Биографии Характеристики Анализ

График функции у х 2 2х. Функция у= х2 и ее график

У=-2х-2. У=-2х+2. У=-2х. У=2х-2. У=2х+2. У=2х. Установите соответствие между графиком линейной функции и ее формулой. График линейной функции.

Картинка 28 из презентации «Линейная функция» к урокам алгебры на тему «Виды функций»

Размеры: 800 х 779 пикселей, формат: jpg. Чтобы бесплатно скачать картинку для урока алгебры, щёлкните по изображению правой кнопкой мышки и нажмите «Сохранить изображение как...». Для показа картинок на уроке Вы также можете бесплатно скачать презентацию «Линейная функция.ppt» целиком со всеми картинками в zip-архиве. Размер архива - 1763 КБ.

Скачать презентацию

Виды функций

«Элементы множества» - Декартово произведение обозначают А X В. Общий вид характеристического свойства: «x I А и x I В». Множество дней недели, Множество месяцев в году. Любое множество является подмножеством самого себя. Отношения между множествами наглядно представляют при помощи кругов Эйлера. Если множество не содержит ни одного элемента, оно называется пустым и обозначается? или 0.

«Показательные неравенства» - Решите неравенство. Решение показательных неравенств. Решение неравенства. Что нужно учесть при решении простейших показательных неравенств? Что нужно учесть при решении показательных неравенств? Решение простейших показательных неравенств. Знак неравенства. Решение простейших показательных неравенств.

«Факториалы чисел» - n! = 1?2?3?4?...?(n - 2)?(n – 1)?n. По правилу умножения 7 6 5 4 3 2 1 = 7! Произведение подряд идущих первых n натуральных чисел обозначают n! и называют «эн факториал». Задача. Факториал. Решение. Сколькими способами четыре вора могут по одному разбежаться на все четыре стороны? «factor» - «множитель», «эн факториал» - «состоящий из n множителей».

«Решение уравнений с модулем» - Самостоятельная работа. Закрепление решения уравнений, содержащих несколько модулей. Использование свойств модуля. Применение полученных знаний и умения в нестандартных ситуациях. Закрепление умения решать простейшие уравнения, содержащие модули. Ознакомление учащихся с нестандартными приемами решения уравнений, содержащих модули.

«Область определения функции» - Функция называется квадратичной, если она имеет вид F(x)=ax? + bx + c. Показательная функция. Линейная функция. Квадратичная функция. Область определения показательной функции есть любое действительное число. Рациональная функция. Область определения квадратичной функции – любое действительное число.

«Числовые выражения» - Не решая уравнение определи, чему равен х. Распределительный закон: Задача. Вычисли удобным способом. Решите задачу составив уравнение. Составь выражение по рисунку и найди его значение. Сочетательные свойства: Повторим законы сложения и умножения. Составь по рисунку уравнение и реши его. Переместительные законы:

Всего в теме 25 презентаций

Ранее мы изучали другие функции, например линейную, напомним ее стандартный вид:

отсюда очевидное принципиальное отличие - в линейной функции х стоит в первой степени, а в той новой функции, к изучению которой мы приступаем, х стоит во второй степени.

Напомним, что графиком линейной функции является прямая линия, а графиком функции , как мы увидим, является кривая, называемая параболой.

Начнем с того, что выясним, откуда появилась формула . Объяснение таково: если нам задан квадрат со стороной а , то площадь его мы можем вычислить так:

Если мы будем менять длину стороны квадрата, то и его площадь будет изменяться.

Итак, приведена одна из причин, по которой изучается функция

Напомним, что переменная х - это независимая переменная, или аргумент, в физической интерпретации это может быть, например, время. Расстояние это наоборот зависимая переменная, оно зависит от времени. Зависимой переменной или функцией называется переменная у .

Это закон соответствия, согласно которому каждому значению х ставится в соответствие единственное значение у .

Любой закон соответствия должен удовлетворять требованию единственности от аргумента к функции. В физической интерпретации это выглядит достаточно понятно на примере зависимости расстояния от времени: в каждый момент времени мы находимся на каком-то конкретном расстоянии от начального пункта, и невозможно одновременно в момент времени t находится и в 10 и в 20 километрах от начала пути.

В то же время каждое значение функции может достигаться при нескольких значениях аргумента.

Итак, нам нужно построить график функции , для этого составить таблицу. Потом по графику исследовать функцию и ее свойства. Но уже до построения графика по виду функции мы можем кое-что сказать о ее свойствах: очевидно, что у не может принимать отрицательных значений, так как

Итак, составим таблицу:

Рис. 1

По графику несложно отметить следующие свойства:

Ось у - это ось симметрии графика;

Вершина параболы - точка (0; 0);

Мы видим, что функция принимает только неотрицательные значения;

На промежутке, где функция убывает, а на промежутке, где функция возрастает;

Наименьшее значение функция приобретает в вершине, ;

Наибольшего значения функции не существует;

Пример 1

Условие:

Решение:

Поскольку х по условию изменяется на конкретном промежутке, можем сказать о функции, что она возрастает и изменяется на промежутке . Функция имеет на этом промежутке минимальное значение и максимальное значение

Рис. 2. График функции y = x 2 , x ∈

Пример 2

Условие: Найти наибольшее и наименьшее значение функции:

Решение:

х изменяется на промежутке , значит у убывает на промежутке пока и возрастает на промежутке пока .

Итак, пределы изменения х , а пределы изменения у , а, значит, на данном промежутке существует и минимальное значение функции , и максимальное

Рис. 3. График функции y = x 2 , x ∈ [-3; 2]

Проиллюстрируем тот факт, что одно и то же значение функции может достигаться при нескольких значениях аргумента.

Математические выражения (формулы) сокращённого умножения (квадрат суммы и разности, куб суммы и разности, разность квадратов, сумма и разность кубов) крайне не заменимы во многих областях точных наук. Эти 7 символьных записей не заменимы при упрощении выражений, решении уравнений, при умножении многочленов, сокращении дробей , решении интегралов и многом другом. А значит будет очень полезно разобраться как они получаются, для чего они нужны, и самое главное, как их запомнить и потом применять. Потом применяя формулы сокращенного умножения на практике самым сложным будет увидеть, что есть х и что есть у. Очевидно, что никаких ограничений для a и b нет, а значит это могут быть любые числовые или буквенные выражения.

И так вот они:

Первая х 2 - у 2 = (х - у) (х+у) .Чтобы рассчитать разность квадратов двух выражений надо перемножить разности этих выражений на их суммы.

Вторая (х + у) 2 = х 2 + 2ху + у 2 . Чтобы найти квадрат суммы двух выражений нужно к квадрату первого выражения прибавить удвоенное произведение первого выражения на второе плюс квадрат второго выражения.

Третья (х - у) 2 = х 2 - 2ху + у 2 . Чтобы вычислить квадрат разности двух выражений нужно от квадрата первого выражения отнять удвоенное произведение первого выражения на второе плюс квадрат второго выражения.

Четвертая (х + у) 3 = х 3 + 3х 2 у + 3ху 2 + у 3. Чтобы вычислить куб суммы двух выражений нужно к кубу первого выражения прибавить утроенное произведение квадрата первого выражения на второе плюс утроенное произведение первого выражения на квадрат второго плюс куб второго выражения.

Пятая (х - у) 3 = х 3 - 3х 2 у + 3ху 2 - у 3 . Чтобы рассчитать куб разности двух выражений необходимо от куба первого выражения отнять утроенное произведение квадрата первого выражения на второе плюс утроенное произведение первого выражения на квадрат второго минус куб второго выражения.

Шестая х 3 + у 3 = (х + у) (х 2 - ху + у 2) Чтобы высчитать сумму кубов двух выражений нужно умножить суммы первого и второго выражения на неполный квадрат разности этих выражений.

Седьмая х 3 - у 3 = (х - у) (х 2 + ху + у 2) Чтобы произвести вычисление разности кубов двух выражений надо умножить разность первого и второго выражения на неполный квадрат суммы этих выражений.

Не сложно запомнить, что все формулы применяются для произведения расчетов и в противоположном направлении (справа налево).

О существовании этих закономерностей з нали еще около 4 тысяч лет тому назад. Их широко применяли жители древнего Вавилона и Египта. Но в те эпохи они выражались словесно или геометрически и при расчетах не использовали буквы.

Разберем доказательство квадрата суммы (а + b) 2 = a 2 +2ab +b 2 .

Первым эту математическую закономерность доказал древнегреческий учёный Евклид, работавший в Александрии в III веке до н.э., он использовал для этого геометрический способ доказательства формулы, так как буквами для обозначения чисел не пользовались и учёные древней Эллады. Ими повсеместно употреблялись не “а 2 ”, а “квадрат на отрезке а”, не “ab”, а “прямоугольник , заключенный между отрезками a и b”.

Функция y=x^2 называется квадратичной функцией. Графиком квадратичной функции является парабола. Общий вид параболы представлен на рисунке ниже.

Квадратичная функция

Рис 1. Общий вид параболы

Как видно из графика, он симметричен относительно оси Оу. Ось Оу называется осью симметрии параболы. Это значит, что если провести на графике прямую параллельную оси Ох выше это оси. То она пересечет параболу в двух точках. Расстояние от этих точек до оси Оу будет одинаковым.

Ось симметрии разделяет график параболы как бы на две части. Эти части называются ветвями параболы. А точка параболы которая лежит на оси симметрии называется вершиной параболы. То есть ось симметрии проходит через вершину параболы. Координаты этой точки (0;0).

Основные свойства квадратичной функции

1. При х =0, у=0, и у>0 при х0

2. Минимальное значение квадратичная функция достигает в своей вершине. Ymin при x=0; Следует также заметить, что максимального значения у функции не существует.

3. Функция убывает на промежутке (-∞;0] и возрастает на промежутке

Проиллюстрируем тот факт, что одно и то же значение функции может достигаться при нескольких значениях аргумента.