Биографии Характеристики Анализ

По происхождению углеводы подразделяются на. На практике используется также спиртовое брожение глюкозы, например при производстве пива

Классификация углеводов.

Углеводы


Моносахариды Дисахариды Полисахариды

Глюкоза Сахароза Целлюлоза

Фруктоза Мальтоза Крахмал

Рибоза Лактоза Гликоген

Дезоксирибоза

I . Моносахариды – простые углеводы, с формулой ( O) n .

В зависимости от количества атомов углерода в молекуле моносахариды называются триозами (3 атома), тетрозами (4 атома); пентозами (5 атомов) – рибоза, дезоксирибоза; и гексозами (6 атомов С) – глюкоза, фруктоза, галактоза.

Глюкоза содержится в крови (0,1-0,12%) и служит основным источником энергии для клеток и тканей организма. Рибоза и дезоксирибоза входят в состав нуклеиновых кислот и АТФ.

II. Дисахариды (олигосахариды) – сахара, образующиеся в результате объединения двух моносахаридов (гексоз), с потерей молекулы воды.

Наиболее важными из этой группы являются: сахароза (свекловичный сахар) и мальтоза (солодовый сахар) у растений, и лактоза – у животных (молочный сахар).

К дисахаридам относится пищевой сахар, получаемый из тростника свеклы. Он состоит из1 молекулы глюкозы и 1 молекулы фруктозы.

Моносахариды и дисахариды хорошо растворимы в воде, обладают сладким вкусом.

III. Полисахариды – сложные углеводы, образованные многими моносахаридами.

Общая формула ()n. Наибольшее биологическое значение имеют: крахмал, гликоген, целлюлоза, хитин. Полисахариды биополимеры, нерастворимы в воде, не имеют сладкого вкуса.

Кроме полисахаридов, состоящих из гексоз, существуют значительно более сложные длинные молекулы, содержащие аминный N (например: глюкозамин), который может быть ацетилирован (ацетилглюкозамин) или замещен на остатки серной или фосфорной кислоты.

Эти сложные полисахариды представляют следующие соединения:

ü нейтральные полисахариды , содержащие только ацетилглюкозамин. Пример: хитин – опорное вещество насекомых и ракообразных.

ü кислые мукополисахариды , содержащие в молекулах остатки серной и др. кислот. Пример: гепарин.

ü мукопротеиды (мукоиды) и гликопротеиды, представляют собой комплексы ацетилглюкозамина и др. углеводов с белками. Пример: вещества входящие в состав слюны и секрета слизистой желудка, также к гликопротеидам относятся яичный и сывороточный альбумины.

Свойства и функции углеводов:

1. Строительная (структурная) –

ü входят в состав оболочек растительных клеток (целлюлоза образует стенки растительных клеток) и формируют опорный скелет растений;

ü хитин – главный структурный компонент наружного скелета членистоногих. Строительную функцию хитин выполняет и у грибов.

2. Энергетическая функция (запасающая) –

ü углеводы являются основным источником энергии в клетках. При окислении 1 г глюкозы выделяет 17,6 кДж энергии;

ü крахмал является основным запасным веществом у растений, гликоген – у животных; служат энергетическим резервом.

Липиды.

Липиды – это сложные эфиры, образующиеся в результате реакции конденсации между жирными кислотами и каким-нибудь спиртом.

Реакция конденсации – это реакция, при которой происходит соединение двух веществ с выделением молекулы воды.

Липиды иногда называют жирами и жироподобные органические соединения, которые наряду с белками и углеводами обязательно присутствуют в клетках. Все они являются гидрофобными соединениями, т.е. нерастворимые в воде, но растворимы в неполярных органических растворителях (хлороформ, бензол, эфир, бензин, ацетон и др.)

Поступление липидов в клетку:

ü у растений синтезируются в каналах ЭПС.

ü у животных поступают с пищей, расщепляются и вновь синтезируются в собственные жиры.

Рис. Строение простого липида

Жир содержится в молоке всех млекопитающих животных, у некоторых до 40% (у самки дельфина). У некоторых растений большое количество жира находится в семенах и плодах (подсолнечник, грецкий орех).

Рис. Строение олеиновой кислоты

Липиды не являются полимерами , т.к. они не состоят из повторяющихся звеньев (мономеров).

Компоненты липидов.

Жирные кислоты называют «жирными» потому, что некоторые члены этого ряда входят в состав жиров. Общая формула имеет вид R-СООН, где R – атом водорода или радикал типа – СН 3 , –С 2 Н 5 и др.

Длинная цепь из атомов углерода и водорода составляет гидрофобный углеводородный хвост .

Иногда в жирных кислотах имеется одна или несколько двойных связей (С = С). В этом случае жирные кислоты называются ненасыщенными . Если двойных связей нет, кислоты называются насыщенными .

Ненасыщенные жирные кислоты плавятся при низких температурах. Олеиновая кислота – основной компонент оливкового масла – при обычных температурах бывает жидкой (Т пл = 13,4 о С), тогда как пальмитиновая и стеариновая кислоты (Т пл = 63,1 о С и Т пл = 69,6 о С) при таких температурах остаются твердыми.

Спирты. Большая часть липидов представляет собой триглицериды. В их состав входит спирт глицерол.

Кроме жира, в клетках присутствуют вещества, обладающие, как и жиры, гидрофобными свойствами. Это – липоиды.

Липоиды (греч. «липос» - жир, «эйдос» - вид) – жироподобные вещества, у которых 1 молекула жирной кислоты заменена на .

Классификация липидов

Эфиры жирных кислот и глицерина Стероиды

(входит спирт холестерол)

Простые Сложные

Триглицериды Воска Фосфолипиды

Гликолипиды

Триглицериды – самые распространённые из липидов, встречающихся в природе. Их принято делить на жиры и масла, в зависимости от того, остаются ли они твердыми при комнатной температуре (жиры) или находятся в жидком состояние (масла). Температура плавления липида тем ниже, чем выше в нем доля ненасыщенных жирных кислот.

В организме животных, живущих в холодном климате, например у рыб арктических морей, обычно содержится больше ненасыщенных триацилглицералов, чем у обитателей южных широт. Поэтому тело их остается гибким и при понижении температуры среды.

Воска – сложные эфиры жирных кислот и многоатомных спиртов. Кожные железы животных способны вырабатывать воска, предохраняющие шерсть и перья от намокания. Пчелы строят соты из воска. У растений воска образуют защитный слой на поверхности плодов и листьев.

Фосфолипиды – соединения глицерина, жирных кислот и остатка фосфорной кислоты.


Рис. Строение фосфолипида.

Фосфатная голова – гидрофильна. Хвост не растворим в воде.

Гликолипиды – соединения липидов и углеводов. Гликолипиды и фосфолипиды входят в состав мембран.

Стероиды не содержат жирных кислот, и имеют в своем составе спирт холестерол.

К этой группе липидов (стеролы)относятся желчные кислоты, гормоны коры надпочечников (адренокортикотропные гормоны), половые гормоны, витамин D. Предшественником в синтезе этих веществ является холестерин. Как структурный компонент он входит в состав всех мембран.

К стеролам близки терпены, представителями которых являются гибереллины (ростовые вещества растений), каротиноиды (пигменты*), ментол и камфора (эфирные масла растений).

*Пигменты – разнообразные по химической структуре органические вещества, способные избирательно поглощать свет определенной длины волны.

ü Красящая: придают окраску клеткам тканей и органов (антоцианы у растений, меланин у животных).

ü Защита от ультрафиолета (каротиноиды у растений, меланин у животных).

ü Участие в фотосинтезе (хлорофилл и фикобиллины).

ü Транспорт и депонирование кислорода (гемоглобин крови и миоглобин мышц).

ü Участие в зрительном поцессе (родопсин и йодопсин).

Свойства и функции липидов:

1. Энергетическая функция. Липиды обеспечивают 25-30% всей энергии, необходимой организму. При расщеплении 1г. жиров до и освобождается 38,9 кДж энергии.

2. Запасающая функция. Запасными питательными веществами могут быть капли жира вне клетки. Накапливаясь в клетках жировой ткани животных, в семенах и плодах растений, жиры служат запасным источником энергии.

Пример: животные, впадающие в спячку, и растения накапливающие жиры и масла и расходуют их в процессе жизнедеятельности.

3. Строительная функция (структурная) – липиды образуют бимолекулярный слой служащий основой наружной клеточной мембраны, из них 75-95% фосфлипиды; гликолипиды входят в состав клеток мозга и нервных клеток.

4. Функция термоизоляции. Жиры плохо проводят тепло. У некоторых животных (тюлени, киты) он откладывается в подкожной жировой ткани, которая у китов образует слой толщиной до 1 м.

5. Защитная функция: термо- и гидроизоляция, защита от ударов. Пример: воск предохраняет перья и шерсть животных от смачивания.

6. Регуляторная функция (гормональная)

ü связана с тем, что многие жиры – компоненты витаминов (А, Д, Е и К) следовательно часть липидов принимают участие в обмене веществ.

ü Стероидные гормоны регулируют ряд процессов обмена веществ и размножения.

7. Функция источника воды.

ü При окислении 100 г жира образуется ≈105 г воды. Эта метаболическая вода очень важна для обитателей пустыни, в частности для верблюда, способного обходится без воды 10-12 дней; жир запасаемый в его горбе, используется для этой цели.

ü Необходимую для жизнедеятельности воду медведи, сурки и др. животные в спячке также получают в результате окисления жира.

Белки.

Белки – сложные органические соединения (биополимеры), состоящие из С, Н, О и N (иногда и S), мономерами которых являются аминокислоты.

Белки высокомолекулярны.

Молекулярная масса (Mm) = от 5 тыс. до 1 млн. дальтон и более. Так например: Mm этилового спирта = 46 Д; Mm одного из белков яйца = 36000 Д; Mm одного из белков мышц = 1500000 Д. Глобулин молока имеет Mm 42000 Д. Его формула –

Поступление белков в клетку:

ü у растений синтезируется на рибосомах из аминокислот которые образуются в клетках, из и карбоксильной группы, соединенных с различными радикалами.

ü у животных поступают с пищей, расщепляются до аминокислот, которые идут на синтез собственных белков.

В образовании белков участвуют 20 различных аминокислот.

Аминокислоты – низкомолекулярные органические соединения, в состав которых входят 1 или 2 аминогруппы (- ) и 1 или 2 карбоксильные группы (-COOH), обладающие щелочными (основными) и кислотными свойствами соответственно. Этим объясняются амфотерные свойства аминокислот, благодаря чему в клетках они играют роль буферных соединений.

Классификация аминокислот:

1) Моноаминомонокарбоновые: Глицин (Гли), Аланин (Ала), Валин (Вал), Лейцин (Лей), Изолейцин (Иле).

2) Моноаминодикарбоновые: Глютаминовая кислота (Глу), Аспаролиновая кислота (Асп)

3) Диаминомонокарбоновые: Аргинин (Арг), Лизин (Лиз), Оксилизин (Оли).

4) Гидроксилсодержащие: Треонин (Тре), Серин (Сер).

6) Ароматические: Фенилаланин (Фен), Пирозин (Пер).

7) Гетероциклические: Триптофан (Три), Пролин (Про), Оксипролин (Опр), Гистидин (Гис).

Поступление аминокислот в клетку:

ü у растений все необходимые аминокислоты синтезируются из , воды и аммиака.

ü у животных и человека утрачена способность синтезировать ряд протеиногенных аминокислот, которые стали для них незаменимыми – они должны поступать с пищей и кормом. [в классификации отмечены курсивом]. Заменимые аминокислоты – синтезируются в организме человека и животных в процессе биосинтеза.

Общая формула аминокислоты :

- CH - COOH

Все аминокислоты различаются только радикалами.

В настоящее время известно более 150 природных аминокислот с известными строением и функциями. Пример: γ-аминомасляная кислота обеспечивает процессы торможения в нервной системе. Многие аминокислоты являются предшественниками витаминов, а/б, гормонов и др. биологически-активных соединений.

Большинство аминокислот находятся в организме в свободном виде и только 20 из них входят в состав белков. Эти аминокислоты называются белковые или протеиногенные (образующие протеины). Им присуще свойство – способность при участии ферментов соединятся по аминным и карбоксильным группам и образовывать полипептидные цепи.

В живой природе широко распространены многие вещества, значение которых сложно переоценить. К примеру, к таковым относятся углеводы. Они чрезвычайно важны в качестве источника энергии для животных и человека, а некоторые свойства углеводов делают их незаменимым сырьем для промышленности.

Что это такое?

Краткие сведения о химическом строении

Если посмотреть на линейную формулу, то в составе этого углевода хорошо заметна одна альдегидная и пять гидроксильных групп. Когда вещество находится в кристаллическом состоянии, то молекулы его могут находиться в одной из двух возможных форм (α- или β-глюкоза). Дело в том, что гидроксильная группа, сцепленная с пятым атомом углерода, может вступать во взаимодействие с карбонильным остатком.

Распространенность в природных условиях

Так как ее исключительно много в виноградном соке, глюкозу нередко называют «виноградным сахаром». Под таким именем ее знали еще наши далекие предки. Впрочем, отыскать ее можно в любом другом сладком овоще или фрукте, в мягких тканях растения. В животном мире ее распространенность ничуть не ниже: приблизительно 0,1% нашей крови - это именно глюкоза. Кроме того, найти можно эти углеводы в клетке практически любого внутреннего органа. Но особенно их много в печени, так как именно там осуществляется переработка глюкозы в гликоген.

Она (как мы уже и говорили) является ценным источником энергии для нашего организма, входит в состав практически всех сложных углеводов. Как и прочие простые углеводы, в природе она возникает после реакции фотосинтеза, которая протекает исключительно в клетках растительных организмов:

6СО 2 + 6Н 2 О хлорофилл С 6 Н 12 О 6 + 6О 2 - Q

Растения при этом выполняют невероятно важную для биосферы функцию, аккумулируя энергию, которая получается ими от солнца. Что касается промышленных условий, то издревле получали из крахмала, производя его гидролиз, причем катализатором реакции является концентрированная серная кислота:

(С 6 Н 10 О 5)n + nH 2 О H 2 SO 4 , t nC 6 H 12 О 6

Химические свойства

Каковы химические свойства углеводов этого вида? Обладают все теми же характеристиками, которые свойственны сугубо спиртам и альдегидам. Кроме того, имеются у них и некоторые специфические особенности. Впервые синтез простых углеводов (в том числе и глюкозы) был произведен талантливейшим химиком А. М. Бутлеровым в 1861 году, причем в качестве сырья он использовал формальдегид, расщепляя его в присутствии гидроксида кальция. Вот формула этого процесса:

6НСОН ------->С6Н 12 О 6

А сейчас рассмотрим некоторые свойства двух других представителей группы, природное значение которых не менее велико, а потому их изучает биология. Углеводы этих видов играют в нашей повседневной жизни весьма важную роль.

Фруктоза

Формула этого глюкозного изомера - СеН 12 О б. Наподобие «прародителя» может существовать в линейной и циклической форме. Вступает во все реакции, которые характерны для многоатомных спиртов, но, тем самым отличаясь от глюкозы, никак не взаимодействует с аммиачным раствором оксида серебра.

Рибоза

Чрезвычайно большой интерес представляет рибоза и дезоксирибоза. Если вы хоть немного помните программу биологии, то и сами прекрасно знаете о том, что именно эти углеводы в организме входят в состав ДНК и РНК, без которых само существование жизни на планете невозможно. Название «дезоксирибоза» означает, что в ее молекуле на один атом кислорода меньше (если ее сравнивать с обычной рибозой). Будучи сходными в этом отношении с глюкозой, также могут иметь линейное и циклическое строение.

Дисахариды

В принципе, эти вещества по своему строению и функциям во многом повторяют предыдущий класс, а потому нет смысла останавливаться на этом более подробно. Каковы химические свойства углеводов, относящихся к этой группе? Важнейшими представителями семейства являются сахароза, мальтоза и лактоза. Все они могут быть описаны формулой С 12 Н 22 О 11 , так как являются изомерами, но это не отменяет огромных различий в их строении. Так чем характерны сложные углеводы, список и описание которых вы можете увидеть ниже?

Сахароза

Ее молекула имеет в своем составе сразу два цикла: один из них является шестичленным (остаток α-глюкозы), а другой - пятичленный (остаток β-фруктозы). Соединяется все эта конструкция за счет гликозидного гидроксила глюкозы.

Получение и общее значение

Согласно сохранившимся историческим сведениям, еще за три века до Рождества Христова сахар из научились получать в Древней Индии. Только в середине 19-го века оказалось, что куда больше сахарозы с меньшими для этого усилиями можно добыть из сахарной свеклы. В некоторых ее сортах содержится до 22% этого углевода, тогда как в тростнике содержание может быть в пределах 26%, но такое возможно только при идеальных условиях выращивания и благоприятном климате.

Мы уже говорили, что углеводы хорошо растворяются в воде. Именно на этом принципе основано получение сахарозы, когда для этой цели используют аппараты-диффузоры. Чтобы осадить возможные примеси, раствор фильтруют через фильтры, в состав которых входит известь. Чтобы удалить из полученного раствора гидроксид кальция, через него пропускают обычный углекислый газ. Осадок отфильтровывают, а сахарный сироп упаривают в специальных печах, получая на выходе уже знакомый нам сахар.

Лактоза

Этот углевод в промышленных условиях выделяется из обычного молока, в котором в избытке содержатся жиры и углеводы. В нем этого вещества содержится довольно много: так, коровье молоко содержит приблизительно 4-5,5% лактозы, а в молоке женщин ее объемная доля доходит до 5,5-8,4%.

Каждая молекула этого глицида состоит из остатков 3-галактозы и а-глюкозы в пиранозной форме, которые образуют связи посредством первого и четвертого атома углерода.

В отличие от других сахаров, у лактозы есть одно исключительное свойство. Речь идет о полном отсутствии гигроскопичности, так что даже во влажном помещении этот глицид совершенно не отсыревает. Это свойство активно используется в фармацевтике: если в состав какого-то лекарства в порошкообразной форме входит обычная сахароза, то к ней обязательно добавляют лактозу. Она совершенно натуральная и безвредна для человеческого организма, в отличие от многих искусственных добавках, которые препятствуют слеживанию и намоканию. Каковы функции и свойства углеводов этого типа?

Биологическое значение лактозы чрезвычайно велико, так как лактоза является важнейшим питательным компонентом молока всех животных и человека. Что же касается мальтозы, то ее свойства несколько отличны.

Мальтоза

Является промежуточным продуктом, который получается при гидролизе крахмала. Название «мальтоза» получил из-за того что образуется во многом под влиянием солода (по-латински солод - maltum). Широко распространен не только в растительных, но и в животных организмах. В больших количествах образуется в пищеварительном тракте жвачных животных.

и свойства

Молекула этого углевода состоит из двух частей α-глюкозы в пиранозной форме, которые соединены между собой посредством первого и четвертого атомов углерода. На вид представляет собой бесцветные, белые кристаллы. На вкус - сладковатая, прекрасно растворяется в воде.

Полисахариды

Следует помнить, что все полисахариды можно рассматривать с той точки зрения, что они представляют собой продукты поликонденсации моносахаридов. Их общая химическая формула - (С б Н 10 О 5)п. В рамках данной статьи мы рассмотрим крахмал, так как он является наиболее типичным представителем семейства.

Крахмал

Образуется в результате фотосинтеза, в больших количествах откладывается в корнях и семенах растительных организмов. Каковы физические свойства углеводов этого вида? На вид представляет собой белый порошок с плохо выраженной кристалличностью, нерастворимый в холодной воде. В горячей жидкости образует коллоидную структуру (клейстер, кисель). В пищеварительном тракте животных имеется много ферментов, которые способствуют его гидролизу с образованием глюкозы.

Является наиболее распространенным который образован из множества остатков а-глюкозы. В природе одновременно встречаются две его формы: амилоза и амшопектин. Амилоза, будучи линейным полимером, может быть растворена в воде. Молекула состоит из остатков альфа-глюкозы, которые связаны через первый и четвертый атом углерода.

Нужно помнить, что именно крахмал является первым видимым продуктом фотосинтеза растений. В пшенице и других злаковых его содержится до 60-80%, тогда как в клубнях картофеля - всего 15-20%. К слову говоря, по виду крахмальных зерен под микроскопом можно безошибочно определить видовую принадлежность растения, так как они у всех разные.

Если нагреть, его огромная молекула будет быстро разлагаться с образованием мелких полисахаридов, которые известны под названием декстринов. У них с крахмалом одна общая химическая формула (С 6 Н 12 О 5)х, но имеется разница в значении переменной «х», которое меньше значения «n» в крахмале.

Напоследок приведем таблицу, в которой отражены не только основные классы углеводов, но и их свойства.

Основные группы

Особенности молекулярного строения

Отличительные свойства углеводов

Моносахариды

Различаются по числу атомов углерода:

  • Триозы (С3)
  • Тетрозы (С4)
  • Пентозы (С5)
  • Гексозы (С6)

Бесцветные или белые кристаллы, отлично растворяются в воде, сладкие на вкус

Олигосахариды

Сложное строение. В зависимости от вида, содержат 2-10 остатков простых моносахаридов

Внешний вид тот же, чуть хуже растворяются в воде, менее сладкий вкус

Полисахариды

Состоят из очень большого количества остатков моносахаридов

Белый порошок, кристаллическая структура выражена слабо, в воде не растворяются, но имеют свойство в ней разбухать. На вкус нейтральные

Вот каковы функции и свойства углеводов основных классов.

Углеводами

Виды углеводов.

Углеводы бывают:

1) Моносахариды

2) Олигосахариды

3) Сложные углеводы

крахмал12.jpg

Основные функции.

Энергетическая.

Пластическая.

Запас питательных веществ.

Специфическая.

Защитная.

Регуляторная.

Химические свойства

Моносахариды проявляют свойства спиртов и карбонильных соединений.

Окисление.

a) Как и у всех альдегидов, окисление моносахаридов приводит к соответствующим кислотам. Так, при окислении глюкозы аммиачным раствором гидрата окиси серебра образуется глюконовая кислота (реакция "серебряного зеркала").

b) Реакция моносахаридов с гидроксидом меди при нагревании так же приводит к альдоновым кислотам.

c) Более сильные окислительные средства окисляют в карбоксильную группу не только альдегидную, но и первичную спиртовую группы, приводя к двухосновным сахарным (альдаровым) кислотам. Обычно для такого окисления используют концентрированную азотную кислоту.

Восстановление.

Восстановление сахаров приводит к многоатомным спиртам. В качестве восстановителя используют водород в присутствии никеля, алюмогидрид лития и др.

III. Специфические реакции

Кроме приведенных выше, глюкоза характеризуется и некоторыми специфическими свойствами - процессами брожения. Брожением называется расщепление молекул сахаров под воздействием ферментов (энзимов). Брожению подвергаются сахара с числом углеродных атомов, кратным трем. Существует много видов брожения, среди которых наиболее известны следующие:

a) спиртовое брожение

b) молочнокислое брожение

c) маслянокислое брожение

Упомянутые виды брожения, вызываемые микроорганизмами, имеют широкое практическое значение. Например, спиртовое – для получения этилового спирта, в виноделии, пивоварении и т.д., а молочнокислое – для получения молочной кислоты и кисломолочных продуктов.

3. Стереоизомерия моносахаридов D- и L-ряды. Открытые и циклические формулы. Пиранозы и фуранозы. α- и β-аномеры. Циклоцепная таутомерия. Явление муторотации.

Способность ряда органических соединений вращать плоскость поляризации поляризованного света вправо или влево называют оптической активностью. Исходя из сказанного выше, следует, что органические вещества могут существовать в виде правовращающих и левовращающих изомеров. Такие изомеры получили название стереоизомеров, а само явление стереоизомерии.

В основе более строгой системы классификации и обозначения стереоизомеров лежит не вращение плоскости поляризации света, а абсолютная конфигурация молекулы стереоизомера, т.е. взаимное расположение четырех обязательно разных замещающих групп, находящихся в вершинах тетраэдра, вокруг локализованного в центре атома углерода, который получил название асимметрического атома углерода или хирального центра. Хиральные или, как их еще называют, оптически активные атомы углерода обозначают в структурных формулах звездочками

Таким образом, под термином стереоизомерия следует понимать различную пространственную конфигурацию заместителей у соединений, имеющих одну и ту же структурную формулу и обладающих одинаковыми химическими свойствами. Такой вид изомерии называют также зеркальной изомерией. Наглядным примером зеркальной изомерии могут служить правая и левая ладони руки. Ниже приведены структурные формулы стереоизомеров глицеринового альдегида и глюкозы.

Если у асимметрического атома углерода в проекционной формуле глицеринового альдегида ОН-группа располагается справа, такой изомер называют D-стереоизомером, а если ОН-группа расположена слева –L-стереоизомером.

В случае тетроз, пентоз, гексоз и других моноз, которые обладают двумя и более асимметрическими атомами углерода, принадлежность стереоизомера к D- или L-ряду определяют по расположению ОН-группы у предпоследнего атома углерода в цепи – он же является последним асимметрическим атомом. Например, для глюкозы оценивают ориентацию ОН-группы у 5-ого атома углерода. Абсолютно зеркальные стереоизомеры называют энантиомерами или антиподами.

Стереоизомеры не отличаются по своим химическим свойствам, но отличаются по биологическому действию (биологической активности). Большая часть моносахаридов в организме млекопитающих относится к D-ряду – именно к этой конфигурации специфичны ферменты, ответственные за их метаболизм. В частности D-глюкоза воспринимается как сладкое вещество, благодаря способности взаимодействовать с вкусовыми рецепторами языка, в то время как L-глюкоза безвкусна, поскольку ее конфигурация не воспринимается вкусовыми рецепторами.

В общем виде строение альдоз и кетоз можно представить следующим образом.

Стереоизомерия. Молекулы моносахаридов содержат несколько центров хиральности, что служит причиной существования многих стереоизомеров, отвечающих одной и той же структурной формуле. Например, в альдогексозе имеются четыре асимметрических атома углерода и ей соответствуют 16 стереоизомеров (24), т. е. 8 пар энантиомеров. По сравнению с соответствующими альдозами кетогексозы содержат на один хиральный атом углерода меньше, поэтому число стереоизомеров (23) уменьшается до 8 (4 пары энантиомеров).

Открытые (нециклические) формы моносахаридов изображают в виде проекционных формул Фишера. Углеродную цепь в них записывают вертикально. У альдоз наверху помещают альдегидную группу, у кетоз - соседнюю с карбонильной первичную спиртовую группу. С этих групп начинают нумерацию цепи.

Для обозначения стереохимии используется D,L-система. Отнесение моносахарида к D- или L-ряду проводят по конфигурации хирального центра, наиболее удаленного от оксогруппы, независимо от конфигурации остальных центров! Для пентоз таким «определяющим» центром является атом С-4, а для гексоз - С-5. Положение группы ОН у последнего центра хиральности справа свидетельствует о принадлежности моносахарида к D-ряду, слева - к L-ряду, т. е. по аналогии со стереохимическим стандартом - глицериновым альдегидом

Циклические формы. Открытые формы моносахаридов удобны для рассмотрения пространственных отношений между стереоизомерными моносахаридами. В действительности моносахариды по строению являются циклическими полуацеталями. Образование циклических форм моносахаридов можно представить как результат внутримолекулярного взаимодействия карбонильной и гидроксильной групп, содержащихся в молекуле моносахарида.

Впервые циклическую полуацетальную формулу глюкозы предложил А. А. Колли (1870). Он объяснил отсутствие некоторых альдегидных реакций у глюкозы наличием трехчленного этиленоксидного (α-окисного) цикла:

Позже Толленс (1883) предложил аналогичную полуацетальную формулу глюкозы, но с пятичленным (γ-окисным) бутиленоксидным кольцом:

Формулы Колли - Толленса громоздки и неудобны, не отражают строения циклической глюкозы, поэтому были предложены формулы Хеуорса.

В результате циклизации образуются термодинамически более устойчивые фуранозные (пятичленные) и пиранозные (шестичленные) циклы. Названия циклов происходят от названий родственных гетероциклических соединений - фурана и пирана.

Образование этих циклов связано со способностью углеродных цепей моносахаридов принимать достаточно выгодную клешневидную конформацию. Вследствие этого в пространстве оказываются сближенными альдегидная (или кетонная) и гидроксильная при С-4 (или при С-5) группы, т. е. те функциональные группы, в результате взаимодействия которых осуществляется внутримолекулярная циклизация.

В циклической форме создается дополнительный центр хиральности - атом углерода, ранее входивший в состав карбонильной группы (у альдоз это С-1). Этот атом называют аномерным, а два соответствующих стереоизомера - α- и β-аномерами (рис. 11.1). Аномеры представляют собой частный случай эпимеров.

У α-аномера конфигурация аномерного центра одинакова с конфигурацией «концевого» хирального центра, определяющего принадлежность к d- или l-ряду, а у β-аномера - противоположна. В проекционных формулах Фишера у моносахаридов d-ряда в α-аномере гликозидная группа ОН находится справа, а в β-аномере - слева от углеродной цепи.

Рис. 11.1. Образование α- и β-аномеров на примере d-глюкозы

Формулы Хеуорса. Циклические формы моносахаридов изображают в виде перспективных формул Хеуорса, в которых циклы показывают в виде плоских многоугольников, лежащих перпендикулярно плоскости рисунка. Атом кислорода располагают в пиранозном цикле в дальнем правом углу, в фуранозном - за плоскостью цикла. Символы атомов углерода в циклах не указывают.

Для перехода к формулам Хеуорса циклическую формулу Фишера преобразуют так, чтобы атом кислорода цикла располагался на одной прямой с атомами углерода, входящими в цикл. Это показано ниже на примере a-d-глюкопиранозы путем двух перестановок у атома С-5, что не изменяет конфигурацию этого асимметрического центра (см. 7.1.2). Если преобразованную формулу Фишера расположить горизонтально, как требуют правила написания формул Хеуорса, то заместители, находившиеся справа от вертикальной линии углеродной цепи, окажутся под плоскостью цикла, а те, что были слева, - над этой плоскостью.

У d-альдогексоз в пиранозной форме (и у d-альдопентоз в фуранозной форме) группа СН2ОН всегда располагается над плоскостью цикла, что служит формальным признаком d-ряда. Гликозидная гидроксильная группа у a-аномеров d-альдоз оказывается под плоскостью цикла, у β-аномеров - над плоскостью.

D-ГЛЮКОПИРАНОЗА

По аналогичным правилам осуществляется переход и у кетоз, что показано ниже на примере одного из аномеров фуранозной формы d-фруктозы.

Циклоцепная таутомерия обусловлена переходом открытых форм моносахаридов в циклические и наоборот.

Изменение во времени угла вращения плоскости поляризации света растворами углеводов называют мутаротацией.

Химическая сущность мутаротации состоит в способности моносахаридов к существованию в виде равновесной смеси таутомеров - открытой и циклических форм. Такой вид таутомерии называется цикло-оксо-таутомерией.

В растворах равновесие между четырьмя циклическими таутомерами моносахаридов устанавливается через открытую форму - оксоформу. Взаимопревращение a- и β-аномеров друг в друга через про- межуточную оксоформу называется аномеризацией.

Таким образом, в растворе d-глюкоза существует в виде таутомеров: оксоформы и a- и β-аномеров пиранозных и фуранозных циклических форм.

ЛАКТИМ-ЛАКТАМНАЯ ТАУТОМЕРИЯ

Этот вид таутомерии характерен для азотсодержащих гетероциклов с фрагментом N=C-ОН.

Взаимопревращение таутомерных форм связано с переносом протона от гидроксильной группы, напоминающей фенольную ОН-группу, к основному центру - пиридиновому атому азота и наоборот. Обычно лактамная форма в равновесии преобладает.

Моноаминомонокарбоновые.

По полярности радикала:

С неполярным радикалом:(Аланин,валин, лейцин, фенилаланин)Моноамино,монокарбоновые

С полярным незаряженным радикалом(Глицин, серин, аспарагин, глутамин)

С отрицательно заряженным радикалом(Аспарагиновая,глутаминовая кислота)моноамино,дикарбоновые

С положительно заряженным радикалом(лизин,гистидин) диамино,монокарбоновые

Стереоизомерия

Все природные α-аминокислоты, кроме глицина (NH 2 -CH 2 - COOH), имеют асимметрический атом углерода (α-углеродный атом), а некоторые из них даже два хиральных центра, например, треонин. Таким образом, все аминокислоты могут существовать в виде пары несовместимых зеркальных антиподов (энантиомеров).

За исходное соединение, с которым принято сравнивать строение 
α-аминокислот, условно принимают D- и L-молочные кислоты, конфигурации которых, в свою очередь, установлены по D- и L-глицериновым альдегидам.

Все превращения, которые осуществляются в этих рядах при переходе от глицеринового альдегида к α-аминокислоте, выполняются в соответствии с главным требованием − они не создают новых и не разрывают старых связей у асимметрического центра.

Для определения конфигурации α-аминокислоты в качестве эталона часто используют серин (иногда аланин).

Природные аминокислоты, входящие в состав белков, относятся к L-ряду. 
D-формы аминокислот встречаются сравнительно редко, они синтезируются только микроорганизмами и называются «неприродными» аминокислотами. Животными организмами D-аминокислоты не усваиваются. Интересно отметить действие D- и L-аминокислот на вкусовые рецепторы: большинство аминокислот L-ряда имеют сладкий вкус, а аминокислоты D-ряда − горькие или безвкусные.

Без участия ферментов самопроизвольный переход L-изомеров в D-изомеры с образованием эквимолярной смеси (рацемическая смесь) осуществляется в течение достаточно длительного промежутка времени.

Рацемизация каждой L-кислоты при данной температуре идет с определенной скоростью. Это обстоятельство можно использовать для установления возраста людей и животных. Так, например, в твердой эмали зубов имеется белок дентин, в котором L-аспартат переходит в D-изомер при температуре тела человека со скоростью 0,01% в год. В период формирования зубов в дентине содержится только L-изомер, поэтому по содержанию D-аспартата можно рассчитать возраст человека или животного.

I. Общие свойства

1. Внутримолекулярная нейтрализация → образуется биполярный цвиттер-ион:

Водные растворы электропроводны. Эти свойства объясняются тем, что молекулы аминокислот существуют в виде внутренних солей, которые образуются за счет переноса протона от карбоксила к аминогруппе:

цвиттер-ион

Водные растворы аминокислот имеют нейтральную, кислую или щелочную среду в зависимости от количества функциональных групп.

2. Поликонденсация → образуются полипептиды (белки):


При взаимодействии двух α-аминокислот образуется дипептид .

3. Разложение → Амин + Углекислый газ:

NH 2 -CH 2 -COOH → NH 2 -CH 3 + CO 2

IV. Качественная реакция

1. Все аминокислоты окисляются нингидрином с образованием продуктов сине-фиолетового цвета!

2. С ионами тяжелых металлов α-аминокислоты образуют внутрикомплексные соли. Комплексы меди (II), имеющие глубокую синюю окраску, используются для обнаружения α-аминокислот.

Физиологические активные пептиды. Примеры.

Пептиды, обладая высокой физиологической активностью, регулируют различные биологические процессы. По биорегуляторному действию пептиды принято делить на несколько групп:

· соединения, обладающие гормональной активностью (глюкагон, окситоцин, вазопрессин и др.);

· вещества, регулирующие пищеварительные процессы (гастрин, желудочный ингибирующий пептид и др.);

· пептиды, регулирующие аппетит (эндорфины, нейропептид-Y, лептин и др.);

· соединения, обладающие обезболивающим эффектом (опиоидные пептиды);

· органические вещества, регулирующие высшую нервную деятельность, биохимические процессы, связанные с механизмами памяти, обучения, возникновением чувства страха, ярости и др.;

· пептиды, которые регулируют артериальное давление и тонус сосудов (ангиотензин II, брадикинин и др.).

· пептиды, которые обладают противоопухолевым и противовоспалительным свойствами (Луназин)

· Нейропептиды - соединения, синтезируемые в нейронах, обладающие сигнальными свойствами

Классификация белков

-по форме молекул (глобулярные или фибриллярные);

-по молекулярной массе (низкомолекулярные, высокомолекулярные и др.);

-по химическому строению (наличие или отсутствие небелковой части);

-по локализации в клетке (ядерные, цито-плазматические, лизосомальные и др.);

-по локализации в организме (белки крови, печени, сердца и др.);

-по возможности адаптивно регулировать количество данных белков : белки, синтезирующиеся с постоянной скоростью (конститутивные), и белки, синтез которых может усиливаться при воздействии факторов среды (индуцибельные);

-по продолжительности жизни в клетке (от очень быстро обновляющихся белков, с Т 1/2 менее 1 ч, до очень медленно обновляющихся белков, Т 1/2 которых исчисляют неделями и месяцами);

-по схожим участкам первичной структуры и родственным функциям (семейства белков).

Классификация белков по химическому строению

Простые белки .Некоторые белки содержат в своём составе только полипептидные цепи, состоящие из аминокислотных остатков. Их называют "простые белки". Примером простых белков - гистоны ; в их составе содержится много аминокислотных остатков лизина и аргинина, радикалы которых имеют положительный заряд .

2. Сложные белки . Очень многие белки, кроме полипептидных цепей, содержат в своём составе небелковую часть, присоединённую к белку слабыми или ковалентными связями. Небелковая часть может быть представлена ионами металлов, какими-либо органическими молекулами с низкой или высокой молекулярной массой. Такие белки называют "сложные белки". Прочно связанная с белком небелковая часть носит название простетической группы.

У биополимеров, макромолекулы которых состоят из полярных и неполярных групп, сольватируются полярные группы, если растворитель полярен. В неполярном растворителе, соответственно, сольватируются неполярные участки макромолекул.

Обычно он хорошо набухает в жидкости, близкой к нему по химическому строению. Так, углеводородные полимеры типа каучуков набухают в неполярных жидкостях: гексане, бензоле. Биополимеры, в состав молекул которых входит большое количество полярных функциональных групп, например, белки, полисахариды, лучше набухают в полярных растворителях: воде, спиртах и т.д.

Образование сольватной оболочки молекулы полимера сопровождается выделением энергии, которая называется теплотой набухания .

Теплота набухания зависит от природы веществ. Она максимальна при набухании в полярном растворителе ВМС, содержащего большое количество полярных групп и минимальна при набухании в неполярном растворителе углеводородного полимера.

Кислотность среды, при которой устанавливается равенство положительных и отрицательных зарядов и белок становится электронейтральным, называется изоэлектрической точкой (ИЭТ) . Белки, у которых ИЭТ находится в кислой среде, называются кислыми. Белки, у которых значение ИЭТ находится в щелочной среде, называются основными. У большинства растительных белков ИЭТ находится в слабокислой среде

. Набухание и растворение ВМС зависят от:
1. природы растворителя и полимера,
2. строения макромолекул полимера,
3. температуры,
4. присутствия электролитов,
5. от рН среды (для полиэлектролитов).

Роль 2,3-дифосфоглицерата

2,3-Дифосфоглицерат образуется в эритроцитах из 1,3-дифосфоглицерата, промежуточного метаболита гликолиза, в реакциях, получивших название шунт Раппопорта.

Реакции шунта Раппопорта

2,3-Дифосфоглицерат располагается в центральной полости тетрамера дезоксигемоглобина и связывается с β-цепями, образуя поперечный солевой мостик между атомами кислорода 2,3-дифосфоглицерата и аминогруппами концевого валина обеих β-цепей, также аминогруппами радикалов лизина и гистидина.

Расположение 2,3-дифосфоглицерата в гемоглобине

Функция 2,3-дифосфоглицерата заключается в снижении сродства гемоглобина к кислороду. Это имеет особенное значение при подъеме на высоту, при нехватке кислорода во вдыхаемом воздухе. В этих условиях связывание кислорода с гемоглобином в легких не нарушается, так как концентрация его относительно высока. Однако в тканях за счет 2,3-дифосфоглицерата отдача кислорода возрастает в 2 раза.

Углеводы. Классификация. Функции

Углеводами - называют органические соединения, состоящие из углерода (C), водорода (H) и кислорода(O2). Общая формула таких углеводов Cn(H2O)m. Примером может служить глюкоза (С6Н12О6)

С точки зрения химии углеводы являются органическими веществами, содержащими неразветвленную цепь из нескольких атомов углерода, карбонильную группу (C=O), а также несколько гидроксильных групп(OH).

В организме человека углеводы производятся в незначительном количестве, поэтому основное их количество поступает в организм с продуктами питания.

Виды углеводов.

Углеводы бывают:

1) Моносахариды (самые простые формы углеводов)

Глюкоза С6Н12О6 (основное топливо в нашем организме)

Фруктоза С6Н12О6 (самый сладкий углевод)

Рибоза С5Н10О5 (входит в состав нуклеиновых кислот)

Эритроза С4H8O4 (промежуточная форма при расщеплении углеводов)

2) Олигосахариды (содержат от 2 до 10 остатков моносахаридов)

Сахароза С12Н22О11 (глюкоза + фруктоза, или в просто – тростниковый сахар)

Лактоза C12H22O11 (молочный сахар)

Мальтоза C12H24O12 (солодовый сахар, состоит из двух связанных остатков глюкозы)

110516_1305537009_Sugar-Cubes.jpg

3) Сложные углеводы (состоящие из множества остатков глюкозы)

Крахмал (С6H10O5)n (наиболее важный углеводный компонент пищевого рациона, человек потребляет из углеводов около 80% крахмала.)

Гликоген (энергетические резервы организма, излишки глюкозы, при поступлении в кровь, откладываются про запас организмом в виде гликогена)

крахмал12.jpg

4) Волокнистые, или неусваеваемые, углеводы, определяющиеся как пищевая клетчатка.

Целлюлоза (самое распостраненное органическое вещество на земле и вид клетчатки)

По простой классификации углеводы можно разделить на простые и сложные. В простые входят моносахариды и олигосахариды, в сложные полисахариды и клетчатка.

Основные функции.

Энергетическая.

Углеводы являются основным энергетическим материалом. При распаде углеводов высвобождаемая энергия рассеивается в виде тепла или накапливается в молекулах АТФ. Углеводы обеспечивают около 50 – 60 % суточного энергопотребления организма, а при мышечной деятельности на выносливость - до 70 %. При окислении 1 г углеводов выделяется 17 кДж энергии (4,1 ккал). В качестве основного энергетического источника в организме используется свободная глюкоза или запасенные углеводы в виде гликогена. Является основным энергетическим субстратом мозга.

Пластическая.

Углеводы (рибоза, дезоксирибоза) используются для построения АТФ, АДФ и других нуклеотидов, а также нуклеиновых кислот. Они входят в состав некоторых ферментов. Отдельные углеводы являются структурными компонентами клеточных мембран. Продукты превращения глюкозы (глюкуроновая кислота, глюкозамин и др.) входят в состав полисахаридов и сложных белков хрящевой и других тканей.

Запас питательных веществ.

Углеводы накапливаются (запасаются) в скелетных мышцах, печени и других тканях в виде гликогена. Систематическая мышечная деятельность приводит к увеличению запасов гликогена, что повышает энергетические возможности организма.

Специфическая.

Отдельные углеводы участвуют в обеспечении специфичности групп крови, исполняют роль антикоагулянтов (вызывающие свертывание), являясь рецепторами цепочки гормонов или фармакологических веществ, оказывая противоопухолевое действие.

Защитная.

Сложные углеводы входят в состав компонентов иммунной системы; мукополисахариды находятся в слизистых веществах, которые покрывают поверхность сосудов носа, бронхов, пищеварительного тракта, мочеполовых путей и защищают от проникновения бактерий и вирусов, а также от механических повреждений.

Регуляторная.

Клетчатка пищи не поддается процессу расщепления в кишечнике, однако активирует перистальтику кишечного тракта, ферменты, использующиеся в пищеварительном тракте, улучшая пищеварение и усвоение питательных веществ.

В самом общем смысле к этому классу можно отнести сахара и производные от них вещества, которые получаются при гидролизе. Углеводы являются неотъемлемой составляющей всех органических соединений. Обо всем разнообразии проявления этих веществ может рассказать классификация углеводов.

Биология

Клеткам живых организмов углеводы нужны в качестве аккумуляторов и источников энергии. В сухом веществе растений содержится до 90 % углеводов. Представители фауны также имеют в составе своих клеток углеводы - до 20% от общей массы сухого вещества. Классификация углеводов стандартизирует эти высокомолекулярные соединения и представляет их в наглядном виде. Понимание структуры углеводов, внутреннего строения этих соединений - ключ к постижению основ всего живого, к пониманию самой тайны жизни. Важной частью процесса познания этих веществ является классификация углеводов.

Схема

Все известные углеводы подразделяют на три большие группы:

Моносахариды;

Дисахариды;

Полисахариды.

Все три группы имеют различные физико-химические характеристики. Классификация и строение углеводов базируется именно на этих трех китах.

Моносахариды

Целлюлоза же не растворяется в воде даже при высокой температуре. Она не растворяется в спиртах, устойчива к воздействию щелочей и слабых окислителей. Гидролиз целлюлозы возможен лишь при растворении ее в концентрированных минеральных кислотах, например в серной. При нагревании такого раствора целлюлоза расщепляется, образуя вязкий раствор. Конечным продуктом данной реакции являются моносахариды.

Значение углеводов

Классификация и строение углеводов изучается многими смежными науками. Значение этих органических веществ в медицине, химической, пищевой, обрабатывающей промышленности достаточно высоко. Можно надеяться, что вышеприведенная классификация углеводов с примерами даст общее представление о природе этих веществ и об их важнейшей роли в хозяйственной деятельности человека.

Углево́ды (сахара , сахариды) - органические вещества, содержащие карбонильную группу и несколькогидроксильных групп . Название класса соединений происходит от слов «гидраты углерода», оно было впервые предложено К. Шмидтом в 1844 году. Появление такого названия связано с тем, что первые из известных науке углеводов описывались брутто-формулой C x (H 2 O) y , формально являясь соединениями углерода и воды.

Все углеводы состоят из отдельных «единиц», которыми являются сахариды. По способности к гидролизу на мономеры углеводы делятся на две группы: простые и сложные. Углеводы, содержащие одну единицу, называются моносахариды, две единицы – дисахариды, от двух до десяти единиц - олигосахариды, а более десяти - полисахариды. Обычные моносахариды представляют собой полиокси-альдегиды (альдозы) или полпоксикетоны (кетозы) с линейной цепью атомов углерода (m = 3-9), каждый из которых (кроме карбонильного углерода) связан с гидроксильной группой. Простейший из моносахаридов - глицериновый альдегид - содержит один асимметрический атом углерода и известен в виде двух оптических антиподов (D и L). Моносахариды быстро повышают содержание сахара в крови, и обладают высоким гликемическим индексом, поэтому их ещё называют быстрыми углеводами. Они легко растворяются в воде и синтезируются в зелёных растениях. Углеводы, состоящие из 3 или более единиц, называются сложными. Продукты, богатые медленными углеводами постепенно повышают содержание глюкозы и имеют низкий гликемический индекс, поэтому их ещё называют медленными углеводами. Сложные углеводы являются продуктами поликонденсации простых сахаров (моносахаридов) и, в отличие от простых, в процессе гидролитического расщепления способны распадаться на мономеры, с образованием сотни и тысячи молекул моносахаридов

В живых организмах углеводы выполняют следующие функции:

1. Структурная и опорная функции. Углеводы участвуют в построении различных опорных структур. Так целлюлоза является основным структурным компонентомклеточных стенок растений, хитин выполняет аналогичную функцию у грибов, а также обеспечивает жёсткость экзоскелета членистоногих .

2. Защитная роль у растений. У некоторых растений есть защитные образования (шипы, колючки и др.), состоящие из клеточных стенок мёртвых клеток.

3. Пластическая функция. Углеводы входят в состав сложных молекул (например, пентозы (рибоза и дезоксирибоза) участвуют в построении АТФ, ДНК и РНК) .

4. Энергетическая функция. Углеводы служат источником энергии: при окислении 1 грамма углеводов выделяются 4,1 ккал энергии и 0,4 г воды .

5. Запасающая функция. Углеводы выступают в качестве запасных питательных веществ: гликоген у животных, крахмал и инулин - у растений .

6. Осмотическая функция. Углеводы участвуют в регуляции осмотического давления в организме. Так, в крови содержится 100-110 мг/% глюкозы, от концентрацииглюкозы зависит осмотическое давление крови.

7. Рецепторная функция. Олигосахариды входят в состав воспринимающей части многих клеточных рецепторов или молекул-лигандов.

18. Моносахариды: триозы, тетрозы, пентозы, гексозы. Строение, открытые и циклические формы. Оптическая изомерия. Химические свойства глюкозы, фруктозы. Качественные реакции на глюкозу.

Моносахари́ды (от греческого monos - единственный, sacchar - сахар) - простейшие углеводы, не гидролизующиеся с образованием более простых углеводов - обычно представляют собой бесцветные, легко растворимые в воде, плохо - в спирте и совсем нерастворимые в эфире, твёрдые прозрачные органические соединения , одна из основных групп углеводов, самая простая форма сахара. Водные растворы имеют нейтральную pH. Некоторые моносахариды обладаютсладким вкусом. Моносахариды содержат карбонильную (альдегидную или кетонную) группу, поэтому их можно рассматривать как производные многоатомных спиртов. Моносахарид, у которого карбонильная группа расположена в конце цепи, представляет собой альдегид и называется альдоза . При любом другом положении карбонильной группы моносахарид является кетоном и называется кетоза . В зависимости от длины углеродной цепи (от трёх до десяти атомов) различают триозы , тетрозы , пентозы , гексозы , гептозы и так далее. Среди них наибольшее распространение в природе получили пентозы и гексозы . Моносахариды - стандартные блоки, из которых синтезируются дисахариды,олигосахариды и полисахариды.

В природе в свободном виде наиболее распространена D-глюкоза (виноградный сахар или декстроза , C 6 H 12 O 6) - шестиатомный сахар (гексоза ), структурная единица (мономер) многих полисахаридов (полимеров) - дисахаридов: (мальтозы, сахарозы и лактозы) и полисахаридов (целлюлоза, крахмал). Другие моносахариды, в основном, известны как компоненты ди-, олиго- или полисахаридов и в свободном состоянии встречаются редко. Природные полисахариды служат основными источниками моносахаридов .

Качественная реакция:

Прильём к раствору глюкозы несколько капель раствора сульфата меди (II) и раствор щелочи. Осадка гидроксида меди не образуется. Раствор окрашивается в ярко-синий цвет. В данном случае глюкоза растворяет гидроксид меди (II) и ведет себя как многоатомный спирт, образуя комплексное соединение.
Нагреем раствор. В этих условиях реакция с гидроксидом меди (II) демонстрирует восстановительные свойства глюкозы. Цвет раствора начинает изменяться. Сначала образуется желтый осадок Cu 2 O, который с течением времени образует более крупные кристаллы CuO красного цвета. Глюкоза при этом окисляется до глюконовой кислоты.

2HOСН 2 -(СНOH) 4)-СН=O + Cu(OH) 2 2HOСН 2 -(СНOH) 4)-СOOH + Cu 2 O↓ + 2H 2 O

19. Олигосахариды: строение, свойства. Дисахариды: мальтоза, лактоза, целлобиоза, сахароза. Биологическая роль.

Основная масса олигосахаридов представлена дисахаридами, среди которых важную роль для организма животных играют сахароза, мальтоза и лактоза. Дисахарид целлобиоза имеет важное значение для жизни растений.
Дисахариды (биозы) при гидролизе образуют два одинаковых или различных моносахарида. Для установления их строения необходимо знать, из каких моноз построен дисахарид; в какой форме, фуранозной или пиранозной, находится моносахарид в дисахариде; с участием каких гидроксилов связаны две молекулы простого сахара.
Дисахариды можно разделить на две группы: не восстанавливающие и восстанавливающие сахара.
К первой группе относится трегалоза (грибной сахар). К таутомерии она неспособна: эфирная связь между двумя остатками глюкозы образована с участием обоих глюкозидных гидроксилов
Ко второй группе относится мальтоза (солодовый сахар). Она способна к таутомерии, так как для образования эфирной связи использован только один из глюкозидных гидроксилов и, следовательно, содержит в скрытой форме альдегидную группу. Восстанавливающий дисахарид способен к мутаротации. Он реагирует с реактивами на карбонильную группу (аналогично глюкозе), восстанавливается в многоатомный спирт, окисляется в кислоту
Гидроксильные группы дисахаридов вступают в реакции алкилирования и ацилирования.
Сахароза (свекловичный, тростниковый сахар). Очень распространен в природе. Получается из сахарной свеклы (содержание до 28% от сухого вещества) и сахарного тростника. Является не восстанавливающим сахаром, так как и кислородный мостик образован с участием обеих гликозидных гидроксильных групп

Мальтоза (от англ. malt - солод) - солодовый сахар, природный дисахарид, состоящий из двух остатков глюкозы; содержится в больших количествах в проросших зёрнах (солоде) ячменя, ржи и других зерновых; обнаружен также в томатах, в пыльце и нектаре ряда растений. Мальтоза легко усваивается организмом человека. Расщепление мальтозы до двух остатков глюкозы происходит в результате действия фермента a-глюкозидазы, или мальтазы, которая содержится в пищеварительных соках животных и человека, в проросшем зерне, в плесневых грибах и дрожжах

Целлобиоза - 4-(β-глюкозидо)-глюкоза, дисахарид, состоящий из двух остатков глюкозы, соединённых β-глюкозидной связью; основная структурная единица целлюлозы. Целлобиоза образуется при ферментативном гидролизе целлюлозы бактериями, обитающими в желудочно-кишечном тракте жвачных животных. Затем целлобиоза расщепляется бактериальным ферментом β-глюкозидазой (целлобиазой) до глюкозы, что обеспечивает усвоение жвачными целлюлозной части биомассы.

Лактоза (молочный сахар) С12Н22О11 - углевод группы дисахаридов, содержится в молоке. Молекула лактозы состоит из остатков молекул глюкозы и галактозы. Применяют для приготовления питательных сред, например при производстве пенициллина. Используют в качестве вспомогательного вещества (наполнителя) в фармацевтической промышленности. Из лактозы получают лактулозу - ценный препарат для лечения кишечных расстройств, например, запора.

20. Гомополисахариды: крахмал, гликоген, целлюлоза, декстрины. Строение, свойства. Биологическая роль. Качественная реакция на крахмал.

Гомополисахариды (гликаны ), состоящие из остатков одного моносахарида, могут быть гексозами или пентозами, то есть в качестве мономера может быть использована гексоза или пентоза. В зависимости от химической природы полисахарида различают глюканы (из остатков глюкозы), маннаны (из маннозы), галактаны (из галактозы) и другие подобные соединения. К группе гомополисахаридов относятся органические соединения растительного (крахмал, целлюлоза, пектиновые вещества), животного (гликоген, хитин) и бактериального (декстраны ) происхождения .

Полисахариды необходимы для жизнедеятельности животных и растительных организмов. Это один из основных источников энергии организма, образующейся в результате обмена веществ. Полисахариды принимают участие в иммунных процессах, обеспечивают сцепление клеток в тканях, являются основной массой органического вещества в биосфере.

Крахма́л (C 6 H 10 O 5) n - смесь двух гомополисахаридов: линейного - амилозы и разветвлённого - амилопектина, мономером которых является альфа-глюкоза. Белое аморфное вещество, не растворимое в холодной воде, способное к набуханию и частично растворимое в горячей воде . Молекулярная масса 10 5 -10 7 Дальтон. Крахмал, синтезируемый разными растениями в хлоропластах, под действием света при фотосинтезе, несколько различается по структуре зёрен, степени полимеризации молекул, строению полимерных цепей и физико-химическим свойствам. Как правило, содержание амилозы в крахмале составляет 10-30 %, амилопектина - 70-90 %. Молекула амилозы содержит в среднем около 1 000 остатков глюкозы, связанных между собой альфа-1,4-связями. Отдельные линейные участки молекулы амилопектина состоят из 20-30 таких единиц, а в точках ветвления амилопектина остатки глюкозы связаны межцепочечными альфа-1,6-связями. При частичном кислотном гидролизе крахмала образуются полисахариды меньшей степени полимеризации - декстрины (C 6 H 10 O 5) p , а при полном гидролизе - глюкоза .

Гликоге́н (C 6 H 10 O 5) n - полисахарид, построенный из остатков альфа-D-глюкозы - главный резервный полисахарид высших животных и человека, содержится в виде гранул в цитоплазме клеток практически во всех органах и тканях, однако, наибольшее его количество накапливается в мышцах и печени. Молекула гликогена построена из ветвящихся полиглюкозидных цепей, в линейной последовательности которых, остатки глюкозы соединены посредством альфа-1,4-связями, а в точках ветвления межцепочечными альфа-1,6-связями. Эмпирическая формула гликогена идентична формуле крахмала. По химическому строению гликоген близок к амилопектину с более выраженной разветвлённостью цепей, поэтому иногда называется неточным термином «животный крахмал». Молекулярная масса 10 5 -10 8 Дальтон и выше . В организмах животных является структурным и функциональным аналогом полисахарида растений - крахмала . Гликоген образует энергетический резерв, который при необходимости восполнить внезапный недостаток глюкозы может быть быстро мобилизован - сильное разветвление его молекулы ведёт к наличию большого числа концевых остатков, обеспечивающих возможность быстрого отщепления нужного количества молекул глюкозы . В отличие от запаса триглицеридов (жиров) запас гликогена не настолько ёмок (в калориях на грамм). Только гликоген, запасённый в клетках печени (гепатоцитах) может быть переработан в глюкозу для питания всего организма, при этом гепатоциты способны накапливать до 8 процентов своего веса в виде гликогена, что является максимальной концентрацией среди всех видов клеток. Общая масса гликогена в печени взрослых может достигать 100-120 граммов. В мышцах гликоген расщепляется на глюкозу исключительно для локального потребления и накапливается в гораздо меньших концентрациях (не более 1 % от общей массы мышц), тем не менее общий запас в мышцах может превышать запас, накопленный в гепатоцитах.

Целлюло́за (клетча́тка) - наиболее распространённый структурный полисахарид растительного мира, состоящий из остатков альфа-глюкозы, представленных в бета-пиранозной форме. Таким образом, в молекуле целлюлозы бета-глюкопиранозные мономерные единицы линейно соединены между собой бета-1,4-связями. При частичном гидролизе целлюлозы образуется дисахарид целлобиоза, а при полном - D-глюкоза. В желудочно-кишечном тракте человека целлюлоза не переваривается, так как набор пищеварительных ферментов не содержит бета-глюкозидазу. Тем не менее, наличие оптимального количества растительной клетчатки в пище способствует нормальному формированию каловых масс . Обладая большой механической прочностью, целлюлоза выполняет роль опорного материала растений, например, в составе древесины её доля варьирует от 50 до 70 %, а хлопок представляет собой практически стопроцентную целлюлозу

Качественная реакция на крахмал проводиться со спиртовым раствором йода. При взаимодействии с йодом крахмал образует комплексное соединение сине-фиолетового цвета