Біографії Характеристики Аналіз

Метод інтегрування дробово раціональних функцій. Інтегрування раціональних функцій та метод невизначених коефіцієнтів

Матеріал, викладений у цій темі, спирається на відомості, подані в темі "Раціональні дроби. Розкладання раціональних дробів на елементарні (найпростіші) дроби" . Дуже раджу хоча б швидко переглянути цю тему перед тим, як переходити до читання даного матеріалу. Крім того, нам буде потрібна таблиця невизначених інтегралів.

Нагадаю кілька термінів. Про них йшлося у відповідній темі, тому тут обмежуся коротким формулюванням.

Відношення двох багаточленів $\frac(P_n(x))(Q_m(x))$ називається раціональною функцією або раціональним дробом. Раціональний дріб називається правильноюякщо $n< m$, т.е. если степень многочлена, стоящего в числителе, меньше степени многочлена, стоящего в знаменателе. В противном случае (если $n ≥ m$) дробь называется неправильною.

Елементарними (найпростішими) раціональними дробами називають раціональні дроби чотирьох типів:

  1. $\frac(A)(x-a)$;
  2. $\frac(A)((x-a)^n)$ ($n=2,3,4, \ldots$);
  3. $\frac(Mx+N)(x^2+px+q)$ ($p^2-4q< 0$);
  4. $\frac(Mx+N)((x^2+px+q)^n)$ ($p^2-4q< 0$; $n=2,3,4,\ldots$).

Примітка (бажане для більш повного розуміння тексту): показати

Навіщо потрібна умова $p^2-4q< 0$ в дробях третьего и четвертого типов? Рассмотрим квадратное уравнение $x^2+px+q=0$. Дискриминант этого уравнения $D=p^2-4q$. По сути, условие $p^2-4q < 0$ означает, что $D < 0$. Если $D < 0$, то уравнение $x^2+px+q=0$ не имеет действительных корней. Т.е. выражение $x^2+px+q$ неразложимо на множители. Именно эта неразложимость нас и интересует.

Наприклад, для вираження $x^2+5x+10$ отримаємо: $p^2-4q=5^2-4\cdot 10=-15$. Оскільки $p^2-4q=-15< 0$, то выражение $x^2+5x+10$ нельзя разложить на множители.

До речі, для цієї перевірки зовсім не обов'язково, щоб коефіцієнт перед $x^2$ дорівнював 1. Наприклад, для $5x^2+7x-3=0$ отримаємо: $D=7^2-4\cdot 5 \cdot (-3) = 109 $. Оскільки $D > 0$, то вираз $5x^2+7x-3$ розкладемо на множники.

Приклади раціональних дробів (правильних та неправильних), а також приклади розкладання раціонального дробу на елементарні можна знайти. Тут нас цікавитимуть лише питання їхнього інтегрування. Почнемо з інтегрування елементарних дробів. Отже, кожен із чотирьох типів зазначених вище елементарних дробів нескладно проінтегрувати, використовуючи формули, вказані нижче. Нагадаю, що з інтегруванні дробів типу (2) і (4) передбачається $n=2,3,4,ldots$. Формули (3) та (4) вимагають виконання умови $p^2-4q< 0$.

\begin(equation) \int \frac(A)(x-a) dx=A\cdot \ln |x-a|+C \end(equation) \begin(equation) \int\frac(A)((x-a)^n )dx=-\frac(A)((n-1)(x-a)^(n-1))+C \end(equation) \begin(equation) \int \frac(Mx+N)(x^2 +px+q) dx= \frac(M)(2)\cdot \ln (x^2+px+q)+\frac(2N-Mp)(\sqrt(4q-p^2))\arctg\ frac(2x+p)(\sqrt(4q-p^2))+C \end(equation)

Для $\int\frac(Mx+N)((x^2+px+q)^n)dx$ робиться заміна $t=x+\frac(p)(2)$, після отриманий інтерал розбивається на два. Перший обчислюватиметься за допомогою внесення під знак диференціала, а другий матиме вигляд $I_n=\int\frac(dt)((t^2+a^2)^n)$. Цей інтеграл береться за допомогою рекурентного співвідношення

\begin(equation) I_(n+1)=\frac(1)(2na^2)\frac(t)((t^2+a^2)^n)+\frac(2n-1)(2na ^2)I_n, \; n\in N \end(equation)

Обчислення такого інтеграла розібрано на прикладі №7 (див. третину).

Схема обчислення інтегралів від раціональних функцій (раціональних дробів):

  1. Якщо підінтегральний дріб є елементарним, то застосувати формули (1)-(4).
  2. Якщо підінтегральний дріб не є елементарним, то подати його у вигляді суми елементарних дробів, а потім проінтегрувати, використовуючи формули (1)-(4).

Вказаний вище алгоритм інтегрування раціональних дробів має незаперечну гідність – він універсальний. Тобто. користуючись цим алгоритмом можна проінтегрувати будь-якураціональний дріб. Саме тому майже всі заміни змінних у невизначеному інтегралі (підстановки Ейлера, Чебишева, універсальна тригонометрична підстановка) робляться з таким розрахунком, щоб після заміни отримати під інтералом раціональний дріб. А до неї вже застосувати алгоритм. Безпосереднє застосування цього алгоритму розберемо на прикладах, попередньо зробивши невелику примітку.

$$ \int\frac(7dx)(x+9)=7\ln|x+9|+C. $$

У принципі цей інтеграл нескладно отримати без механічного застосування формули . Якщо винести константу $7$ за знак інтеграла і врахувати, що $dx=d(x+9)$, то отримаємо:

$$ \int\frac(7dx)(x+9)=7\cdot \int\frac(dx)(x+9)=7\cdot \int\frac(d(x+9))(x+9 )=|u=x+9|=7\cdot\int\frac(du)(u)=7\ln|u|+C=7\ln|x+9|+C. $$

Для детальної інформації рекомендую подивитися тему. Там докладно пояснюється, як вирішуються такі інтеграли. До речі, формула доводиться тими самими перетвореннями, що були застосовані у цьому пункті під час вирішення "вручну".

2) Знову є два шляхи: застосувати готову формулу або обійтися без неї. Якщо застосовувати формулу , слід врахувати, що коефіцієнт перед $x$ (число 4) доведеться прибрати. Для цього цю четвірку просто винесемо за дужки:

$$ \int\frac(11dx)((4x+19)^8)=\int\frac(11dx)(\left(4\left(x+\frac(19)(4)\right)\right)^ 8)= \int\frac(11dx)(4^8\left(x+\frac(19)(4)\right)^8)=\int\frac(\frac(11)(4^8)dx) (\left(x+\frac(19)(4)\right)^8). $$

Тепер настала черга і для застосування формули:

$$ \int\frac(\frac(11)(4^8)dx)(\left(x+\frac(19)(4)\right)^8)=-\frac(\frac(11)(4 ^8))((8-1)\left(x+\frac(19)(4) \right)^(8-1))+C= -\frac(\frac(11)(4^8)) (7\left(x+\frac(19)(4) \right)^7)+C=-\frac(11)(7\cdot 4^8 \left(x+\frac(19)(4) \right )^7)+C. $$

Можна обійтися і застосування формули . І навіть без винесення константи $4$ за дужки. Якщо врахувати, що $dx=\frac(1)(4)d(4x+19)$, то отримаємо:

$$ \int\frac(11dx)((4x+19)^8)=11\int\frac(dx)((4x+19)^8)=\frac(11)(4)\int\frac( d(4x+19))((4x+19)^8)=|u=4x+19|=\\ =\frac(11)(4)\int\frac(du)(u^8)=\ frac(11)(4)\int u^(-8)\;du=\frac(11)(4)\cdot\frac(u^(-8+1))(-8+1)+C= \\ =\frac(11)(4)\cdot\frac(u^(-7))(-7)+C=-\frac(11)(28)\cdot\frac(1)(u^7 )+C=-\frac(11)(28(4x+19)^7)+C. $$

Детальні пояснення щодо знаходження подібних інтегралів дано у темі "Інтегрування підстановкою (внесення під знак диференціала)".

3) Нам потрібно проінтегрувати дріб $\frac(4x+7)(x^2+10x+34)$. Цей дріб має структуру $\frac(Mx+N)(x^2+px+q)$, де $M=4$, $N=7$, $p=10$, $q=34$. Однак, щоб переконатися, що це дійсно елементарний дріб третього типу, потрібно перевірити виконання умови $p^2-4q< 0$. Так как $p^2-4q=10^2-4\cdot 34=-16 < 0$, то мы действительно имеем дело с интегрированием элементарной дроби третьего типа. Как и в предыдущих пунктах есть два пути для нахождения $\int\frac{4x+7}{x^2+10x+34}dx$. Первый путь - банально использовать формулу . Подставив в неё $M=4$, $N=7$, $p=10$, $q=34$ получим:

$$ \int\frac(4x+7)(x^2+10x+34)dx = \frac(4)(2)\cdot \ln (x^2+10x+34)+\frac(2\cdot 7-4\cdot 10)(\sqrt(4\cdot 34-10^2)) \arctg\frac(2x+10)(\sqrt(4\cdot 34-10^2))+C=\\ = 2\cdot \ln (x^2+10x+34)+\frac(-26)(\sqrt(36)) \arctg\frac(2x+10)(\sqrt(36))+C =2\cdot \ln (x^2+10x+34)+\frac(-26)(6) \arctg\frac(2x+10)(6)+C=\\ =2\cdot \ln (x^2+10x +34)-\frac(13)(3) \arctg\frac(x+5)(3)+C. $$

Вирішимо цей приклад, але без використання готової формули. Спробуємо виділити в чисельнику похідну знаменника. Що це означає? Ми знаємо, що $(x^2+10x+34)"=2x+10$. Саме вираз $2x+10$ нам і належить вичленувати в чисельнику. Поки що чисельник містить лише $4x+7$, але це ненадовго. Застосуємо до чисельника таке перетворення:

$$ 4x+7=2cdot 2x+7=2cdot (2x+10-10)+7=2cdot(2x+10)-2cdot 10+7=2cdot(2x+10) -13. $$

Тепер у чисельнику з'явився необхідний вираз $2x+10$. І наш інтеграл можна переписати у такому вигляді:

$$ \int\frac(4x+7)(x^2+10x+34) dx= \int\frac(2xcdot(2x+10)-13)(x^2+10x+34)dx. $$

Розіб'ємо підінтегральний дріб на два. Ну і, відповідно, сам інтеграл теж "роздвоєм":

$$ \int\frac(2\cdot(2x+10)-13)(x^2+10x+34)dx=\int \left(\frac(2\cdot(2x+10)))(x^2 +10x+34)-\frac(13)(x^2+10x+34) \right)\; dx=\\ =\int \frac(2\cdot(2x+10))(x^2+10x+34)dx-\int\frac(13dx)(x^2+10x+34)=2\cdot \int \frac((2x+10)dx)(x^2+10x+34)-13cdot\int\frac(dx)(x^2+10x+34). $$

Поговоримо спершу перший інтеграл, тобто. про $\int \frac((2x+10)dx)(x^2+10x+34)$. Оскільки $d(x^2+10x+34)=(x^2+10x+34)"dx=(2x+10)dx$, то в чисельнику підінтегрального дробу розташований диференціал знаменника. Коротше кажучи, замість виразу $( 2x+10)dx$ запишемо $d(x^2+10x+34)$.

Тепер скажемо пару слів і про другий інтеграл. Виділимо в знаменнику повний квадрат: $ x 2 + 10 x + 34 = (x + 5) 2 + 9 $. Крім того, врахуємо $dx=d(x+5)$. Тепер отриману нами раніше суму інтегралів можна переписати в дещо іншому вигляді:

$$ 2\cdot\int \frac((2x+10)dx)(x^2+10x+34)-13\cdot\int\frac(dx)(x^2+10x+34) =2\cdot \int \frac(d(x^2+10x+34))(x^2+10x+34)-13cdot\int\frac(d(x+5))((x+5)^2+ 9). $$

Якщо в першому інтегралі зробити заміну $u=x^2+10x+34$, то він набуде вигляду $\int\frac(du)(u)$ і візьметься простим застосуванням другої формули з . Що ж до другого інтеграла, то для нього здійснена заміна $u=x+5$, після якої він набуде вигляду $\int\frac(du)(u^2+9)$. Це чиста вода одинадцята формула з таблиці невизначених інтегралів. Отже, повертаючись до суми інтегралів, матимемо:

$$ 2\cdot\int \frac(d(x^2+10x+34))(x^2+10x+34)-13\cdot\int\frac(d(x+5))((x+ 5)^2+9) =2cdotln(x^2+10x+34)-frac(13)(3)arctgfrac(x+5)(3)+C. $$

Ми отримали ту саму відповідь, що і при застосуванні формули, що, власне, не дивно. Взагалі, формула доводиться тими самими способами, які ми використовували для знаходження цього інтеграла. Вважаю, що у уважного читача тут може виникнути одне питання, тому сформулюю його:

Питання №1

Якщо інтегралу $\int \frac(d(x^2+10x+34))(x^2+10x+34)$ застосовувати другу формулу з таблиці невизначених інтегралів , ми отримаємо таке:

$$ \int \frac(d(x^2+10x+34))(x^2+10x+34)=|u=x^2+10x+34|=\int\frac(du)(u) =\ln|u|+C=\ln|x^2+10x+34|+C. $$

Чому ж у рішенні був відсутній модуль?

Відповідь на запитання №1

Питання цілком закономірне. Модуль був відсутній лише тому, що вираз $x^2+10x+34$ за будь-якого $x\in R$ більший за нуль. Це зовсім нескладно показати кількома шляхами. Наприклад, оскільки $x^2+10x+34=(x+5)^2+9$ і $(x+5)^2 ≥ 0$, то $(x+5)^2+9 > 0$ . Можна розсудити і інакше, не залучаючи виділення повного квадрата. Оскільки $10^2-4\cdot 34=-16< 0$, то $x^2+10x+34 >0$ за будь-якого $x\in R$ (якщо цей логічний ланцюжок викликає подив, раджу подивитися графічний метод розв'язання квадратних нерівностей). У кожному разі, оскільки $x^2+10x+34 > 0$, то $|x^2+10x+34|=x^2+10x+34$, тобто. замість модуля можна використовувати звичайні дужки.

Усі пункти прикладу №1 вирішено, залишилося лише записати відповідь.

Відповідь:

  1. $\int\frac(7dx)(x+9)=7\ln|x+9|+C$;
  2. $\int\frac(11dx)((4x+19)^8)=-\frac(11)(28(4x+19)^7)+C$;
  3. $\int\frac(4x+7)(x^2+10x+34)dx=2\cdot\ln(x^2+10x+34)-\frac(13)(3)\arctg\frac(x +5) (3) + C $.

Приклад №2

Знайти інтеграл $\int\frac(7x+12)(3x^2-5x-2)dx$.

На перший погляд підінтегральний дріб $\frac(7x+12)(3x^2-5x-2)$ дуже схожа на елементарну дріб третього типу, тобто. на $\frac(Mx+N)(x^2+px+q)$. Здається, що єдина відмінність - це коефіцієнт $3$ перед $x^2$, але коефіцієнт і прибрати недовго (за дужки винести). Однак це схожість здається. Для дробу $\frac(Mx+N)(x^2+px+q)$ обов'язковою є умова $p^2-4q< 0$, которое гарантирует, что знаменатель $x^2+px+q$ нельзя разложить на множители. Проверим, как обстоит дело с разложением на множители у знаменателя нашей дроби, т.е. у многочлена $3x^2-5x-2$.

У нас коефіцієнт перед $x^2$ не дорівнює одиниці, тому перевірити умову $p^2-4q< 0$ напрямую мы не можем. Однако тут нужно вспомнить, откуда взялось выражение $p^2-4q$. Это всего лишь дискриминант квадратного уравнения $x^2+px+q=0$. Если дискриминант меньше нуля, то выражение $x^2+px+q$ на множители не разложишь. Вычислим дискриминант многочлена $3x^2-5x-2$, расположенного в знаменателе нашей дроби: $D=(-5)^2-4\cdot 3\cdot(-2)=49$. Итак, $D >0$, тому вираз $3x^2-5x-2$ можна розкласти на множники. А це означає, що дріб $\frac(7x+12)(3x^2-5x-2)$ не є елементаним дробом третього типу, і застосовувати до інтегралу $\int\frac(7x+12)(3x^2- 5x-2)dx$ формулу не можна.

Ну що ж, якщо заданий раціональний дріб не є елементарним, то його потрібно подати у вигляді суми елементарних дробів, а потім проінтегрувати. Коротше кажучи, слід скористатися. Як розкласти раціональний дріб на елементарні докладно написано. Почнемо з того, що розкладемо на множники знаменник:

$$ 3x^2-5x-2=0;\\ \begin(aligned) & D=(-5)^2-4\cdot 3\cdot(-2)=49;\\ & x_1=\frac( -(-5)-sqrt(49))(2cdot 3)=frac(5-7)(6)=frac(-2)(6)=-frac(1)(3); \\ & x_2=\frac(-(-5)+\sqrt(49))(2\cdot 3)=\frac(5+7)(6)=\frac(12)(6)=2. \\end(aligned)\\ 3x^2-5x-2=3\cdot\left(x-\left(-\frac(1)(3)\right)\right)\cdot (x-2)= 3cdotleft(x+frac(1)(3)right)(x-2). $$

Подинтеральний дріб представимо в такому вигляді:

$$ \frac(7x+12)(3x^2-5x-2)=\frac(7x+12)(3\cdot\left(x+\frac(1)(3)\right)(x-2) )=\frac(\frac(7)(3)x+4)(\left(x+\frac(1)(3)\right)(x-2)). $$

Тепер розкладемо дріб $\frac(\frac(7)(3)x+4)(\left(x+\frac(1)(3)\right)(x-2))$ на елементарні:

$$ \frac(\frac(7)(3)x+4)(\left(x+\frac(1)(3)\right)(x-2)) =\frac(A)(x+\frac( 1)(3))+\frac(B)(x-2)=\frac(A(x-2)+B\left(x+\frac(1)(3)\right))(\left(x+) \frac(1)(3)\right)(x-2));\\\frac(7)(3)x+4=A(x-2)+B\left(x+\frac(1)( 3) \right). $$

Щоб знайти коефіцієнти $A$ і $B$, є два стандартні шляхи: метод невизначених коефіцієнтів і метод підстановки приватних значень. Застосуємо метод підстановки приватних значень, підставляючи $x=2$, а потім $x=-\frac(1)(3)$:

$$ \frac(7)(3)x+4=A(x-2)+B\left(x+\frac(1)(3)\right).\x=2;\; \frac(7)(3)\cdot 2+4=A(2-2)+B\left(2+\frac(1)(3)\right); \; \frac(26)(3)=\frac(7)(3)B;\; B=\frac(26)(7).\x=-\frac(1)(3);\; \frac(7)(3)\cdot \left(-\frac(1)(3) \right)+4=A\left(-\frac(1)(3)-2\right)+B\left (-\frac(1)(3)+\frac(1)(3)\right); \; \frac(29)(9)=-\frac(7)(3)A;\; A=-\frac(29\cdot 3)(9\cdot 7)=-\frac(29)(21).\\ $$

Оскільки коефіцієнти знайдено, залишилося лише записати готове розкладання:

$$ \frac(\frac(7)(3)x+4)(\left(x+\frac(1)(3)\right)(x-2))=\frac(-\frac(29)( 21))(x+frac(1)(3))+frac(frac(26)(7))(x-2). $$

В принципі, можна такий запис залишити, але мені до душі акуратніший варіант:

$$ \frac(\frac(7)(3)x+4)(\left(x+\frac(1)(3)\right)(x-2))=-\frac(29)(21)\ cdot frac(1)(x+frac(1)(3))+frac(26)(7)cdotfrac(1)(x-2). $$

Повертаючись до вихідного інтегралу, підставимо до нього отримане розкладання. Потім розіб'ємо інтеграл на два, і до кожного застосуємо формулу . Константи я волію відразу виносити за знак інтеграла:

$$ \int\frac(7x+12)(3x^2-5x-2)dx =\int\left(-\frac(29)(21)\cdot\frac(1)(x+\frac(1) (3))+\frac(26)(7)\cdot\frac(1)(x-2)\right)dx=\\ =\int\left(-\frac(29)(21)\cdot\ frac(1)(x+\frac(1)(3))\right)dx+\int\left(\frac(26)(7)\cdot\frac(1)(x-2)\right)dx =- \frac(29)(21)\cdot\int\frac(dx)(x+\frac(1)(3))+\frac(26)(7)\cdot\int\frac(dx)(x-2 )dx=\\ =-\frac(29)(21)\cdot\ln\left|x+\frac(1)(3)\right|+\frac(26)(7)\cdot\ln|x- 2|+C. $$

Відповідь: $\int\frac(7x+12)(3x^2-5x-2)dx=-\frac(29)(21)\cdot\ln\left|x+\frac(1)(3)\right| + frac (26) (7) cdot ln | x-2 | + C $.

Приклад №3

Знайти інтеграл $\int\frac(x^2-38x+157)((x-1)(x+4)(x-9))dx$.

Нам потрібно проінтегрувати дріб $\frac(x^2-38x+157)((x-1)(x+4)(x-9))$. У чисельнику розташований многочлен другого ступеня, а знаменнику - многочлен третього ступеня. Оскільки ступінь многочлена у чисельнику менше ступеня многочлена у знаменнику, тобто. $2< 3$, то подынтегральная дробь является правильной. Разложение этой дроби на элементарные (простейшие) было получено в примере №3 на странице, посвящённой разложению рациональных дробей на элементарные. Полученное разложение таково:

$$ \frac(x^2-38x+157)((x-1)(x+4)(x-9))=-\frac(3)(x-1)+\frac(5)(x +4)-frac(1)(x-9). $$

Нам залишиться лише розбити заданий інтеграл на три, і до кожного застосувати формулу. Константи я волію відразу виносити за знак інтеграла:

$$ \int\frac(x^2-38x+157)((x-1)(x+4)(x-9))dx=\int\left(-\frac(3)(x-1) +\frac(5)(x+4)-\frac(1)(x-9) \right)dx=\=-3\cdot\int\frac(dx)(x-1)+ 5\cdot \int\frac(dx)(x+4)-\int\frac(dx)(x-9)=-3\ln|x-1|+5\ln|x+4|-\ln|x- 9|+C. $$

Відповідь: $\int\frac(x^2-38x+157)((x-1)(x+4)(x-9))dx=-3\ln|x-1|+5\ln|x+ 4|-\ln|x-9|+C$.

Продовження аналізу прикладів цієї теми розташоване в другій частині.

«Математик так само, як художник чи поет, створює візерунки. І якщо його візерунки більш стійкі, лише тому, що вони складені з ідей... Візерунки математика так само, як візерунки художника або поета, повинні бути прекрасні; ідеї так само, як кольори або слова повинні відповідати один одному. Краса є першою вимогою: у світі немає місця для некрасивої математики».

Г.Х.Харді

У першому розділі зазначалося, що існують первісні досить простих функцій, які не можна висловити через елементарні функції. У зв'язку з цим, велике практичне значення набувають ті класи функцій, про які можна точно сказати, що їх первісні - елементарні функції. До такого класу функцій відносяться раціональні функції, що являють собою відношення двох алгебраїчних багаточленів До інтегрування раціональних дробів наводять багато завдань. Тому дуже важливо вміти інтегрувати такі функції.

2.1.1. Дробно-раціональні функції

Раціональним дробом(або дробово-раціональною функцією)називається відношення двох алгебраїчних багаточленів:

де і – багаточлени.

Нагадаємо, що багаточленом (поліномом, цілою раціональною функцією) n-го ступеняназивається функція виду

де – дійсні числа. Наприклад,

- багаточлен першого ступеня;

- багаточлен четвертого ступеня і т.д.

Раціональний дріб (2.1.1) називається правильноюякщо ступінь нижче ступеня, тобто. n<m, в іншому випадку дріб називається неправильною.

Будь-який неправильний дріб можна подати у вигляді суми багаточлена (цілої частини) та правильного дробу (дрібної частини).Виділення цілої та дробової частин неправильного дробу можна проводити за правилом поділу багаточленів «кутом».

Приклад 2.1.1.Виділити цілу та дробову частини наступних неправильних раціональних дробів:

а) , б) .

Рішення . а) Використовуючи алгоритм розподілу «куточком», отримуємо

Таким чином, отримуємо

.

б) Тут також використовуємо алгоритм поділу «куточком»:

В результаті, отримуємо

.

Підведемо підсумки. Невизначений інтеграл від раціонального дробу в загальному випадку можна уявити сумою інтегралів від багаточлена та від правильного раціонального дробу. Знаходження первісних від многочленів не становить труднощів. Тому надалі розглядатимемо переважно правильні раціональні дроби.

2.1.2. Найпростіші раціональні дроби та їх інтегрування

Серед правильних раціональних дробів виділяють чотири типи, які відносять до найпростішим (елементарним) раціональним дробам:

3) ,

4) ,

де - ціле число, , тобто. квадратний тричлен не має дійсних коренів.

Інтегрування найпростіших дробів 1-го та 2-го типу не становить великих труднощів:

, (2.1.3)

. (2.1.4)

Розглянемо тепер інтегрування найпростіших дробів 3-го типу, а дроби 4-го типу не розглядатимемо.

Почнемо з інтегралів виду

.

Цей інтеграл зазвичай обчислюють шляхом виділення повного квадрата в знаменнику. В результаті виходить табличний інтеграл наступного виду

або .

Приклад 2.1.2.Знайти інтеграли:

а) , б) .

Рішення . а) Виділимо із квадратного тричлена повний квадрат:

Звідси знаходимо

б) Виділивши із квадратного тричлена повний квадрат, отримуємо:

Таким чином,

.

Для знаходження інтегралу

можна виділити в чисельнику похідну знаменника і розкласти інтеграл у сумі двох інтегралів: перший їх підстановкою зводиться до вигляду

,

а другий - до розглянутого вище.

Приклад 2.1.3.Знайти інтеграли:

.

Рішення . Зауважимо, що . Виділимо в чисельнику похідну знаменника:

Перший інтеграл обчислюється за допомогою підстановки :

У другому інтегралі виділимо повний квадрат у знаменнику

Остаточно, отримуємо

2.1.3. Розкладання правильного раціонального дробу
на суму найпростіших дробів

Будь-який правильний раціональний дріб можна уявити єдиним чином у вигляді суми найпростіших дробів. Для цього знаменник слід розкласти на множники. З вищої алгебри відомо, що кожен багаточлен із дійсними коефіцієнтами

Раціональна функція - це дріб виду, чисельник і знаменник якого - багаточлени або твори багаточленів.

приклад 1. Крок 2

.

Помножуємо невизначені коефіцієнти на багаточлени, яких немає в даному окремому дробі, але які є в інших отриманих дробах:

Розкриваємо дужки та прирівнюємо отриманий до отриманого виразу чисельник вихідного підінтегрального дробу:

В обох частинах рівності відшукуємо доданки з однаковими ступенями іксу і складаємо з них систему рівнянь:

.

Скорочуємо всі ікси та отримуємо еквівалентну систему рівнянь:

.

Таким чином, остаточне розкладання підінтегрального дробу на суму простих дробів:

.

приклад 2. Крок 2На кроці 1 отримали наступне розкладання вихідного дробу на суму простих дробів з невизначеними коефіцієнтами в чисельниках:

.

Тепер починаємо шукати невизначені коефіцієнти. Для цього чисельник вихідного дробу у виразі функції прирівнюємо до чисельника виразу, отриманого після приведення суми дробів до спільного знаменника:

Тепер потрібно скласти та вирішити систему рівнянь. Для цього прирівнюємо коефіцієнти при змінній у відповідному ступені в чисельнику вихідного виразу функції та аналогічні коефіцієнти в отриманому на попередньому кроці виразу:

Вирішуємо отриману систему:

Отже, , звідси

.

приклад 3. Крок 2На кроці 1 отримали наступне розкладання вихідного дробу на суму простих дробів з невизначеними коефіцієнтами в чисельниках:

Починаємо шукати невизначені коефіцієнти. Для цього чисельник вихідного дробу у виразі функції прирівнюємо до чисельника виразу, отриманого після приведення суми дробів до спільного знаменника:

Як і в попередніх прикладах, складаємо систему рівнянь:

Скорочуємо ікси та отримуємо еквівалентну систему рівнянь:

Вирішуючи систему, отримуємо такі значення невизначених коефіцієнтів:

Отримуємо остаточне розкладання подінтегрального дробу на суму простих дробів:

.

приклад 4. Крок 2На кроці 1 отримали наступне розкладання вихідного дробу на суму простих дробів з невизначеними коефіцієнтами в чисельниках:

.

Як прирівнювати чисельник вихідного дробу до виразу в чисельнику, отриманому після розкладання дробу на суму простих дробів та приведення цієї суми до спільного знаменника, ми вже знаємо з попередніх прикладів. Тому лише для контролю наведемо систему рівнянь, що вийшла:

Вирішуючи систему, отримуємо такі значення невизначених коефіцієнтів:

Отримуємо остаточне розкладання подінтегрального дробу на суму простих дробів:

Приклад 5. Крок 2На кроці 1 отримали наступне розкладання вихідного дробу на суму простих дробів з невизначеними коефіцієнтами в чисельниках:

.

Самостійно приводимо до спільного знаменника цю суму, прирівнювати чисельник цього виразу до чисельника вихідного дробу. В результаті має вийти наступна система рівнянь:

Вирішуючи систему, отримуємо такі значення невизначених коефіцієнтів:

.

Отримуємо остаточне розкладання подінтегрального дробу на суму простих дробів:

.

Приклад 6. Крок 2На кроці 1 отримали наступне розкладання вихідного дробу на суму простих дробів з невизначеними коефіцієнтами в чисельниках:

Проводимо з цією сумою ті ж дії, що й у попередніх прикладах. В результаті має вийти наступна система рівнянь:

Вирішуючи систему, отримуємо такі значення невизначених коефіцієнтів:

.

Отримуємо остаточне розкладання подінтегрального дробу на суму простих дробів:

.

Приклад 7. Крок 2На кроці 1 отримали наступне розкладання вихідного дробу на суму простих дробів з невизначеними коефіцієнтами в чисельниках:

.

Після відомих дій з отриманою сумою має вийти наступна система рівнянь:

Вирішуючи систему, отримуємо такі значення невизначених коефіцієнтів:

Отримуємо остаточне розкладання подінтегрального дробу на суму простих дробів:

.

Приклад 8. Крок 2На кроці 1 отримали наступне розкладання вихідного дробу на суму простих дробів з невизначеними коефіцієнтами в чисельниках:

.

Внесемо деякі зміни до вже доведених до автоматизму дій для отримання системи рівнянь. Є штучний прийом, який у деяких випадках допомагає уникнути зайвих обчислень. Наводячи суму дробів до спільного знаменника одержуємо і прирівнюючи чисельник цього виразу до чисельника вихідного дробу, одержуємо.

Інтегрування дробово-раціональної функції.
Метод невизначених коефіцієнтів

Продовжуємо займатися інтегруванням дробів. Інтеграли від деяких видів дробів ми вже розглянули на уроці, і цей урок у певному сенсі можна вважати продовженням. Для успішного розуміння матеріалу необхідні базові навички інтегрування, тому якщо Ви тільки приступили до вивчення інтегралів, тобто є чайником, то необхідно почати зі статті Невизначений інтеграл. Приклади рішень.

Як не дивно, зараз ми займатимемося не так знаходженням інтегралів, як… вирішенням систем лінійних рівнянь. В зв'язку з цим наполегливорекомендую відвідати урок А саме – потрібно добре орієнтуватися в методах підстановки («шкільному» методі та методі почленного складання (віднімання) рівнянь системи).

Що таке дрібно-раціональна функція? Простими словами, дробово-раціональна функція – це дріб, у чисельнику і знаменнику якої перебувають багаточлени чи твори многочленов. При цьому дроби є накрученішими, ніж ті, про які йшлося у статті Інтегрування деяких дробів.

Інтегрування правильної дробово-раціональної функції

Відразу приклад і типовий алгоритм розв'язання інтеграла від дрібно-раціональної функції.

Приклад 1


Крок 1.Перше, що ми ЗАВЖДИ робимо при вирішенні інтегралу від дрібно-раціональної функції – це з'ясовуємо наступне питання: чи є дріб правильним?Цей крок виконується усно, і зараз я поясню як:

Спочатку дивимося на чисельник та з'ясовуємо старший ступіньбагаточлена:

Старший ступінь чисельника дорівнює двом.

Тепер дивимося на знаменник та з'ясовуємо старший ступіньзнаменника. Напрошуваний шлях - це розкрити дужки і привести подібні доданки, але можна зробити простіше, кожноюдужці знаходимо старший ступінь

і подумки множимо: - таким чином, старший ступінь знаменника дорівнює трьом. Цілком очевидно, що якщо реально розкрити дужки, то ми не отримаємо ступеня більше трьох.

Висновок: Старший ступінь чисельника СТРОГОменше старшого ступеня знаменника, отже, дріб є правильним.

Якби в цьому прикладі в чисельнику знаходився багаточлен 3, 4, 5 і т.д. ступеня, то дріб був би неправильною.

Зараз ми розглядатимемо лише правильні дробово-раціональні функції. Випадок, коли ступінь чисельника більший або дорівнює ступеню знаменника, розберемо наприкінці уроку.

Крок 2Розкладемо знаменник на множники. Дивимося на наш знаменник:

Взагалі кажучи, тут уже добуток множників, але, тим не менш, запитуємо себе: чи не можна щось розкласти ще? Об'єктом тортур, безперечно, виступить квадратний тричлен. Вирішуємо квадратне рівняння:

Дискримінант більший за нуль, отже, тричлен дійсно розкладається на множники:

Загальне правило: ВСЕ, що у знаменнику МОЖНА розкласти на множники – розкладаємо на множники

Починаємо оформляти рішення:

Крок 3Методом невизначених коефіцієнтів розкладаємо підінтегральну функцію на суму простих (елементарних) дробів. Нині буде зрозуміліше.

Дивимося на нашу підінтегральну функцію:

І, знаєте, якось проскакує інтуїтивна думка, що непогано б наш великий дріб перетворити на кілька маленьких. Наприклад, ось так:

Виникає питання, а чи взагалі можна так зробити? Зітхнемо з полегшенням, відповідна теорема математичного аналізу стверджує – МОЖНА. Таке розкладання існує і єдино.

Тільки є одна заковика, коефіцієнти ми поки щоне знаємо, звідси й назва метод невизначених коефіцієнтів.

Як ви здогадалися, наступні рухи тіла так, не реготати! будуть спрямовані на те, щоб якраз їх ДІЗНАТИСЯ – з'ясувати, чому ж рівні.

Будьте уважні, докладно пояснюю один раз!

Отже, починаємо танцювати від:

У лівій частині наводимо вираз до спільного знаменника:

Тепер благополучно позбавляємося від знаменників (бо вони однакові):

У лівій частині розкриваємо дужки, невідомі коефіцієнти при цьому поки не чіпаємо:

Заодно повторюємо шкільне правило множення багаточленів. У свій час учителем, я навчився вимовляти це правило з кам'яним обличчям: Щоб помножити многочлен на многочлен потрібно кожен член одного многочлена помножити кожен член іншого многочлена.

З точки зору зрозумілого пояснення коефіцієнти краще внести в дужки (хоча особисто я ніколи цього не роблю з метою економії часу):

Складаємо систему лінійних рівнянь.
Спочатку розшукуємо старші ступені:

І записуємо відповідні коефіцієнти у перше рівняння системи:

Добре запам'ятайте наступний нюанс. Що було б, якби у правій частині взагалі не було? Скажімо, красувалося б просто без жодного квадрата? І тут у рівнянні системи треба було б поставити справа нуль: . Чому нуль? А тому що в правій частині завжди можна приписати цей квадрат з нулем: Якщо в правій частині відсутні якісь змінні або (і) вільний член, то в правих частинах відповідних рівнянь системи ставимо нулі .

Записуємо відповідні коефіцієнти у друге рівняння системи:

І, зрештою, мінералка, підбираємо вільні члени.

Ех, ... щось я пожартував. Жарти геть - математика наука серйозна. У нас в інститутській групі ніхто не сміявся, коли доцент сказала, що розкидає члени по числовій прямій і вибере з них найбільші. Налаштовуємось на серйозний лад. Хоча, хто доживе до кінця цього уроку, все одно буде тихо посміхатися.

Система готова:

Вирішуємо систему:

(1) З першого рівняння виражаємо і підставляємо його у 2-е та 3-е рівняння системи. Насправді можна було висловити (або іншу літеру) з іншого рівняння, але в даному випадку вигідно виразити саме з 1-го рівняння, оскільки там найменші коефіцієнти.

(2) Наводимо подібні доданки у 2-му та 3-му рівняннях.

(3) Почленно складаємо 2-е та 3-е рівняння, при цьому, отримуючи рівність , з якого випливає, що

(4) Підставляємо у друге (або третє) рівняння, звідки знаходимо, що

(5) Підставляємо і перше рівняння, отримуючи .

Якщо виникли труднощі з методами вирішення системи, відпрацюйте їх на уроці Як розв'язати систему лінійних рівнянь?

Після вирішення системи завжди корисно зробити перевірку – підставити знайдені значення у кожнерівняння системи, в результаті все має зійтися.

Майже приїхали. Коефіцієнти знайдені, причому:

Чистове оформлення завдання має виглядати приблизно так:




Як бачите, основна проблема завдання полягала в тому, щоб скласти (правильно!) і вирішити (правильно!) систему лінійних рівнянь. А на завершальному етапі все не так складно: використовуємо властивості лінійності невизначеного інтеграла та інтегруємо. Звертаю увагу, що під кожним із трьох інтегралів у нас «халявна» складна функція, про особливості її інтегрування я розповів на уроці Метод заміни змінної у невизначеному інтегралі.

Перевірка: Диференціюємо відповідь:

Отримано вихідну підінтегральну функцію, отже, інтеграл знайдено правильно.
У ході перевірки довелося висловлюватися до спільного знаменника, і це не випадково. Метод невизначених коефіцієнтів та приведення виразу до спільного знаменника – це взаємно зворотні дії.

Приклад 2

Знайти невизначений інтеграл.

Повернемося до дробу з першого прикладу: . Неважко помітити, що в знаменнику всі множники РІЗНІ. Виникає питання, а що робити, якщо даний, наприклад, такий дріб: ? Тут у знаменнику у нас ступеня, або, по-математично кратні множники. Крім того, є нерозкладний на множники квадратний тричлен (легко переконатися, що дискримінант рівняння негативний, тому на множники тричленів ніяк не розкласти). Що робити? Розклад у суму елементарних дробів виглядатиме на кшталт з невідомими коефіцієнтами вгорі чи якось інакше?

Приклад 3

Уявити функцію

Крок 1.Перевіряємо, чи правильний у нас дріб
Старший ступінь чисельника: 2
Старший ступінь знаменника: 8
Отже, дріб є правильним.

Крок 2Чи можна щось розкласти у знаменнику на множники? Очевидно, що ні все вже розкладено. Квадратний тричлен не розкладається у твір із зазначених вище причин. Гуд. Роботи менші.

Крок 3Подаємо дробово-раціональну функцію у вигляді суми елементарних дробів.
В даному випадку, розкладання має такий вигляд:

Дивимося на наш знаменник:
При розкладанні дробово-раціональної функції на суму елементарних дробів можна назвати три важливих момента:

1) Якщо в знаменнику знаходиться «самотній» множник у першому ступені (у нашому випадку), то вгорі ставимо невизначений коефіцієнт (у нашому випадку). Приклади №1,2 складалися лише з таких «одиноких» множників.

2) Якщо у знаменнику є кратниймножник, то розкладати потрібно так:
– тобто послідовно перебрати всі ступені «ікса» від першого до енного ступеня. У нашому прикладі два кратні множники: і ще раз погляньте на наведене мною розкладання і переконайтеся, що вони розкладені саме за цим правилом.

3) Якщо знаменнику знаходиться нерозкладний многочлен другого ступеня (у разі ), то при розкладанні в чисельнику потрібно записати лінійну функцію з невизначеними коефіцієнтами (у разі з невизначеними коефіцієнтами і ).

Насправді є ще 4-й випадок, але про нього я замовчу, оскільки на практиці він зустрічається вкрай рідко.

Приклад 4

Уявити функцію у вигляді суми елементарних дробів із невідомими коефіцієнтами.

Це приклад самостійного рішення. Повне рішення та відповідь наприкінці уроку.
Строго дотримуйтесь алгоритму!

Якщо Ви розібралися, за якими принципами потрібно розкладати дробову раціональну функцію в суму, то зможете розгризти практично будь-який інтеграл типу, що розглядається.

Приклад 5

Знайти невизначений інтеграл.

Крок 1.Очевидно, що дріб є правильним:

Крок 2Чи можна щось розкласти у знаменнику на множники? Можна, можливо. Тут сума кубів . Розкладаємо знаменник на множники, використовуючи формулу скороченого множення

Крок 3Методом невизначених коефіцієнтів розкладемо підінтегральну функцію на суму елементарних дробів:

Зверніть увагу, що багаточлен нерозкладний на множники (перевірте, що дискримінант негативний), тому вгорі ми ставимо лінійну функцію з невідомими коефіцієнтами, а не просто одну літеру.

Наводимо дріб до спільного знаменника:

Складемо і вирішимо систему:

(1) З першого рівняння виражаємо і підставляємо на друге рівняння системи (це найбільш раціональний спосіб).

(2) Наводимо подібні доданки у другому рівнянні.

(3) Почленно складаємо друге та третє рівняння системи.

Усі подальші розрахунки, у принципі, усні, оскільки система нескладна.

(1) Записуємо суму дробів відповідно до знайдених коефіцієнтів .

(2) Використовуємо властивості лінійності невизначеного інтегралу. Що сталося у другому інтегралі? З цим методом Ви можете ознайомитись в останньому параграфі уроку Інтегрування деяких дробів.

(3) Ще раз використовуємо властивості лінійності. У третьому інтегралі починаємо виділяти повний квадрат (передостанній параграф уроку Інтегрування деяких дробів).

(4) Беремо другий інтеграл, у третьому – виділяємо повний квадрат.

(5) Беремо третій інтеграл. Готово.

ТЕМА: Інтегрування раціональних дробів.

Увага! При вивченні одного з основних прийомів інтегрування: інтегрування раціональних дробів – потрібно для проведення суворих доказів розглядати багаточлени у комплексній галузі. Тому необхідно вивчити попередньо деякі властивості комплексних чисел та операцій з них.

Інтегрування найпростіших раціональних дробів.

Якщо P(z) і Q(z) - багаточлени в комплексній області, то - раціональний дріб. Вона називається правильною, якщо ступінь P(z) менше ступеня Q(z) , і неправильною, якщо ступінь Р не менше ступеня Q.

Будь-який неправильний дріб можна представити у вигляді: ,

P(z) = Q(z) S(z) + R(z),

a R(z) – багаточлен, ступінь якого менший за ступінь Q(z).

Таким чином, інтегрування раціональних дробів зводиться до інтегрування багаточленів, тобто статечних функцій, і правильних дробів, оскільки є правильним дробом.

Визначення 5. Найпростішими (або елементарними) дробами називаються дроби таких видів:

1) , 2) , 3) , 4) .

З'ясуємо, як вони інтегруються.

3) (Вивчений раніше).

Теорема 5. Будь-який правильний дріб можна подати у вигляді суми найпростіших дробів (без доказу).

Наслідок 1. Якщо - правильний раціональний дріб, і якщо серед коренів багаточлена буде тільки просте дійсне коріння, то в розкладанні дробу на суму найпростіших дробів буде лише найпростіші дроби 1-го типу:

приклад 1.

Наслідок 2. Якщо - правильний раціональний дріб, і якщо серед коренів багаточлена будуть лише кратні дійсні корені, то в розкладанні дробу на суму найпростіших дробів будуть присутні лише найпростіші дроби 1-го та 2-го типів:

приклад 2.

Наслідок 3. Якщо - правильний раціональний дріб, і якщо серед коренів багаточлена будуть лише прості комплексно - сполучені корені, то в розкладанні дробу на суму найпростіших дробів будуть присутні лише найпростіші дроби 3-го типу:

приклад 3.

Наслідок 4. Якщо - правильний раціональний дріб, і якщо серед коренів багаточлена будуть лише кратні комплексно - сполучені корені, то в розкладанні дробу на суму найпростіших дробів будуть присутні лише найпростіші дроби 3-го та 4-го типів:

Для визначення невідомих коефіцієнтів у наведених розкладах надходять в такий спосіб. Ліву і праву частину розкладання , що містить невідомі коефіцієнти, множать на рівність двох многочленів. З нього одержують рівняння на шукані коефіцієнти, використовуючи, що:

1. рівність справедливо за будь-яких значеннях Х (метод приватних значень). І тут виходить скільки завгодно рівнянь, будь-які m у тому числі дозволяють знайти невідомі коефіцієнти.

2. збігаються коефіцієнти при однакових ступенях Х (метод невизначених коефіцієнтів). І тут виходить система m – рівнянь з m – невідомими, у тому числі знаходять невідомі коефіцієнти.

3. комбінований метод.

Приклад 5. Розкласти дріб на найпростіші.

Рішення:

Знайдемо коефіцієнти А та В.

1 спосіб - метод приватних значень:

2 спосіб - метод невизначених коефіцієнтів:

Відповідь:

Інтегрування раціональних дробів.

Теорема 6. Невизначений інтеграл від будь-якого раціонального дробу на будь-якому проміжку, на якому його знаменник не дорівнює нулю, існує і виражається через елементарні функції, а саме раціональні дроби, логарифми та арктангенси.

Доведення.

Представимо раціональний дріб у вигляді: . При цьому останній доданок є правильним дробом, і по теоремі 5 її можна подати у вигляді лінійної комбінації найпростіших дробів. Таким чином, інтегрування раціонального дробу зводиться до інтегрування багаточлена. S(x) і найпростіших дробів, первісні яких, як було показано, мають вигляд, вказаний у теоремі.

Зауваження. Основну труднощі у своїй становить розкладання знаменника на множники, тобто пошук всіх його коренів.

Приклад 1. Знайти інтеграл