалась бракованной?

5. Студенту необходимо сдать 4 экзамена в течение 10 дней. Сколькими способами можно составить ему расписание?

Вариант 15

1. В зале 50 мест. Найти вероятность того, что из 10 человек 5 займут определённые места, если места занимаются ими случайным образом.

2. Доказать, что .

3. Три стрелка независимо друг от друга стреляют по цели. Вероятность попадания в цель для первого стрелка – 0,75, для второго – 0,8, для третьего – 0,9. Найти вероятность того, что все три стрелка попадут в цель.

4. Из урны, в которой имелось 4 чёрных 6 белых шаров, потерян шар неизвестного цвета. Для того чтобы определить состав шаров в урне, из неё наудачу извлекли два шара. Они оказались белыми. Найти вероятность того, что был утерян белый шар.

5. Сколькими способами можно расставить на полке 7 книг, если две определённые книги всегда должны стоять рядом.

4. Вероятность попадания в цель при одном выстреле равна 0,7. Определить вероятность того, что в результате шести независимых выстрелов будет пять попаданий.

5. В автомобиле 7 мест. Сколькими способами 7 человек могут усесться в эту машину, если занять место водителя могут только трое из них.

Вариант 18

1. Для производственной практики на 30 студентов предоставлено 15 мест в Москве, 8 – в Тайге и 7 – в Новосибирске. Какова вероятность того, что два определённых студента попадут на практику в один город?

2. Пусть – три произвольных события. Найти выражения для событий, состоящих в том, что из произошло: а) только ; б) только одно событие.

3. В ящике 6 белых и 8 чёрных шаров. Из ящика вынули два шара (не возвращая вынутый шар в ящик). Найти вероятность того, что оба шара белые.

3. В первом ящике 2 белых и 10 чёрных шаров, во втором 8 белых и
4 чёрных шара. Из каждого ящика вынули по шару. Какова вероятность, что оба шара белые?

4. Испытываются 25 двигателей. Вероятность безотказной работы каждого двигателя одинакова и равна 0,95. Определить наиболее вероятное число отказавших двигателей.

5. У Тани есть 20 марок, у Наташи – 30. Сколькими способами можно обменять одну Танину марку на одну Наташину?

Вариант 20

1. Бросают 4 игральные кости. Найти вероятность того, что на всех выпадает одинаковое число очков.

2. Обязаны ли совпадать события и , если ?

3. Три стрелка независимо друг от друга стреляют по цели. Вероятность попадания в цель для первого стрелка равна 0,75, для второго – 0,8. для третьего – 0,9. Определить вероятность того, что в цель попадёт хотя бы один стрелок.

4. Испытанию подвергается партия транзисторов. Вероятность безотказной работы каждого транзистора равна 0,92. Определить, какое число транзисторов следует испытать, чтобы с вероятностью не менее 0,95 можно было зафиксировать хотя бы один отказ.

5. Сколько пятизначных чисел можно составить из цифр 1, 2, 4, 6, 7, 8, если каждую цифру в любом числе использовать не более 1 раза?

Пример №1 . Предприятие, производящее компьютеры, получает одинаковые комплектующие детали от трех поставщиков. Первый поставляет 50 % всех комплектующих деталей, второй - 20 %, третий - 30 % деталей.
Известно, что качество поставляемых деталей разное, и в продукции первого поставщика процент брака составляет 4 %, второго - 5 %, третьего - 2 %. Определить вероятность того, что деталь, выбранная наудачу из всех полученных, будет бракованной.

Решение . Обозначим события: A - «выбранная деталь бракована», H i - «выбранная деталь получена от i-го поставщика», i =1, 2, 3 Гипотезы H 1 , H 2 , H 3 образуют полную группу несовместных событий. По условию
P(H 1) = 0.5; P(H 2) = 0.2; P(H 3) = 0.3
P(A|H 1) = 0.04; P(A|H 2) = 0.05; P(A|H 3) = 0.02

По формуле полной вероятности (1.11) вероятность события A равна
P(A) = P(H 1) · P(A|H 1) + P(H 2) · P(A|H 2) + P(H 3) · P(A|H 3) = 0.5 · 0.04 + 0.2 · 0.05 + 0.3 · 0.02=0.036
Вероятность того, что выбранная наудачу деталь окажется бракованной, равна 0.036.

Пусть в условиях предыдущего примера событие A уже произошло: выбранная деталь оказалась бракованной. Какова вероятность того, что она была получена от первого поставщика? Ответ на этот вопрос дает формула Байеса .
Мы начинали анализ вероятностей, имея лишь предварительные, априорные значения вероятностей событий. Затем был произведен опыт (выбрана деталь), и мы получили дополнительную информацию об интересующем нас событии. Имея эту новую информацию, мы можем уточнить значения априорных вероятностей. Новые значения вероятностей тех же событий будут уже апостериорными (послеопытными) вероятностями гипотез (рис. 1.5).

Схема переоценки гипотез
Пусть событие A может осуществиться лишь вместе с одной из гипотез H 1 , H 2 , …, H n (полная группа несовместных событий). Априорные вероятности гипотез мы обозначали P(H i) условные вероятности события A - P(A|H i), i = 1, 2,…, n. Если опыт уже произведен и в результате него наступило событие A, то апостериорными вероятностями гипотез будут условные вероятности P(H i |A), i = 1, 2,…, n. В обозначениях предыдущего примера P(H 1 |A) - вероятность того, что выбранная деталь, оказавшаяся бракованной, была получена от первого поставщика.
Нас интересует вероятность события H k |A Рассмотрим совместное наступление событий H k и A то есть событие AH k . Его вероятность можно найти двумя способами, используя формулы умножения (1.5) и (1.6):
P(AH k) = P(H k)P(A|H k);
P(AH k) = P(A)P(H k |A).

Приравняем правые части этих формул
P(H k) · P(A|H k) = P(A) · P(H k |A),

отсюда апостериорная вероятность гипотезы H k равна

В знаменателе стоит полная вероятность события A. Подставив вместо P(A) ее значение по формуле полной вероятности (1.11), получим:
(1.12)
Формула (1.12) называется формулой Байеса и применяется для переоценки вероятностей гипотез.
В условиях предыдущего примера найдем вероятность того, что бракованная деталь была получена от первого поставщика. Сведем в одну таблицу известные нам по условию априорные вероятности гипотез P(H i) условные вероятности P(A|H i) рассчитанные в процессе решения совместные вероятности P(AH i) = P(H i) · P(A|H i) и рассчитанные по формуле (1.12) апостериорные вероятности P(H k |A), i,k = 1, 2,…, n (табл. 1.3).

Таблица 1.3 - Переоценка гипотез

Гипотезы H i Вероятности
Априорные P(H i) Условные P(A|H i) Совместные P(AH i) Апостериорные P(H i |A)
1 2 3 4 5

H 1 - деталь получена от первого поставщика

0.5 0.04 0.02

H 2 - деталь получена от второго поставщика

0.2 0.05 0.01

H 3 - деталь получена от третьего поставщика

0.3 0.02 0.006
Сумма 1.0 - 0.036 1
Рассмотрим последнюю строку этой таблицы. Во второй колонке стоит сумма вероятностей несовместных событий H 1 , H 2 , H 3 , образующих полную группу:
P(Ω) = P(H 1 + H 2 + H 3) = P(H 1) + P(H 2) + P(H 3) = 0.5 + 0.2 + 0.3 = 1
В четвертой колонке значение в каждой строке (совместные вероятности) получено по правилу умножения вероятностей перемножением соответствующих значений во второй и третьей колонках, а в последней строке 0.036 - есть полная вероятность события A (по формуле полной вероятности).
В колонке 5 вычислены апостериорные вероятности гипотез по формуле Байеса (1.12):

Аналогично рассчитываются апостериорные вероятности P(H 2 |A) и P(H 3 |A), причем числитель дроби - совместные вероятности, записанные в соответствующих строках колонки 4, а знаменатель - полная вероятность события A, записанная в последней строке колонки 4.
Сумма вероятностей гипотез после опыта равна 1 и записана в последней строке пятой колонки.
Итак, вероятность того, что бракованная деталь была получена от первого поставщика, равна 0.555. Послеопытная вероятность больше априорной (за счет большого объема поставки). Послеопытная вероятность того, что бракованная деталь была получена от второго поставщика, равна 0.278 и также больше доопытной (за счет большого количества брака). Послеопытная вероятность того, что бракованная деталь была получена от третьего поставщика, равна 0.167.

Пример №3 . Имеются три одинаковые урны; в первой урне два белых и один черный шар; во второй - три белых и один черный; в третьей - два белых и два черных шара. Для опыта наугад выбрана одна урна и из нее вынут шар. Найдите вероятность того, что этот шар белый.
Решение. Рассмотрим три гипотезы: H 1 - выбрана первая урна, H 2 - выбрана вторая урна, H 3 - выбрана третья урна и событие A - вынут белый шар.
Так как гипотезы по условию задачи равновозможны, то

Условные вероятности события A при этих гипотезах соответственно равны:
По формуле полной вероятности

Пример №4 . В пирамиде стоят 19 винтовок, из них 3 с оптическим прицелом. Стрелок, стреляя из винтовки с оптическим прицелом, может поразить мишень с вероятностью 0,81, а стреляя из винтовки без оптического прицела, - с вероятностью 0,46. Найдите вероятность того, что стрелок поразит мишень, стреляя из случайно взятой винтовки.
Решение. Здесь первым испытанием является случайный выбор винтовки, вторым - стрельба по мишени. Рассмотрим следующие события: A - стрелок поразит мишень; H 1 - стрелок возьмет винтовку с оптическим прицелом; H 2 - стрелок возьмет винтовку без оптического прицела. Используем формулу полной вероятности. Имеем


Учитывая, что винтовки выбираются по одной, и используя формулу классической вероятности, получаем: P(H 1) = 3/19, P(H 2) = 16/19.
Условные вероятности заданы в условии задачи: P(A|H 1) = 0;81 и P(A|H 2) = 0;46. Следовательно,

Пример №5 . Из урны, содержащей 2 белых и 3 черных шара, наудачу извлекаются два шара и добавляется в урну 1 белый шар. Найдите вероятность того, что наудачу взятый шар окажется белым.
Решение. Событие “извлечен белый шар” обозначим через A. Событие H 1 - наудачу извлекли два белых шара; H 2 - наудачу извлекли два черных шара; H 3 - извлекли один белый шар и один черный. Тогда вероятности выдвинутых гипотез


Условные вероятности при данных гипотезах соответственно равны: P(A|H 1) = 1/4 - вероятность извлечь белый шар, если в урне в данный момент один белый и три черных ша-ра, P(A|H 2) = 3/4 - вероятность извлечь белый шар, если в урне в данный момент три белых и один черный шар, P(A|H 3) = 2/4 = 1/2 - вероятность извлечь белый шар, если в урне в данный момент два белых и два черных шара. В соответствии с формулой полной вероятности

Пример №6 . Производится два выстрела по цели. Вероятность попадания при первом выстреле 0,2, при втором - 0,6. Вероятность разрушения цели при одном попадании 0,3, при двух - 0,9. Найдите вероятность того, что цель будет разрушена.
Решение. Пусть событие A - цель разрушена. Для этого достаточно попадания с одного выстрела из двух или поражение цели подряд двумя выстрелами без промахов. Выдвинем гипотезы: H 1 - оба выстрела попали в цель. Тогда P(H 1) = 0,2 · 0,6 = 0;12. H 2 - либо первый раз, либо второй раз был совершен промах. Тогда P(H 2) = 0,2 · 0,4 + 0,8 · 0,6 = 0,56. Гипотеза H 3 - оба выстрела были промахи - не учитывается, так как вероятность разрушения цели при этом нулевая. Тогда условные вероятности соответственно равны: вероятность разрушения цели при условии обоих удачных выстрелов равна P(A|H 1) = 0,9, а вероятность разрушения цели при условии только одного удачного выстрела P(A|H 2) = 0,3. Тогда вероятность разрушения цели по формуле полной вероятности равна.

Следствием обеих основных теорем – теоремы сложения вероятностей и теоремы умножения вероятностей – является так называемая формула полной вероятности.

Пусть требуется определить вероятность некоторого события , которое может произойти вместе с одним из событий:

образующих полную группу несовместных событий. Будем эти события называть гипотезами.

Докажем, что в этом случае

, (3.4.1)

т.е. вероятность события вычисляется как сумма произведений вероятности каждой гипотезы на вероятность события при этой гипотезе.

Формула (3.4.1) носит название формулы полной вероятности.

Доказательство. Так как гипотезы образуют полную группу, то событие может появиться только в комбинации с какой-либо из этих гипотез:

Так как гипотезы несовместны, то и комбинации также несовместны; применяя к ним теорему сложения, получим:

Применяя к событию теорему умножения, получим:

,

что и требовалось доказать.

Пример 1. Имеются три одинаковые на вид урны; в первой урне два белых и один черный шар; во второй – три белых и один черный; в третьей – два белых и два черных шара. Некто выбирает наугад одну из урн и вынимает из нее шар. Найти вероятность того, что этот шар белый.

Решение. Рассмотрим три гипотезы:

Выбор первой урны,

Выбор второй урны,

Выбор третьей урны

и событие – появление белого шара.

Так как гипотезы, по условию задачи, равновозможные, то

.

Условные вероятности события при этих гипотезах соответственно равны:

По формуле полной вероятности

.

Пример 2. По самолету производится три одиночных выстрела. Вероятность попадания при первом выстреле равна 0,4, при втором – 0,5, при третьем 0,7. Для вывода самолета из строя заведомо достаточно трех попаданий; при одном попадании самолет выходит из строя с вероятностью 0,2, при двух попаданиях – с вероятностью 0,6. Найти вероятность того, что в результате трех выстрелов самолет будет выведен из строя.

Решение. Рассмотрим четыре гипотезы:

В самолет не попало ни одного снаряда,

В самолет попал один снаряд,

В самолет попало два снаряда,

В самолет попало три снаряда.

Пользуясь теоремами сложения и умножения, найдем вероятности этих гипотез:

Условные вероятности события (выход самолета из строя) при этих гипотезах равны:

Применяя формулу полной вероятности, получим:

Заметим, что первую гипотезу можно было бы и не вводить в рассмотрение, так как соответствующий член в формуле полной вероятности обращается в нуль. Так обычно и поступают при применении формулы полной вероятности, рассматривая не полную группу несовместных гипотез, а только те из них, при которых данное событие возможно.

Пример 3. Работа двигателя контролируется двумя регуляторами. Рассматривается определенный период времени , в течение которого желательно обеспечить безотказную работу двигателя. При наличии обоих регуляторов двигатель отказывается с вероятностью , при работе только первого из них – с вероятностью , при работе только второго - , при отказе обоих регуляторов – с вероятностью . Первый из регуляторов имеет надежность , второй - . Все элементы выходят из строя независимо друг от друга. Найти полную надежность (вероятность безотказной работы) двигателя.

Полезная страница? Сохрани или расскажи друзьям

Общая постановка задачи примерно* следующая:

В урне находится $K$ белых и $N-K$ чёрных шаров (всего $N$ шаров). Из нее наудачу и без возвращения вынимают $n$ шаров. Найти вероятность того, что будет выбрано ровно $k$ белых и $n-k$ чёрных шаров.

По классическому определению вероятности, искомая вероятность находится по формуле гипергеометрической вероятности (см. пояснения ):

$$ P=\frac{C_K^k \cdot C_{N-K}^{n-k}}{C_N^n}. \qquad (1) $$

*Поясню, что значит "примерно": шары могут выниматься не из урны, а из корзины, или быть не черными и белыми, а красными и зелеными, большими и маленькими и так далее. Главное, чтобы они были ДВУХ типов, тогда один тип вы считаете условно "белыми шарами", второй - "черными шарами" и смело используете формулу для решения (поправив в нужных местах текст конечно:)).

Видеоурок и шаблон Excel

Посмотрите наш ролик о решении задач про шары в схеме гипергеометрической вероятности, узнайте, как использовать Excel для решения типовых задач.

Расчетный файл Эксель из видео можно бесплатно скачать и использовать для решения своих задач.

Примеры решений задач о выборе шаров

Пример 1. В урне 10 белых и 8 черных шаров. Наудачу отобраны 5 шаров. Найти вероятность того, что среди них окажется ровно 2 белых шара.

Подставляем в формулу (1) значения: $K=10$, $N-K=8$, итого $N=10+8=18$, выбираем $n=5$ шаров, из них должно быть $k=2$ белых и соответственно, $n-k=5-2=3$ черных. Получаем:

$$ P=\frac{C_{10}^2 \cdot C_{8}^{3}}{C_{18}^5} = \frac{45 \cdot 56}{8568} = \frac{5}{17} = 0.294. $$

Пример 2. В урне 5 белых и 5 красных шаров. Какова вероятность вытащить наудачу оба белых шара?

Здесь шары не черные и белые, а красные и белые. Но это совсем не влияет на ход решения и ответ.

Подставляем в формулу (1) значения: $K=5$ (белых шаров), $N-K=5$ (красных шаров), итого $N=5+5=10$ (всего шаров в урне), выбираем $n=2$ шара, из них должно быть $k=2$ белых и соответственно, $n-k=2-2=0$ красных. Получаем:

$$ P=\frac{C_{5}^2 \cdot C_{5}^{0}}{C_{10}^2} = \frac{10 \cdot 1}{45} = \frac{2}{9} = 0.222. $$

Пример 3. В корзине лежат 4 белых и 2 черных шара. Из корзины достали 2 шара. Какова вероятность, что они одного цвета?

Здесь задача немного усложняется, и решим мы ее по шагам. Введем искомое событие
$A = $ (Выбранные шары одного цвета) = (Выбрано или 2 белых, или 2 черных шара).
Представим это событие как сумму двух несовместных событий: $A=A_1+A_2$, где
$A_1 = $ (Выбраны 2 белых шара),
$A_2 = $ (Выбраны 2 черных шара).

Выпишем значения параметров: $K=4$ (белых шаров), $N-K=2$ (черных шаров), итого $N=4+2=6$ (всего шаров в корзине). Выбираем $n=2$ шара.

Для события $A_1$ из них должно быть $k=2$ белых и соответственно, $n-k=2-2=0$ черных. Получаем:

$$ P(A_1)=\frac{C_{4}^2 \cdot C_{2}^{0}}{C_{6}^2} = \frac{6 \cdot 1}{15} = \frac{2}{5} = 0.4. $$

Для события $A_2$ из выбранных шаров должно оказаться $k=0$ белых и $n-k=2$ черных. Получаем:

$$ P(A_2)=\frac{C_{4}^0 \cdot C_{2}^{2}}{C_{6}^2} = \frac{1 \cdot 1}{15} = \frac{1}{15}. $$

Тогда вероятность искомого события (вынутые шары одного цвета) есть сумма вероятностей этих событий:

$$ P(A)=P(A_1)+P(A_2)=\frac{2}{5} + \frac{1}{15} =\frac{7}{15} = 0.467. $$

Имеются три одинаковые на вид урны; в первой урне 2 белых и 1 черный шар; во второй урне 3 белых и 1 черный шар; в третьей 2 белых и 2 черных шара.

Некто выбирает одну из урн наугад и вынимает из нее шар. Найти вероятность того, что этот шар белый.

Рассмотрим три гипотезы:

Н1-выбор первой урны

Н2-выбор второй урны

Н3-выбор третьей урны

олная группа несовместных событий.

Пусть событие А-появление белого шара. Т.к. гипотезы, по условию задачи равно возможны, то Р(Н1) =Р(Н2) =Р(Н3) =1\3

Условные вероятности события А при этих гипотезах соответственно равны: Р(А/Н1) =2\3; Р(А/Н2) =3\4; Р(А/Н3) =1/2.

По формуле полной вероятности

Р(А) =1\3*3\2+1\3*3\4+1\3*1\2=23\36

Ответ: 23\36

П.2. Теорема гипотез.

Следствием теоремы умножения и формулы полной вероятности является так называемая теорема гипотез, или формула Бейса (Байеса).

Поставим следующею задачу.

Имеется полная группа несовместных гипотез Н1, Н2,. . Нn. вероятности этих гипотез до опытов известны и равны соответственно Р(Н1),Р(Н2) …,Р(Нn). Произведен опыт, в результате которого наблюдено появление некоторого события А. Спрашивается, как следует изменить вероятности гипотез, в связи с появлением этого события?

Здесь, по существу речь идет о том, чтобы найти условную вероятность Р(Н1/А) для каждой гипотезы.

Из теоремы умножения имеем:

Р(A*Нi) =P(A) P(Hi/A) =P(Hi) P(A/Hi), (i=1,2,3, . n) или, отбрасывая левую часть Nutrend enduro bcaa 120caps купить .

P(A) P(Hi/A) =P(Hi) P(A/Hi),(i=1,2,. .,n)

Откуда P (Hi/A) =P(Hi) P(A/Hi) ÷P(A),(i=1,2,3, . . n)

Выражая с P(A) помощью полной вероятности, имеем

P(Hi/A) =P(Hi) P(A/Hi) ÷∑P(Hi) P(A\Hi),(i=1,2,3, . . n) (2)

Формула (2) носит название формулы Бейса или теоремы гипотез

Пример 2. на фабрике 30%продукции производится машиной I, 25% продукции - машиной II, остальная часть продукции – машиной III. У машины I в брак идет 1% сей производимой его продукции, у машины II-1.5%, у машины III-2% наугад выбранная единица продукции оказалась браком. Какова вероятность того, что она произведена машиной I?

Введем обозначения для событий.

А-выбранное изделие оказалось браком

Н1-изделие произведено машиной I

H2 - изделие произведено машиной II

H3 - изделие произведено машиной III

P(H1) =0,30; Р(Н2) =0,25; Р(Н3) =0,45

Р(А/Н1) =0,01,

Р(А/Н2) =0,015

Р(А/Н3) =0,02

Р(А) =0,01*0,30+0,015*0,25+0,02*0,45=0,015,

Р(Н1/А) = 0,01*0,30÷0,015=0, 20

Ответ: 20%всех бракованных изделий выпускается машиной I.

§9. Формула Бернулли

Закон больших чисел

Пусть А случайное событие по отношению к некоторому опыту σ. Будем интересоваться лишь тем, наступило или не наступило в результате опыта событие А, поэтому примем следующую точку зрения: пространство элементарных событий, связанное с опытом σ, состоит только из двух элементов - А и А. Обозначим вероятности этих элементов соответственно, через p и q, (p+q=1).

Допустим теперь, что опыт σ в неизменных условиях повторяется определенное число раз, например, 3 раза. Условимся троекратное осуществление σ рассматривать как некий новый опыт η. Если по прежнему интересоваться только наступлением или не наступлением А., то следует очевидно принять, что пространство элементарных событий, отвечающее опыту η, состоит из всевозможных последовательностей длины 3: (А, А, А), (А, А, А), (А, А, А), (А, А, А), (А, А, А), (А, А, А), (А, А, А), (А, А, А), которое можно составить из А и А.

Каждая из указанных последовательностей означает ту или иную последовательность появления или не появления событий А в трех опытах σ, например, последовательность (А, А, А), означает, что в первом опыте наступило А, а во втором и третьем - А. Определим, какие вероятности следует приписать каждой из последовательностей (1)

Условие, что все три раза опыт σ проводится в неизменных условиях, по смыслу должно означать следующие - исход каждого из трех опытов не зависит от того, какие исходы имели место в остальных двух опытах. Т.е. любая комбинация исходов трех опытов представляет собой тройку независимых событий. В таком случае, элементарному событию (А, А, А), естественно приписать вероятность, равную p*q*q, событию (А, А, А),-вероятность q*y*y и т.д.

Т. о. приходим к следующему описанию вероятностной модели для опыта η (т.е. для трехкратного осуществления опыта σ). Пространство Ω элементарных событий есть множество из 2 в 3степени последовательностей. (1). Каждой последовательности сопоставляется в качестве вероятности число р в степени k, q в степени e, где показатели степеней определяют, сколько раз символы А и А входят в выражение для данной последовательности.

Вероятностные модели такого рода называются схемами Бернулли. В общем случае схема Бернулли определяется значением чисел n и p, где n – число повторений исходного опыта σ (в предыдущем опыте мы считали n=3), а p-вероятность события А по отношению к опыту σ.

Теорема 1. пусть вероятность события А равна p, и пусть Pmn-вероятность того, что в серии из n независимых испытаний это событие произойдет m-раз.

Тогда справедлива формула Бернулли.

Pmn=Cn в степени m *P в степени m *q в степени n-m

Монета подбрасывается 10 раз. Какова вероятность того, что герб выпадет при этом ровно 3раза?

В данном случае успехом считается выпадение герба, вероятность p этого события в каждом опыте равна 1\2.

Отсюда: Р10,3=С10в 3степени*(1\2) в 3степени*(1\2) в 7степени=10*9*8÷1*2*3*(1÷2в 10степени) =15\128

Ответ: 15\128

При большом числе испытаний относительная частота появления события мало отличается от вероятности этого события. Математическую формулировку этого качественного это качественного утверждения дает принадлежащий Бернулли закон больших чисел, который уточнил Чебышев.

Теорема 2. Пусть вероятность события А в испытании p равна p, и пусть проводятся серии состоящие из n независимых повторений этого испытания.

Через m обозначим число испытаний, в которых происходило событие А. тогда для любого положительного числа α выполняется неравенство:

З(|m\n-p|> α)

Смысл этого неравенства состоит в том, что выражение m÷n равно относительной частоте события А в серии опытов, а |m\n-p|> α означает, что отклонение этой относительной от теоретического значения p. Неравенство |m\n-p|> α означает, что отклонение оказалось больше чем α. Но при постоянном значении α с ростом n правая часть неравенства (3) стремится к нулю. Иными словами, серии в которых отклонение экспериментальной частоты от теоретической велико, составляют малую долю всех возможных серий испытаний.

Из теоремы вытекает утверждение, полученное Бернулли: в условиях теоремы при любом значении α>0 имеем