Биографии Характеристики Анализ

Пепла и вулканической лавы в. Величественные вулканы на страже красоты


Полезные статьи


Как эффективно использовать вулканический пепел?

Сейчас слова экология, экологическая чистота служат своеобразным символом качества. А слова синтетический или искусственный вызывают отторжение. В моде все натуральное, естественное. Даже недостатки натурального перестали быть недостатками, воспринимаются нами как показатель со знаком плюс.
В моде и экологически чистый образ жизни. Не в центре мегаполиса, а в своем доме за городом. Загородный дом становится особняком во всех смыслах этого слова. Стоит наособицу, посередине большого участка, выглядит оригинально, стильно и дорого, как снаружи, так и внутри.

Мода повышает интерес к инновационным материалам в дизайне интерьера. Все производители отделочных материалов в большей или меньшей степени занимаются разработками такого рода продукции. Хотя на первом месте в разработке материалов будущего, как правило, оказываются японские компании.

Материалы будущего должны совмещать прочность, износоустойчивость, практичность, долговечность и экологичность, а дизайнеры предпочитают работать с материалами природными, на 90%- 100% натуральными.

Таким материалом является вулканическая штукатурка. Разработана она, конечно, в Японии. Чего- чего, а уж вулканов там хватает. Основной составляющей является вулканический пепел.
Эта штукатурка полностью адсорбирует неприятные запахи. В доме с таким покрытием стен можно спокойно курить, разводить экзотических, но не совсем аккуратных домашних зверушек. Ничем пахнуть не будет.

Вредные и токсичные вещества, которые, к сожалению, используются при изготовлении строительных материалов, таких как ДСП, МДФ, тоже будут не страшны. Вулканическая штукатурка максимально полно поглощает формальдегид и фенол. Здоровая атмосфера в стенах дома, покрытых этим материалом, гарантированно обеспечена.

Производители утверждают, что частицы вулканического пепла создают отрицательно заряженные ионы. Покроете штукатуркой стены и будете наслаждаться горным или лесным воздухом, не выезжая в горы и не выходя в лес, а просто сидя в четырех стенах. Главное, чтобы стены были покрыты инновационным отделочным средством.

Покрытие сохраняет постоянный, комфортный для человека, уровень влажности. То есть, в сыром помещении будет впитывать лишнюю влагу, а в сухом - выделять.

Этот материал не горит. Так и хочется процитировать классический советский фильм: «Все уже сгорело до нас», - во время извержения вулкана. При сверхвысоких температурах породы кальцинируются, приобретая естественную негорючесть. Изготавливается штукатурка без термообработки, следовательно, отсутствуют выбросы СО 2, а утилизации не нанесет вреда природе, использованное покрытие может быть просто зарыто в почву. Так что требования природоохранных организаций тоже удовлетворяются.

Таким образом, можно с полной уверенностью подтвердить слова нашего, еще не сложившего полномочия, президента: «Не надо бояться инноваций!» Новое всегда интересно.

Известно, что в составе твердых вулканических выбросов кроме извержений гавайского типа преобладают измельченные пирокластические материалы, доля которых ко всей массе твердых выбросов достигает 94-97%. По оценке Заппера, за время с 1500 по 1914 г. вулканами на суше выброшено 392 км 3 лавы и рыхлых масс, главным образом пеплов. Доля рыхлых масс за это время в выбросах составила в среднем 84%. Характерно также то, что при выбросах образуются огромные массы чрезвычайно тонких пеплов. Такие пеплы могут длительно оставаться в воздухе во взвешенном состоянии. При извержении Кракатау в 1883 г. пеплы много раз обошли вокруг Земли, прежде чем полностью осели. Мельчайшие частицы пепла поднялись при этом на большую высоту, где находились несколько лет, вызывая красные зори в Европе. При извержении вулкана Безымянного на Камчатке пеплы уже на второй день выпали в районе Лондона, т. е. на расстоянии свыше 10 тыс. км . С точки зрения выпадения твердого вещества вулканических извержений из водных, главным образом надкритических, растворов, поднимающихся из дренажной оболочки, такое соотношение между массами твердого и рыхлого вещества вулканических выбросов совершенно понятно. Действительно, растворы, поднимаясь по каналу из дренажной оболочки, где они находились под давлением до 2-4 тыс. атм, теряют давление, расширяются иохлаждаются. Вследствие этого из растворов выпадают растворенные в них вещества, образуя вначале жидкие, а по мере извержения густеющие массы концентратов. Эти массы, по-видимому, в наибольшей мере накапливаются у устья того канала, по которому поднимаются водные растворы. По мере накопления этих масс и расширения канала паровой поток начинает захватывать и по дороге измельчать выпавшие из растворов массы. В зависимости от скорости движения струи пара и его температуры и плотности, а также в зависимости от особенностей химического состава выпадающих густых масс вещества оно дробится на более или менее мелкие частицы, которые уносятся с облаком и выпадают затем из него.

Установлено, что пеплы, выпадающие из пепловых облаков, имеют различный ситовый состав как в зависимости от интенсивности извержения, так и в зависимости от расстояния до места выпадения пепла. Вблизи вулканов выпадают крупные фракции пеплов с размерами отдельных частиц до 3-5 мм; чем дальше уходят пепловые облака, тем меньше размер пепловых частиц. Вместе с тем известно, что пеплы, выпадающие на расстояниях до 100 км и более, еще имеют сложный ситовый состав. Это, по нашему мнению, свидетельствует о том, что во время перемещения пеплового облака происходит не только фракционирование уже имеющихся частиц пепла, но и образование новых частиц, поскольку тонкие пеплы, находящиеся во взвешенном состоянии, обладают способностью образовывать конгломераты, которые затем превращаются в плотные цементированные шарики, называемые пизолитами, или окаменевшими дождевыми каплями. Происхождение особенно мелких пеплов, которые длительное время находятся в воздухе и переносятся на очень большие расстояния, скорее всего связано с выпадением их непосредственно из горячего парового облака по мере его охлаждения. Из жерла вулкана вверх выбрасывается струя горячего пара, имеющего температуру до 400-450° С. В таком паре даже при нормальном давлении находятся растворенные вещества, хотя и в невысокой концентрации. При дальнейшем охлаждении парового облака из него выпадают растворенные вещества в виде частиц, имеющих размеры, приближающиеся к размерам молекул. Такие частицы пепла могут удерживаться в воздухе неограниченное время.

Таким образом, преобладание пеплов и образование весьма дисперсных материалов в вулканических выбросах удовлетворительно объясняются выпадением их из водных, в том числе надкритических и паровых, растворов, выбрасываемых в атмосферу. Такое происхождение пеплов объясняет некоторые специфические особенности их состава.

Известно, что по мере перемещения пеплового облака на все большие расстояния от вулканического кратера из него выпадают пеплы неодинакового химического состава. Даже совершенно одинаковые по ситовому составу фракции пеплов заметно изменяются по химическому составу в зависимости от длительности пребывания частиц пепла в облаке. Эту зависимость обычно связывают с расстоянием от вулкана. Но дело тут, конечно, не в пути, а во времени. Особенно заметны изменения содержания в пеплах железа, магния, марганца, олова, ванадия и других элементов, которое, как правило, растет по мере удаления от кратера вулкана.

Весьма существенной особенностью процессов, которые приводят к росту содержания перечисленных элементов в пеплах, является то, что они изменяют химический состав пеплов только в тонкой поверхностной пленке каждой частицы пепла. Толщина химически измененной пленки достигает 10 -4 -10 -6 см . И. И. Гущенко, изучавший пеплы Северной Камчатки, отмечает, что они обладают хорошо выраженной сорбционной способностью и что мелкозернистый пепел сорбирует наибольшие количества анионов SO 4 -2 и НСО 3 - , а грубозернистые пеплы лучше сорбируют ион хлора. На темноцветных и рудных минералах пеплов предпочтительно сорбируются SO 4 2- , HCO 3 - , Na + , K + , Mg 2+ . На плагиоклазах и стекле пеплов лучше сорбируются Cl - , Ca 2+ , Fe 3+ , P 5+ , М n 2+ . Содержание таких элементов, как Fe , Ti , Mg , Mn , в сорбционных пленках составляет до 35 и даже до 75% от валового содержания этих элементов в пеплах. И. И. Гущенко показал также, что содержание магния в пеплах вулкана Безымянного увеличивается в 12-30 раз за время перемещения облака на расстояние 90 км от вулкана. Он же приводит данные, показывающие, что в пеплах вулкана Гекла, выпавших 29 марта 1947 г., на расстоянии 3800 км от него содержание MgO и К 2 О увеличилось в 4 раза, а СаО, Р 2 О 5 , Ti О 2 и А1 2 О 3 - на 40-60% по отношению к содержанию этих элементов в пирокластическом материале, выпавшем в 10 км от вулкана.

Химический состав пеплов и особенно их поверхностных сорбционных пленок отличается от среднего состава пород коры суши и океана присутствием и повышенным содержанием многих элементов, таких, как Ga , V , Си, Со, Ni , Cr , Sr , Ba , Zr , U , Th и др.

К специфическим особенностям вулканических пеплов относится и то, что в состав пеплов входит стекловидный материал. Доля стекла в пеплах колеблется от 53 до 95%, что свидетельствует о быстром переходе частиц, образовавших пеплы, из жидкого в твердое состояние.

С точки зрения выпадения вулканических пеплов из водных растворов, вырывающихся из дренажной оболочки земной коры, все эти очень интересные особенности пеплов не только являются необъяснимыми, а наоборот, они совершенно естественны и понятны.

Как было отмечено выше, различные малолетучие соединения в соответствии с изменением растворимости, которая зависит от температуры, давления и фазовых переходов растворов при критических температурах, по-разному распределяются между паровой, жидкой и твердой фазами. Несмотря на то, что экспериментальными исследованиями еще почти не затронуто изучение таких сложных систем, какими могут быть системы, образующие растворы, заполняющие дренажную оболочку земной коры, можно понять некоторые закономерности перехода тех или иных компонентов из растворов в твердое состояние при образовании пеплов и перемещении их вместе с облаком.

Процессы эти и их очередность представляются в таком виде.

Облака водяных паров, которые образуются над жерлом вулкана при большой скорости выбросов многих миллионов тонн пара, имеют высокую температуру. Поэтому твердое вещество содержится в облаках пара не только в виде частиц пепла, но и в растворенном состоянии. По мере удаления облака от места извержения оно увеличивается в объеме и охлаждается. Охлаждение паров от 350-450 до 0° С приводит к выпадению в твердом состоянии тех компонентов, которые находятся в горячем паре. Эти мельчайшие твердые частицы могут конденсировать на себе пленки жидкой воды, могут прилипать или сорбироваться на более крупных частицах пепла и образовывать на них тончайшие сорбционные пленки, характерные для пеплов.

Без экспериментальных данных трудно судить о температуре пара в пепловых облаках над вулканом и на пути, который облака проходят, поднимаясь кверху и уходя вдаль. Однако, судя по явной зависимости химического состава тонких поверхностных, сорбционных пленок от расстояния, на котором пеплы выпадают, можно считать, что охлаждение протекает достаточно длительно. Вероятно и то, что после прекращения выпадения растворенных в паре веществ происходит дальнейшее изменение состава поверхностной пленки крупных частиц пепла. Они сорбируют из облака те тонко рассеянные примеси, которые могут иметь противоположный заряд.

С точки зрения гипотезы образования пепловых облаков из надкритических растворов дренажной оболочки эти факты очень важны, ибо в этом случае обязательны процессы образования пеплов и мельчайшей пыли, которая сорбируется на более крупных частицах пеплов, образуя сорбционные пленки.

Другие гипотезы происхождения парового облака не могут объяснить присутствия в облаке элементов, сорбирующихся на пепловых частицах. Они тем более не могут объяснить чрезвычайно широкую гамму этих элементов. В таком широком ассортименте рассеянные, в том числе радиоактивные, элементы, как правило, не встречаются ни в лаве, ни в магматических породах, ни тем более в породах, слагающих толщу земной коры. Поэтому широкий ассортимент элементов в сорбционной пленке на пепловых частицах является одним из наиболее убедительных свидетельств в пользу гипотезы, связывающей происхождение пепловых облаков с растворами дренажной оболочки. Эту же связь подтверждает широкий набор летучих компонентов, выбрасываемых вулканами, фумаролами и другими источниками. В их число, как известно, входят: СО, СО 2 , SO 2 , H 2 S , CSO , N 2 , N 2 O 3 , N 2 O 5 , NO 3 , NH 4 Cl , PH 3 , CH 4 , Kr , Xe , Ne , He , H 2 , Se , SiF 4 , H 3 BO 3 и многие другие, летучие с хлором, бором, серой и фтором соединения. О широком наборе элементов в растворах дренажной оболочки свидетельствуют также солевой состав океана и особенно сложный состав железомарганцевых и фосфорных конкреций.

Для чего нужна косметика с вулканическим пеплом

"Мы - дети вулканов"

В наши дни в научных кругах становится все более популярной теория происхождения жизни посредством химической эволюции элементов, в первую очередь углерода, который служит основой всего живого. Известно, что вулканы – главный источник, выделяющий из глубоких недр Земли колоссальное количество углерода, в виде углекислоты и вулканических газов. Далее вулканический углерод вступает в химические реакции и образует усложненные органические молекулы. Советский ученый-вулканолог Мархинин пришел к выводу что «мы - дети вулканов», первым выдвинув гипотезу, что такими соединениями могут быть аминокислоты, которые, как известно, являются составной частью белка - основы жизни. И действительно, в ходе исследований вулканогенного углеродного вещества ученые обнаружили в нем нуклеиновые кислоты и белок – основные соединения, обеспечивающие деятельность живой клетки.

Живая материя на 95 процентов состоит из таких элементов, как углерод, водород, кислород, азот, сера и фосфор. Все эти шесть элементов входят в состав вулканогенного углеродсодержащего вещества. Естественно предположить, что синтез предбиологических соединений происходил (и происходит) в районах активного вулканизма и путь от неживого к живому начался именно там.

Косметические свойства вулканического пепла

Продукт вулканических извержений, происходивших в далеком прошлом, традиционно применялся в строительстве: пепел входит в состав фундаментов зданий, черепицы для крыши, изоляционных материалов.

Но потом люди нашли ему новый оригинальный способ применения.

Первое коммерчески успешное косметическое средство с вулканическим пеплом было выпущено в 1994 году японской маркой Tengen. Это был скраб без каких-либо синтетических добавок, эффективно очищающий кожу лица. Вслед за японцами эстафету приняли исландские и корейские производители косметики, и средства, в составе которых содержится вулканический пепел, набирают все большую популярность.

Дело в том, что в составе вулканического пепла содержатся легко усваиваемые кожей минералы, органические соединения (гуминовые и кремниевые кислоты, ферменты, липиды, смолы) и микроэлементы (селен, бор, йод, бром, рубидий и др.) Для производства косметики используется только белый пепел, которому не менее 400000 лет. Он не должен содержать каких-либо посторонних примесей.

Вулканический пепел способен обеспечить полноценный уход за жирной кожей, контролируя работу сальных желез, сохраняя чистоту пор и сужая их, препятствуя их закупорке. Вулканический пепел хорошо борется с воспалениями и покраснениями. Также пепел эффективно восстанавливает минеральный баланс кожи, способствует улучшению кровообращения в тканях, повышает упругость кожи. Поэтому самые популярные из продуктов с вулканическим пеплом – это маски, скрабы, пилинги, пенки для умывания. Основой таких косметических средств является целебная вода из источников вулканического происхождения.

Остров Чеджу

Вулканический пепел (поззолан), используемый в корейской косметике, добывается на красивейшем острове Чеджу (Jeju), который является заповедником и охраняется ЮНЕСКО как всемирное природное наследие. Это излюбленное место отдыха корейцев, одна из главных достопримечательностей Южной Кореи, которая находится всего в часе полета от Сеула. Остров возник после извержения вулкана Халласан несколько сот миллионов лет назад, и состоит в основном из базальта и лавы.

На острове Чеджу находятся музеи, храм, смотровая площадка, парк Loveland, известный своими эротическими скульптурами, а также единственный в Азии водопад, спадающий в море.

Серия Jeju Volcanic lava

На сайте SashaLab появилась новая серия средств с вулканическим пеплом: Jeju Volcanic Lava от The Face Shop. В серию входит маска, маска-мусс, тонер и пенка-скраб. Эти средства помогают справиться с проблемной жирной кожей, «цветущей», склонной к воспалениям.

Помимо пепла, в средства серии Jeju Volcanic Lava входят также и растительные компоненты: это экстракт бамбука, экстракт винограда, лавандовое масло, масло кожуры лимона, масло розмарина, масло бергамота, масло апельсина, масло оливы, розовое масло, ментол и т.д.

Экстракт бамбука богат полисахаридами, минеральными солями, аминокислотами и органическими кислотами. Экстракт бамбука обладает антиоксидантной и Р-витаминной активностью, укрепляет стенки сосудов, повышает эластичность и тонус сосудов, кровоснабжение тканей, снижает проницаемость капилляров и улучшает микроциркуляцию крови, обладает противоотечным действием. Поддерживает нормальный рН кожи, сохраняет и поддерживает оптимальную увлажненность кожных покровов.

Масло кожуры лимона благодаря высокому содержанию лимонной, аскорбиновой (витамина С) и яблочной кислоты, способствует более полному очищению кожи от отмерших клеток, улучшает состояние комбинированной и жирной кожи в целом: нормализует процессы эпителизации в выводных протоках сальных желез и устьях волосяных фолликулов и, как следствие, уменьшает плотность комедонов и размеры пор. Проявляет антибактериальное действие, стимулирует процесс регенерации клеток кожи, разглаживает мелкие морщинки.

Все эти средства лучше применять в комплексе.

Мусс Jeju Volcanic Lava Pore Clay Mousse Pack мягко очищает кожу, не пересушивая ее, а микроскопические частички воздуха нежно массируют кожу и улучшают микроцеркуляцию крови. Форма воздушного мусса эффективнее проникает в поры и удаляет больше загрязнений с наименьшей травматичностью для кожи.

Cтраница 1


Вулканическая пыль, судя по некоторым данным, может даже в тропосфере присутствовать достаточно длительное время. По крайней мере в ледниковых отложениях Антарктиды обнаружена вулканическая зола, которая была перенесена на расстояние не менее 4000 км, причем возраст исследованных отложений составлял от 1 8 до 16 млн. лет.  


Ветер переносит на большие расстояния вулканическую пыль, вылетающую при извержениях вулканов.  

Снижение солнечной радиации висящей в атмосфере вулканической пылью может доходить до очень высоких значений.  

При смешанных эффузивно-эксплозивных, экструзивно-эксплозивных и др. извержениях важной характеристикой является коэффициент эксплозивности, выражающийся в процентах количества пирокластического материала (вулканическая пыль, песок, вулканические бомбы и др.) от общей массы продуктов.  

Другой тип венца (этот венец гораздо больше по размеру, его угловой радиус достигает 15) - белое и красно-коричневое кольцо Бишопа, которое образуется вследствие рассеяния в атмосфере вулканической пыли. После некоторых извержений вулканов солнце в сумерки окрашивается в прекрасные золотые тона; сумеречное небо обретает невероятное богатство красок; тогда же на небе появляется второй (см. задачу 5.60) пурпурный луч, который сохраняется в течение нескольких часов после захода солнца.  

Вулканическая пыль несколько больше может за-трязнять земную атмосферу. Воздушными течениями вулканическая пыль может разноситься на очень дальние расстояния.  

Трудно, однако, объяснить, почему такие облака пыли сохраняются иногда целыми неделями и покрывают почти весь диск планеты, особенно при слабых ветрах, скорость которых (несколько км / с), можно определить по перемещению облаков. Высказывалось также предположение о существовании в атмосфере Марса облаков вулканической пыли (Жарри-Делож), которые у нас на Земле сохраняются в высоких слоях атмосферы очень долго, однако мы ничего не знаем о присутствии на Марсе многочисленных действующих вулканов. Высота, на которой находятся облака второго типа, равна примерно 5 км над поверхностью планеты, и они располагаются определенно ниже, чем облака первого типа. Высота фиолетового слоя, который, по-видимому, располагается между желтыми и синими облаками, может быть близка к 10 или 15 км, но не исключена возможность и еще больших значений.  

Когда эти облака заметили впервые, то поначалу решили, что они возникли в результате конденсации паров, занесенных высоко в атмосферу вместе с вулканической пылью при мощном извержении вулкана Кракатау в августе 1883 г. Правда, от момента извержения вулкана до первого наблюдения серебристых облаков прошло почти два года. Кроме того, непонятно было, почему эти облака не наблюдались после других катастрофических извержений вулканов. Появление довольно ярких серебристых облаков после падения знаменитого Тунгусского метеорита (30 июня 1908 г.) породило мысль, что облака обязаны своим происхождением метеоритам. В первой четверти нашего столетия стала популярной метеоритная гипотеза, согласно которой частицы серебристых облаков - это очень мелкие осколки метеоритов, продукты их распыления в атмосфере.  

Главными источниками аэрозольных частиц в атмосфере являются почва, моря и океаны, вулканы, лесные пожары, частицы биологического происхождения и даже метеориты. Если принять количество метеоритной пыли, выпадающей в год на землю, за единицу, то лесные пожары, пыль от пустынь и почвы, морская соль и вулканическая пыль составляют 35, 750, 1 500 и 50, соответственно.  

Пепел погубил поля на островах Бали, Ломбок, значительной части Явы. Вулканическая пыль, наполнившая стратосферу, вызвала резкое похолодание, неурожай и голод в Европе и Америке.  

Глинозем бентонит очень удобен для демонстрации тиксотропии. Частицы его очень асимметричны и имеют форму длинных тонких пластинок. Бентонит получается из вулканической пыли и его основным компонентом является минерал монтмориллонит. Он является одним из немногих неорганических веществ, которые набухают в воде. Для получения тиксотропного геля бентонита вода смешивается с глиной до достижения необходимой консистенции. Количество прибавленной воды определяет время затвердевания геля. Если суспензия глины достаточно концентрирована, то можно слышать как движется жидкая суспензия при сильном встряхивании геля в пробирке, но время застудневания так мало, что если встряхивание прекратить, то гель сразу затвердевает, и жидкого состояния вообще не наблюдается.  

И, наконец, необходимо также рассмотреть примеси, поступающие извне. Что касается человеческой деятельности, то здесь могут быть упомянуты три главных источника: продукты сгорания из стационарных источников (электростанции); продукты сгорания из перемещающихся источников (транспортные средства); индустриальные процессы. Пять главных примесей выделяются данными источниками: оксид углерода, оксиды серы, оксиды азота, летучие органические составы (включая углеводороды), ароматические углеводороды полициклической структуры и частицы. Процессы внутреннего сгорания в транспортных средствах являются основным источником оксида углерода и углеводородов и важным источником оксидов азота. Процессы сгорания в стационарных источниках выделяют оксиды серы. Промышленные процессы и стационарные источники продуктов сгорания производят более половины частиц, испускаемых в воздух посредством человеческой деятельности, а промышленные процессы также могут быть источником летучих органических составов. Существуют также примеси типа частиц вулканической пыли, почвы и морской соли, а также споры и микроорганизмы природного происхождения, распространяющиеся в воздухе. Состав наружного воздуха изменяется в зависимости от места расположения здания и зависит как от присутствия поблизости источников примесей, так и от природы этих источников, а также от направления господствующего ветра. Однако городской воздух всегда содержит намного более высокие концентрации этих примесей.  

Страницы:      1

В ряде стран Европы уже отмечено появление в воздухе частичек вулканической пыли , и все надеются, что не выпадет двуокись кремния, которая выделяется при извержениях вулканов и представляет опасность не только для легких и сердца, но и риск возникновения рака легких.

Выбросы ожившего в Исландии вулкана поднимаются в воздух, переносятся в верхних воздушных слоях на громадные расстояния и постепенно опускаются на землю.
Специалисты до сих пор не имеют единого мнения по поводу того, опасны ли эти выбросы для людей, и если да, то в какой степени. Но врачи предупреждают тех, кто страдает заболеваниями легких, сердца, а также аллергиков, что им стоит ограничить свое пребывание на улице, когда повышается концентрация вулканической пыли в воздухе их мест проживания.

Облако вулканической пыли состоит из мельчайших частиц горных пород, из которых, собственно, и состоит вулкан. Эти частицы содержат также примеси лавы и пепла.
Некоторые частицы имеют кислотное покрытие, которое вызывает легкое раздражение кожных покровов, легких и глаз.

Однако, по данным исследователей, концентрация таких частиц в пылевом облаке довольно низкая, поэтому они не причиняют существенного вреда. Врачи, опираясь на опыт множества прежних извержений вулканов, считают, что это явление не представляет опасности для здоровья со стороны вулканической пыли.

Пока что специалисты Всемирной Организации здравоохранения рекомендуют людям оставаться в помещении в то время, когда облако вулканической пыли находится над их местом проживания. Частицы пыли уже начали осаждаться на территории Исландии, Англии,Шотландии, Германии, однако никаких указаний относительно ограничения передвижения людей в этих районах сделано не было.

Чего опасаются: двуокись кремния

Некоторые ученые предупреждают об опасности, связанной с возможным появлением в составе вулканической пыли двуокиси кремния. Это вещество является составной частью горных пород, из которых состоит сам вулкан.
Будучи высвобождена в ход извержения вулкана, двуокись кремния, оседая из пылевого облака и попадая в легкие, может вызвать их тяжелые заболевания, вплоть до повышения риска рака легких, а также представляет угрозу для работы сердца.

Вызываемая двуокисью кремния болезнь силикоз представляет немалые трудности для лечения и угрожает жизни больных. Израильские ученые говорят о том, что до сих пор точно неизвестно, из каких компонентов состоит облако вулканической пыли, образовавшееся сейчас в Исландии.

Что происходит с организмом при вдыхании загрязненного воздуха? Наиболее уязвимой в этом случае оказывается, естественно, дыхательная система. Проникновение пылевых частиц в бронхи и альвеолы легких приводит к увеличению выделяемой ими мокроты. Это защитная реакция легочной ткани на внешние раздражители.

Однако эта реакция приобретает избыточные черты, свойственные аллергии. При развитии аллергии не только легкие наполняются мокротой, но и начинается слезотечение и зуд в глазах, раздражение слизитой в горле, а также приступы астмы.
На этом фоне активизируются вирусы и микробы, находящиеся в легких, что приводит к дальнейшему развитию воспалительных заболеваний дыхательной системы.

Нарушение работы легких отрицательно сказывается на сердечной деятельности. Сердечный "насос", призванный работать на постоянных, но низких оборотах, не справляется с возрастающей нагрузкой: нехватка кислорода требует от сердца увеличить ритм деятельности. У людей, страдающих недостаточностью сердечного кровоснабжения, это состояние может привести к инфарктам и инсультам.

Проблемы дыхательной и сердечной деятельности не могут не сказываться на всем организме. Вследствие повышения кровяного давления появляется утомляемость, головные боли, ухудшение общего состояния, а также повышается риск развития сердечного приступа и кровоизлияния в мозг.

В настоящее время метеорологи, экологи и специалисты многих других отраслей внимательно следят за перемещением облака вулканической пыли, степенью осаждения его частиц и их составом.
В случае ухудшения экологической ситуации население немедленно будет поставлено в известность и получит рекомендации по правильному поведению.

В данный момент угрозы здоровью людей нет.