Биографии Характеристики Анализ

Выборки и способы их получения. Что такое репрезентативная выборка? Необходимый объем выборки

Эмпирические считаются одним из основных средств изучения общественных отношений и процессов. Они обеспечивают получение надежной, полной и репрезентативной информации.

Специфика приемов

Эмпирические обеспечивают получение фактофиксирующего знания. Они способствуют установлению и обобщению обстоятельств за счет опосредованной или прямой регистрации событий, свойственных изучаемым отношениям, объектам, явлениям. Эмпирические приемы отличаются от теоретических тем, что предметом анализа выступают:

  1. Поведение индивидов и их групп.
  2. Продукты деятельности человека.
  3. Вербальные действия индивидов, их суждения, взгляды, мнения.

Выборочные исследования

Эмпирическое изучение всегда ориентировано на получение объективных и точных сведений, количественных данных. В этой связи при его выполнении необходимо обеспечить репрезентативность информации. Соответственно, особое значение имеет правильная выборочная совокупность. Это значит, что отбор необходимо осуществлять так, чтобы полученные данные узкой группы отражали тенденции, имеющие место в общей массе респондентов. Например, при опросе 200-300 человек полученные данные можно экстраполировать на все городское население. Показатели выборочной совокупности позволяют по-другому подойти к изучению общественно-экономических процессов в регионе, в стране в целом.

Терминология

Для лучшего понимания вопросов, касающихся выборочных исследований, необходимо разъяснить некоторые определения. Единицей наблюдения называют непосредственный источник информации. Им может являться отдельный индивид, группа, документ, организация и так далее. Генеральная совокупность - это комплекс единиц наблюдения. Они все должны иметь отношение к проблеме, которая изучается. Непосредственному анализу подлежит . Изучение осуществляется в соответствии с разработанными приемами сбора сведений. Для определения этой доли всего массива респондентов используют понятие "выборочная совокупность". Ее свойство отражать ключевые параметры общей массы людей именуется репрезентативностью. В ряде случаев совпадения отсутствуют. Тогда говорят об ошибке репрезентативности.

Обеспечение репрезентативности

Подробно вопросы, связанные с ним, рассматриваются в рамках статистики. Проблемы отличаются сложностью, так как, с одной стороны, речь ведется об обеспечении количественной репрезентации, которую дает генеральная совокупность. Это означает, в частности, что группы опрошенных должны быть представлены в оптимальном числе. Количество должно быть достаточным для нормального представительства. С другой стороны, имеется в виду и качественная репрезентация. Она предполагает определенный субъектный состав, которым формируется выборочная совокупность. Это значит, что, например, о репрезентативности не может идти речь, если опрашиваются исключительно мужчины либо только женщины, люди пожилого возраста либо молодежь. Изучение должно осуществляться в рамках всех представленных групп.

Характеристика выборки

Этот термин рассматривается в двух аспектах. В первую очередь она определяется как комплекс элементов от общего массива людей, мнение которых изучается, - это выборочная совокупность. Это также процесс создания определенной категории респондентов при требуемом обеспечении репрезентативности. На практике выделяется несколько типов и видов отбора. Рассмотрим их.

Типы

Их существует три:

  1. Стихийная выборочная совокупность. Это набор респондентов, отобранных по принципу добровольности. Вместе с этим обеспечивается доступность вхождения единиц от общей массы людей в конкретную группу изучения. Стихийный отбор на практике применяется достаточно часто. Например, при опросах в прессе, на почте. Однако этот прием имеет существенный недостаток. В нем невозможно качественно представить весь объем генеральной выборки. Этот прием применяется с учетом экономичности. В некоторых опросах этот вариант является единственно возможным.
  2. Стихийная выборочная совокупность. Это один из основных приемов, применяемых при изучении. В качестве ключевого принципа такого отбора выступает обеспечение возможности для каждой единицы наблюдения попасть из общей массы индивидов в узкую группу. Для этого используются разные приемы. Например, это может быть лотерейный, механический отбор, таблица случайных чисел.
  3. Стратифицированная (квотная) выборка. В ее основе лежит формирование качественной модели общей массы респондентов. После этого осуществляется отбор единиц в выборочную совокупность. К примеру, он выполняется по возрастному или половому признаку, по слоям населения и так далее.

Виды

Существуют следующие выборки:

Дополнительно

Выборки могут быть также зависимыми и независимыми. В первом случае процедура эксперимента и результаты, которые будут в ходе него получены для одной группы респондентов, оказывают определенное влияние на другую. Соответственно, независимые выборки не предполагают наличие такого воздействия. Здесь, однако, следует обратить внимание на один важный момент. Одна группа испытуемых, в отношении которой психологическое обследование проводилось дважды (даже если оно было направлено на изучение различных качеств, особенностей, признаков), по умолчанию будет считаться зависимой.

Вероятностные отборы

Рассмотрим некоторые типы выборок:

  1. Случайная. Она предполагает однородность общей совокупности, одну вероятность доступности всех компонентов, а также наличие полного перечня элементов. Как правило, в процессе отбора используется таблица со случайными числами.
  2. Механическая. Эта разновидность случайной выборки предполагает упорядочение по определенному признаку. К примеру, по номеру телефона, в алфавитном порядке, по дате рождения и так далее. Первый компонент выбирается в случайном порядке. Далее осуществляется отбор каждого k элемента с шагом n. Величина общей совокупности будет N=k*n.
  3. Стратифицированная. Эта выборка используется при неоднородности общей совокупности. Последняя разбивается на страты (группы). В каждой из них отбор проводится механическим либо случайным способом.
  4. Серийная. Отбор групп осуществляется случайно. Внутри них объекты изучаются сплошняком.

Невероятностные отборы

Они предполагают выборку не по принципу случайности, а по субъективным признакам: типичности, доступности, равного представительства и так далее. К этой категории относят отборы:

Нюанс

Для обеспечения репрезентативности необходим точный и полный перечень единиц совокупности. Объектами наблюдения, как правило, выступает один человек. Отбор из перечня лучше осуществлять, нумеруя единицы и применяя таблицу со случайными числами. Но достаточно часто используется и квазислучайный метод. Он предполагает отбор из перечня каждого n элемента.

Влияющие факторы

Объемом совокупности называют количество ее единиц. По мнению специалистов, он не обязательно должен быть большим. Несомненно, чем больше число респондентов, тем точнее результат. Однако вместе с этим большой объем не всегда гарантирует успех. Например, это случается, когда общий массив респондентов неоднороден. Однородной будет считаться такая совокупность, где контролируемый параметр, к примеру, уровень грамотности, распределяется равномерно, то есть, пустоты или сгущения отсутствуют. В таком случае будет достаточно опросить несколько человек. По результатам обследования можно будет сделать вывод, что большая часть людей имеет нормальный уровень грамотности. Из этого следует, что на репрезентативность информации влияние оказывают не количественные признаки, а качественные характеристики совокупности - уровень ее однородности, в частности.

Ошибки

Они представляют собой отклонение средних параметров выборочной совокупности от значений общей массы респондентов. На практике ошибки определяются с помощью сопоставления. При обследовании взрослых людей обычно применяются сведения переписей, статистического учета, а также результаты прошлых опросов. Контрольными параметрами обычно выступают Сопоставление средних значений совокупностей (общей и выборочной), определение в соответствии с этим ошибки и уменьшение этого отклонения именуется контролированием репрезентативности.

Выводы

Выборочное исследование - способ сбора данных об установках и поведении людей через опрос специально подобранных групп респондентов. Этот прием считается надежным и экономичным, хотя и требует определенной техники. В качестве основы выступает выборочная совокупность. Она выступает как определенная доля общей массы людей. Отбор производится с использованием специальных приемов и направлен на получение информации обо всей совокупности. Последняя, в свою очередь, представлена всеми возможными общественными объектами или той их группой, которая будет изучаться. Зачастую генеральная совокупность настолько крупная, что проведение опроса каждого ее представителя будет достаточно дорогостоящим и обременительным процессом. Поэтому используется уменьшенная ее модель. В выборочную совокупность включаются все те, кто получает анкеты, кто именуется респондентами, кто, собственно, выступает в качестве объекта изучения. Проще говоря, ее составляет множество людей, которых опрашивают.

Заключение

Цели обследования определяются по конкретным категориям, входящим в генеральную совокупность. Что касается конкретной доли от общей массы людей, то ее составляют субъекты, включенные в группы с помощью математических расчетов. Для отбора единиц необходимо описание объекта исходной совокупности. После определения количества испытуемых определяется прием или способ формирования групп. Результаты обследования позволят описать изучаемый признак относительно всех представителей общей массы людей. Как показывает практика, в основном проводятся выборочные, а не сплошные исследования.

В теории выборочного метода разработаны различные способы отбора и виды выборки, обеспечивающие репрезентативность. Под способом отбора понимают порядок отбора единиц из генеральной совокупности. Различают два способа отбора: повторный и бесповторный. При повторном отборе каждая отобранная в случайном порядке единица после ее обследования возвращается в генеральную совокупность и при последующем отборе может снова попасть в выборку. Этот способ отбора построен по схеме «возвращенного шара»: вероятность попасть в выборку для каждой единицы генеральной совокупности не меняется независимо от числа отбираемых единиц. При бесповторном отборе каждая единица, отобранная в случайном порядке, после ее обследования в генеральную совокупность не возвращается. Этот способ отбора построен по схеме «невозвращенного шара»: вероятность попасть в выборку для каждой единицы генеральной совокупности увеличивается по мере производства отбора.

В зависимости от методики формирования выборочной совокупности различают следующие основные виды выборки:

собственно случайную;

механическую;

типическую (стратифицированную, районированную);

серийную (гнездовую);

комбинированную;

многоступенчатую;

многофазную;

взаимопроникающую.

Собственно случайная выгборка формируется в строгом соответствии с научными принципами и правилами случайного отбора. Для получения собственно случайной выборки генеральная совокупность строго подразделяется на единицы отбора, и затем в случайном повторном или бесповторном порядке отбирается достаточное число единиц.

Случайный порядок подобен жеребьевке. На практике он чаще всего применяется при использовании специальных таблиц случайных чисел. Если, например, из совокупности, содержащей 1587 единиц, следует отобрать 40 единиц, то из таблицы отбирают 40 четырехзначных чисел, которые меньше 1587.

В том случае, когда собственно случайная выборка организуется как повторная, расчет стандартной ошибки производится в соответствии с формулой (6.1). При бесповторном способе отбора формула для расчета стандартной ошибки будет:


где 1 – n / N – доля единиц генеральной совокупности, не попавших в выборку. Так как эта доля всегда меньше единицы, то ошибка при бесповторном отборе при прочих равных условиях всегда меньше, чем при повторном. Бесповторный отбор организовать легче, чем повторный, и он применяется намного чаще. Однако величину стандартной ошибки при бесповторном отборе можно определять по более простой формуле (5.1). Такая замена возможна, если доля единиц генеральной совокупности, не попавших в выборку, большая и, следовательно, величина близка к единице.

Формировать выборку в строгом соответствии с правилами случайного отбора практически очень сложно, а иногда невозможно, так как при использовании таблиц случайных чисел необходимо пронумеровать все единицы генеральной совокупности. Довольно часто генеральная совокупность такая большая, что провести подобную предварительную работу чрезвычайно сложно и нецелесообразно, поэтому на практике применяют другие виды выборок, каждая из которых не является строго случайной. Однако организуются они так, чтобы было обеспечено максимальное приближение к условиям случайного отбора.

При чисто механической выборке вся генеральная совокупность единиц должна быть прежде всего представлена в виде списка единиц отбора, составленного в каком-то нейтральном по отношению к изучаемому признаку порядке, например по алфавиту. Затем список единиц отбора разбивается на столько равных частей, сколько необходимо отобрать единиц. Далее по заранее установленному правилу, не связанному с вариацией исследуемого признака, из каждой части списка отбирается одна единица. Этот вид выборки не всегда может обеспечить случайный характер отбора, и полученная выборка может оказаться смещенной. Объясняется это тем, что, во-первых, упорядочение единиц генеральной совокупности может иметь элемент неслучайного характера. Во-вторых, отбор из каждой части генеральной совокупности при неправильном установлении начала отсчета может также привести к ошибке смещения. Однако практически легче организовать механическую выборку, чем собственно случайную, и при проведении выборочных обследований чаще всего пользуются этим видом выборки. Стандартную ошибку при механической выборке определяют по формуле собственно случайной бесповторной выборки (6.2).

Типическая (районированная, стратифицированная) выборка преследует две цели:

обеспечить представительство в выборке соответствующих типических групп генеральной совокупности по интересующим исследователя признакам;

увеличить точность результатов выборочного обследования.

При типической выборке до начала ее формирования генеральная совокупность единиц разбивается на типические группы. При этом очень важным моментом является правильный выбор группировочного признака. Выделенные типические группы могут содержать одинаковое или различное число единиц отбора. В первом случае выборочная совокупность формируется с одинаковой долей отбора из каждой группы, во втором – с долей, пропорциональной ее доле в генеральной совокупности. Если выборка формируется с равной долей отбора, по существу она равносильна ряду собственно случайных выборок из меньших генеральных совокупностей, каждая из которых и есть типическая группа. Отбор из каждой группы осуществляется в случайном (повторном или бесповторном) либо механическом порядке. При типической выборке, как с равной, так и неравной долей отбора, удается устранить влияние межгрупповой вариации изучаемого признака на точность ее результатов, так как обеспечивается обязательное представительство в выборочной совокупности каждой из типических групп. Стандартная ошибка выборки будет зависеть не от величины общей дисперсии?2, а от величины средней из групповых дисперсий?i2 . Поскольку средняя из групповых дисперсий всегда меньше общей дисперсии, постольку при прочих равных условиях стандартная ошибка типической выборки будет меньше стандартной ошибки собственно случайной выборки.

При определении стандартных ошибок типической выборки применяются следующие формулы:

При повторном способе отбора

При бесповторном способе отбора:

– средняя из групповых дисперсий в выборочной совокупности.

Серийная (гнездовая) выборка – это такой вид формирования выборочной совокупности, когда в случайном порядке отбираются не единицы, подлежащие обследованию, а группы единиц (серии, гнезда). Внутри отобранных серий (гнезд) обследованию подвергаются все единицы. Серийную выборку практически организовать и провести легче, чем отбор отдельных единиц. Однако при этом виде выборки, во-первых, не обеспечивается представительство каждой из серий и, во-вторых, не устраняется влияние межсерийной вариации изучаемого признака на результаты обследования. В том случае, когда эта вариация значительна, она приведет к увеличению случайной ошибки репрезентативности. При выборе вида выборки исследователю необходимо учитывать это обстоятельство. Стандартная ошибка серийной выборки определяется по формулам:

При повторном способе отбора -


где?– межсерийная дисперсия выборочной совокупности; r – число отобранных серий;

При бесповторном способе отбора -


где R – число серий в генеральной совокупности.

В практике те или иные способы и виды выборок применяются в зависимости от цели и задач выборочных обследований, а также возможностей их организации и проведения. Чаще всего применяется комбинирование способов отбора и видов выборки. Такие выборки получили название комбинированные. Комбинирование возможно в разных сочетаниях: механической и серийной выборки, типической и механической, серийной и собственно случайной и т. д. К комбинированной выборке прибегают для обеспечения наибольшей репрезентативности с наименьшими трудовыми и денежными затратами на организацию и проведение обследования.

При комбинированной выборке величина стандартной ошибки выборки состоит из ошибок на каждой ее ступени и может быть определена как корень квадратный из суммы квадратов ошибок соответствующих выборок. Так, если при комбинированной выборке в сочетании использовались механическая и типическая выборки, то стандартную ошибку можно определить по формуле


где?1 и?2 стандартные ошибки соответственно механической и типической выборок.

Особенность многоступенчатой выгборки состоит в том, что выборочная совокупность формируется постепенно, по ступеням отбора. На первой ступени с помощью заранее определенного способа и вида отбора отбираются единицы первой ступени. На второй ступени из каждой единицы первой ступени, попавшей в выборку, отбираются единицы второй ступени и т. д. Число ступеней может быть и больше двух. На последней ступени формируется выборочная совокупность, единицы которой подлежат обследованию. Так, например, для выборочного обследования бюджетов домашних хозяйств на первой ступени отбираются территориальные субъекты страны, на второй – районы в отобранных регионах, на третьей – в каждом муниципальном образовании отбираются предприятия или организации и, наконец, на четвертой ступени – в отобранных предприятиях отбираются семьи.

Таким образом, выборочная совокупность формируется на последней ступени. Многоступенчатая выборка более гибкая, чем другие виды, хотя в общем она дает менее точные результаты, чем выборка того же объема, но сформированная в одну ступень. Однако при этом она имеет одно важное преимущество, которое заключается в том, что основу выборки при многоступенчатом отборе нужно строить на каждой из ступеней только для тех единиц, которые попали в выборку, а это очень важно, так как нередко готовой основы выборки нет.

Стандартную ошибку выборки при многоступенчатом отборе при группах разных объемов определяют по формуле


где?1, ?2, ?3, ... – стандартные ошибки на разных ступенях;

n1, n2 , n3, .. . – численность выборок на соответствующих ступенях отбора.

В том случае, если группы неодинаковы по объему, то теоретически этой формулой пользоваться нельзя. Но если общая доля отбора на всех ступенях постоянна, то практически расчет по этой формуле не приведет к искажению величины ошибки.

Сущность многофазной выгборки состоит в том, что на основе первоначально сформированной выборочной совокупности образуют подвыборку, из этой подвыборки – следующую подвыборку и т. д. Первоначальная выборочная совокупность представляет собой первую фазу, подвыборка из нее – вторую и т. д. Многофазную выборку целесообразно применять в случаях, если:

для изучения различных признаков требуется неодинаковый объем выборки;

колеблемость изучаемых признаков неодинакова и требуемая точность различна;

в отношении всех единиц первоначальной выборочной совокупности (первая фаза) необходимо собрать менее подробные сведения, а в отношении единиц каждой последующей фазы – более подробные.

Одним из несомненных достоинств многофазной выборки является то обстоятельство, что сведениями, полученными на первой фазе, можно пользоваться как дополнительной информацией на последующих фазах, информацией второй фазы – как дополнительной информацией на следующих фазах и т. д. Такое использование сведений повышает точность результатов выборочного обследования.

При организации многофазной выборки можно применять сочетание различных способов и видов отбора (типическую выборку с механической и т. д.). Многофазный отбор можно сочетать с многоступенчатым. На каждой ступени выборка может быть многофазной.

Стандартная ошибка при многофазной выборке рассчитывается на каждой фазе в отдельности в соответствии с формулами того способа отбора и вида выборки, при помощи которых формировалась ее выборочная совокупность.

Взаимопроникающие выгборки – это две или более независимые выборки из одной и той же генеральной совокупности, образованные одним и тем же способом и видом. К взаимопроникающим выборкам целесообразно прибегать, если необходимо за короткий срок получить предварительные итоги выборочных обследований. Взаимопроникающие выборки эффективны для оценки результатов обследования. Если в независимых выборках результаты одинаковы, то это свидетельствует о надежности данных выборочного обследования. Взаимопроникающие выборки иногда можно применять для проверки работы различных исследователей, поручив каждому из них провести обследование разных выборок.

Стандартная ошибка при взаимопроникающих выборках определяется по той же формуле, что и типическая пропорциональная выборка (5.3). Взаимопроникающие выборки по сравнению с другими видами требуют больших трудовых затрат и денежных расходов, поэтому исследователь должен учитывать это обстоятельство при проектировании выборочного обследования.

Предельные ошибки при различных способах отбора и видах выборки определяются по формуле? = t?, где? – соответствующая стандартная ошибка.

Один из главных компонентов тщательно продуманного исследования – определение выборки и что такое репрезентативная выборка. Это как в примере с тортом. Ведь не обязательно съедать весь десерт, чтобы понять его вкус? Достаточно небольшой части.

Так вот, торт – это генеральная совокупность (то есть все респонденты, которые подходят для опроса). Она может быть выражена территориально, например, лишь жители Московской области. Гендерно – только женщины. Или иметь ограничения по возрасту – россияне старше 65 лет.

Высчитать генеральную совокупность сложно: нужно иметь данные переписи населения или предварительных оценочных опросов. Поэтому обычно генеральную совокупность «прикидывают», а из полученного числа высчитывают выборочную совокупность или выборку .

Что такое репрезентативная выборка?

Выборка – это чётко определенное количество респондентов. Её структура должна максимально совпадать со структурой генеральной совокупности по основным характеристикам отбора.

Например, если потенциальные респонденты – всё население России, где 54% — это женщины, а 46% — мужчины, то выборка должна содержать точно такое же процентное соотношение. Если совпадение параметров происходит, то выборку можно назвать репрезентативной. Это значит, что неточности и ошибки в исследовании сводятся к минимуму.

Объем выборки определяется с учётом требований точности и экономичности. Эти требования обратно пропорциональны друг другу: чем больше объем выборки, тем точнее результат. При этом чем выше точность, тем соответственно больше затрат необходимо на проведение исследования. И наоборот, чем меньше выборка, тем меньше на неё затрат, тем менее точно и более случайно воспроизводятся свойства генеральной совокупности.

Поэтому для вычисления объема выбора социологами была изобретена формула и создан специальный калькулятор :

Доверительная вероятность и доверительная погрешность

Что означают термины «доверительная вероятность » и «доверительная погрешность »? Доверительная вероятность – это показатель точности измерений. А доверительная погрешность – это возможная ошибка результатов исследования. К примеру, при генеральной совокупности более 500 00 человек (допустим, проживающие в Новокузнецке) выборка будет равняться 384 человека при доверительной вероятности 95% и погрешности 5% ИЛИ (при доверительном интервале 95±5%).

Что из этого следует? При проведении 100 исследований с такой выборкой (384 человека) в 95 процентов случаев получаемые ответы по законам статистики будут находиться в пределах ±5% от исходного. И мы получим репрезентативную выборку с минимальной вероятностью статистической ошибки.

После того, как подсчет объема выборки выполнен, можно посмотреть есть ли достаточное число респондентов в демо-версии Панели Анкетолога . А как провести панельный опрос можно подробнее узнать .

План:

1. Задачи математической статистики.

2. Виды выборок.

3. Способы отбора.

4. Статистическое распределение выборки.

5. Эмпирическая функция распределения.

6. Полигон и гистограмма.

7. Числовые характеристики вариационного ряда.

8. Статистические оценки параметров распределения.

9. Интервальные оценки параметров распределения.

1. Задачи и методы математической статистики

Математическая статистика - это раздел математики, посвященный методам сбора, анализа и обработки результатов статистических данных наблюдений для научных и практических целей.

Пусть требуется изучить совокупность однородных объектов относительно некоторого качественного или количественного признака, характеризующего эти объекты. Например, если имеется партия деталей, то качественным признаком может служить стандартность детали, а количественным- контролируемый размер детали.

Иногда проводят сплошное исследование, т.е. обследуют каждый объект относительно нужного признака. На практике сплошное обследование применяется редко. Например, если совокупность содержит очень большое число объектов, то провести сплошное обследование физически невозможно. Если обследование объекта связано с его уничтожением или требует больших материальных затрат, то проводить сплошное обследование не имеет смысла. В таких случаях случайно отбирают из всей совокупности ограниченное число объектов (выборочную совокупность) и подвергают их изучению.

Основная задача математической статистики заключается в исследовании всей совокупности по выборочным данным в зависимости от поставленной цели, т.е. изучение вероятностных свойств совокупности: закона распределения, числовых характеристик и т.д. для принятия управленческих решений в условиях неопределенности.

2. Виды выборок

Генеральная совокупность – это совокупность объектов, из которой производится выборка.

Выборочная совокупность (выборка) – это совокупность случайно отобранных объектов.

Объем совокупности – это число объектов этой совокупности. Объем генеральной совокупности обозначается N , выборочной – n .

Пример:

Если из 1000 деталей отобрано для обследования 100 деталей, то объем генеральной совокупности N = 1000, а объем выборки n = 100.

Присоставлении выборки можно поступить двумя способами: после того, как объект отобран и над ним произведено наблюдение, он может быть возвращен либо не возвращен в генеральную совокупность. Т.о. выборки делятся на повторные и бесповторные.

Повторной называют выборку , при которой отобранный объект (перед отбором следующего) возвращается в генеральную совокупность.

Бесповторной называют выборку , при которой отобранный объект в генеральную совокупность не возвращается.

На практике обычно пользуются бесповторным случайным отбором.

Для того, чтобы по данным выборки можно было достаточно уверенно судить об интересующем признаке генеральной совокупности, необходимо, чтобы объекты выборки правильно его представляли. Выборка должна правильно представлять пропорции генеральной совокупности. Выборка должна быть репрезентативной (представительной).

В силу закона больших чисел можно утверждать, что выборка будет репрезентативной, если ее осуществлять случайно.

Если объем генеральной совокупности достаточно велик, а выборка составляет лишь незначительную часть этой совокупности, то различие между повторной и бесповторной выборками стирается; в предельном случае, когда рассматривается бесконечная генеральная совокупность, а выборка имеет конечный объем, это различие исчезает.

Пример:

В американском журнале «Литературное обозрение» с помощью статистическихметодов было проведено исследование прогнозов относительно исхода предстоящих выборов президента США в 1936 году. Претендентами на этот пост были Ф.Д. Рузвельт и А. М. Ландон. В качестве источника для генеральной совокупности исследуемых американцев были взяты справочники телефонных абонентов. Из них случайным образом были выбраны 4 миллиона адресов., по которым редакция журнала разослала открытки с просьбой высказать свое отношение к кандидатам на пост президента. Обработав результаты опроса, журнал опубликовал социологический прогноз о том, что на предстоящих выборах с большим перевесом победит Ландон. И … ошибся: победу одержал Рузвельт.
Этот пример можно рассматривать, как пример нерепрезентативной выборки. Дело в том, что в США в первой половине двадцатого века телефоны имела лишь зажиточная часть населения, которые поддерживали взгляды Ландона.

3. Способы отбора

На практике применяются различные способы отбора, которые можно разделить на 2 вида:

1. Отбор не требует расчленения генеральной совокупности на части (а) простой случайный бесповторный ; б) простой случайный повторный ).

2. Отбор, при котором генеральная совокупность разбивается на части. (а) типичный отбор ; б) механический отбор ; в) серийный отбор ).

Простым случайным называют такой отбор , при котором объекты извлекаются по одному из всей генеральной совокупности (случайно).

Типичным называют отбор , при котором объекты отбираются не из всей генеральной совокупности, а из каждой ее «типичной» части. Например, если деталь изготавливают на нескольких станках, то отбор производят не из всей совокупности деталей, произведенных всеми станками, а из продукции каждого станка в отдельности. Таким отбором пользуются тогда, когда обследуемый признак заметно колеблется в различных «типичных» частях генеральной совокупности.

Механическим называют отбор , при котором генеральную совокупность «механически» делят на столько групп, сколько объектов должно войти в выборку, а из каждой группы отбирают один объект. Например, если нужно отобрать 20 % изготовленных станком деталей, то отбирают каждую 5-ую деталь; если требуется отобрать 5 % деталей- каждую 20-ую и т.д. Иногда такой отбор может не обеспечивать репрезентативность выборки (если отбирают каждый 20-ый обтачиваемый валик, причем сразу же после отбора производится замена резца, то отобранными окажутся все валики, обточенные затупленными резцами).

Серийным называют отбор , при котором объекты отбирают из генеральной совокупности не по одному, а «сериями», которые подвергают сплошному обследованию. Например, если изделия изготавливаются большой группой станков-автоматов, то подвергают сплошному обследованию продукцию только нескольких станков.

На практике часто применяют комбинированный отбор, при котором сочетаются указанные выше способы.

4. Статистическое распределение выборки

Пусть из генеральной совокупности извлечена выборка, причем значение x 1 –наблюдалось раз, x 2 -n 2 раз,… x k - n k раз. n = n 1 +n 2 +...+n k – объем выборки. Наблюдаемые значения называются вариантами , а последовательность вариант, записанных в возрастающем порядке- вариационным рядом . Числа наблюдений называются частотами (абсолютными частотами) , а их отношения к объему выборки - относительными частотами или статистическими вероятностями.

Если количество вариант велико или выборка производится из непрерывной генеральной совокупности, то вариационный ряд составляется не по отдельным точечным значениям, а по интервалам значений генеральной совокупности. Такой вариационный ряд называется интервальным. Длины интервалов при этом должны быть равны.

Статистическим распределением выборки называется перечень вариант и соответствующих им частот или относительных частот.

Статистическое распределение можно задать также в виде последовательности интервалов и соответствующих им частот (суммы частот, попавших в этот интервал значений)

Точечный вариационный ряд частот может быть представлен таблицей:

x i
x 1
x 2

x k
n i
n 1
n 2

n k

Аналогично можно представить точечный вариационный ряд относительных частот.

Причем:

Пример:

Число букв в некотором тексте Х оказалось равным 1000. Первой встретиласьбуква «я», второй- буква «и», третьей- буква «а», четвертой- «ю». Затем шли буквы«о», «е», «у», «э», «ы».

Выпишем места, которые они занимают в алфавите, соответственно имеем: 33, 10, 1, 32, 16, 6, 21, 31, 29.

После упорядочения этих чисел по возрастанию получаем вариационный ряд: 1, 6, 10, 16, 21, 29, 31, 32, 33.

Частоты появления букв в тексте: «а» - 75, «е» -87, «и»- 75, «о»- 110, «у»- 25, «ы»- 8, «э»- 3, «ю»- 7, «я»- 22.

Составим точечный вариационный ряд частот:

Пример:

Задано распределение частот выборки объема n = 20.

Составьте точечный вариационный ряд относительных частот.

x i

2

6

12

n i

3

10

7

Решение:

Найдем относительные частоты:


x i

2

6

12

w i

0,15

0,5

0,35

При построении интервального распределения существуют правилавыбора числа интервалов или величины каждого интервала. Критерием здесь служит оптимальное соотношение: при увеличении числа интервалов улучшается репрезентативность, но увеличивается объем данных и время на их обработку. Разность x max - x min между наибольшим и наименьшим значениями вариант называют размахом выборки.

Для подсчета числа интервалов k обычно применяют эмпирическую формулу Стреджесса (подразумевая округление до ближайшего удобного целого): k = 1 + 3.322 lg n .

Соответственно, величину каждого интервала h можно вычислить по формуле :

5. Эмпирическая функция распределения

Рассмотрим некоторую выборку из генеральной совокупности. Пусть известно статистическое распределение частот количественного признака Х. Введем обозначения: n x – число наблюдений, при которых наблюдалось значение признака, меньшее х; n общее число наблюдений (объем выборки). Относительная частота события Х<х равна n x /n . Если х изменяется, то изменяется и относительная частота, т.е. относительная частота n x /n - есть функция от х. Т.к. она находится эмпирическим путем, то она называется эмпирической.

Эмпирической функцией распределения (функцией распределения выборки) называют функцию , определяющую для каждого х относительную частоту события Х<х.


где число вариант, меньших х,

n - объем выборки.

В отличие от эмпирической функции распределения выборки, функцию распределения F (x ) генеральной совокупности называют теоретической функцией распределения .

Различие между эмпирической и теоретической функциями распределения состоит в том, что теоретическая функция F (x ) определяет вероятность события ХF*(x) стремится по вероятности к вероятности F (x ) этого события. Т.е.при большом n F*(x) и F (x ) мало отличаются друг от друга.

Т.о. целесообразно использовать эмпирическую функцию распределения выборки для приближенного представления теоретической (интегральной) функции распределения генеральной совокупности.

F*(x) обладает всеми свойствами F (x ).

1. ЗначенияF*(x) принадлежат интервалу .

2. F*(x) - неубывающая функция.

3. Если – наименьшая варианта, тоF*(x) = 0, при х< x 1 ; если x k – наибольшая варианта, то F*(x) = 1, при х > x k .

Т.е. F*(x) служит для оценки F (x ).

Если выборка задана вариационным рядом, то эмпирическая функция имеет вид:

График эмпирической функции называется кумулятой.

Пример:

Постройте эмпирическую функцию по данному распределению выборки.


Решение:

Объем выборки n = 12 + 18 +30 = 60. Наименьшая варианта 2, т.е. при х < 2. Событие X <6, (x 1 = 2) наблюдалось 12 раз, т.е. F*(x)=12/60=0,2 при 2 < x < 6. Событие Х<10, (x 1 =2, x 2 = 6) наблюдалось 12 + 18 = 30 раз, т.е.F*(x)=30/60=0,5 при 6 < x < 10. Т.к. х=10 наибольшая варианта, тоF*(x) = 1 при х>10. Искомая эмпирическая функция имеет вид:

Кумулята:


Кумулята дает возможность понимать графически представленную информацию, например, ответить на вопросы: «Определите число наблюдений, при которых значение признака было меньше 6 или не меньше 6. F*(6) =0,2 » Тогда число наблюдений, при которых значение наблюдаемого признака было меньше 6 равно 0,2* n = 0,2*60 = 12. Число наблюдений, при которых значение наблюдаемого признака было не меньше 6 равно (1-0,2)* n = 0,8*60 = 48.

Если задан интервальный вариационный ряд, то для составления эмпирической функции распределения находят середины интервалов и по ним получают эмпирическую функцию распределения аналогично точечному вариационному ряду.

6. Полигон и гистограмма

Для наглядности строят различные графики статистического распределения: полином и гистограммы

Полигон частот- это ломаная, отрезки которой соединяют точки ( x 1 ;n 1 ), ( x 2 ;n 2 ),…, ( x k ; n k ), где – варианты, – соответствующие им частоты.

Полигон относительных частот- это ломаная, отрезки которой соединяют точки ( x 1 ;w 1 ), (x 2 ;w 2 ),…, ( x k ;w k ), гдеx i –варианты, w i – соответствующие им относительные частоты.

Пример:

Постройте полином относительных частот по данному распределению выборки:

Решение:

В случае непрерывного признака целесообразно строить гистограмму, для чего интервал, в котором заключены все наблюдаемые значения признака, разбивают на несколько частичных интервалов длиной h и находят для кажд ого частичного интервала n i – сумму частот вариант, попавших в i -ый интервал. (Например, при измерении роста человека или веса, мы имеем дело с непрерывным признаком).

Гистограмма частот- это ступенчатая фигура, состоящая из прямоугольников, основаниями которых служат частичные интервалы длиною h , а высоты равны отношению (плотность частот).

Площадь i -го частичного прямоугольника равна- сумме частот вариант i - го интервала, т.е. площадь гистограммы частот равна сумме всех частот, т.е. объему выборки.

Пример:

Даны результаты изменения напряжения (в вольтах) в электросети. Составьте вариационный ряд, постройте полигон и гистограмму частот, если значения напряжения следующие: 227, 215, 230, 232, 223, 220, 228, 222, 221, 226, 226, 215, 218, 220, 216, 220, 225, 212, 217, 220.

Решение:

Составим вариационный ряд. Имеем n = 20, x min =212, x max =232 .

Применим формулу Стреджесса для подсчета числа интервалов.

Интервальный вариационный ряд частот имеет вид:


Плотность частот

212-21 6

0,75

21 6-22 0

0,75

220-224

1,75

224-228

228-232

0,75

Построим гистограмму частот:

Построим полигон частот, найдя предварительно середины интервалов:


Гистограммой относительных частот называют ступенчатую фигуру, состоящую из прямоугольников, основаниями которыхслужат частичные интервалы длиною h , а высоты равны отношению w i /h (плотность относительной частоты).

Площадь i -го частичного прямоугольника равна- относительной частоте вариант, попавших в i - ый интервал. Т.е. площадь гистограммы относительных частот равна сумме всех относительных частот, т.е. единице.

7. Числовые характеристики вариационного ряда

Рассмотрим основные характеристики генеральной и выборочной совокупностей.

Генеральным средним называется среднее арифметическое значений признака генеральной совокупности.

Для различных значений x 1 , x 2 , x 3 , …, x n . признака генеральной совокупности объема N имеем:

Если значения признака имеют соответствующие частоты N 1 +N 2 +…+N k =N , то


Выборочным средним называется среднее арифметическое значений признака выборочной совокупности.

Если значения признака имеют соответствующие частоты n 1 +n 2 +…+n k = n , то


Пример:

Вычислите выборочное среднее для выборки: x 1 = 51,12; x 2 = 51,07;x 3 = 52,95; x 4 =52,93;x 5 = 51,1;x 6 = 52,98; x 7 = 52,29; x 8 = 51,23; x 9 = 51,07; x 10 = 51,04.

Решение:

Генеральной дисперсией называется среднее арифметическое квадратов отклонений значений признака Х генеральной совокупности от генерального среднего.

Для различных значений x 1 , x 2 , x 3 , …, x N признака генеральной совокупности объема N имеем:

Если значения признака имеют соответствующие частоты N 1 +N 2 +…+N k =N , то

Генеральным среднеквадратическим отклонением (стандартом) называют квадратный корень из генеральной дисперсии

Выборочной дисперсией называется среднее арифметическое квадратов отклонений наблюдаемых значений признака от среднего значения.

Для различных значений x 1 , x 2 , x 3 , …, x n признака выборочной совокупности объема n имеем:


Если значения признака имеют соответствующие частоты n 1 +n 2 +…+n k = n , то


Выборочным среднеквадратическим отклонением (стандартом) называется квадратный корень из выборочной дисперсии.


Пример:

Выборочная совокупность задана таблицей распределения. Найдите выборочную дисперсию.


Решение:

Теорема: Дисперсия равна разности среднего квадратов значений признака и квадрата общего среднего.

Пример:

Найдите дисперсию по данному распределению.



Решение:

8. Статистические оценки параметров распределения

Пусть генеральная совокупность исследуется по некоторой выборке. При этом можно получить лишь приближенное значение неизвестного параметра Q , который служит его оценкой. Очевидно, что оценки могут изменяться от одной выборки к другой.

Статистической оценкой Q * неизвестного параметра теоретического распределения называется функция f , зависящая от наблюдаемых значений выборки. Задачей статистического оценивания неизвестных параметров по выборке заключается в построении такой функции от имеющихся данных статистических наблюдений, которая давала бы наиболее точные приближенные значения реальных, не известных исследователю, значений этих параметров.

Статистические оценки делятся на точечные и интервальные, в зависимости от способа их предоставления (числом или интервалом).

Точечной называют статистическую оценку параметра Q теоретического распределения определяемую одним значением параметра Q *=f (x 1 , x 2 , ..., x n), где x 1 , x 2 , ..., x n - результаты эмпирических наблюдений над количественным признаком Х некоторой выборки.

Такие оценки параметров, полученные по разным выборкам, чаще всего отличаются друг от друга. Абсолютная разность /Q *-Q / называют ошибкой выборки (оценивания).

Для того, чтобы статистические оценки давали достоверные результаты об оцениваемых параметрах, необходимо, чтобы они были несмещенными, эффективными и состоятельными.

Точечная оценка , математическое ожидание которой равно (не равно) оцениваемому параметру, называется несмещенной (смещенной) . М(Q *)=Q .

Разность М(Q *)-Q называют смещением или систематической ошибкой . Для несмещенных оценок систематическая ошибка равна 0.

Эффективной оценку Q *, которая при заданном объеме выборки n имеет наименьшую возможную дисперсию: D min (n = const ). Эффективная оценка имеет наименьший разброс по сравнению с другими несмещенными и состоятельными оценками.

Состоятельной называют такую статистическую оценку Q *, которая при n стремится по вероятности к оцениваемому параметру Q , т.е. при увеличении объема выборки n оценка стремится по вероятности к истинному значению параметра Q .

Требование состоятельности согласуется с законом больших числе: чем больше исходной информации об исследуемом объекте, тем точнее результат. Если объем выборки мал, то точечная оценка параметра может привести к серьезным ошибкам.

Любую выборку (объема n ) можно рассматривать как упорядоченный набор x 1 , x 2 , ..., x n независимых одинаково распределенных случайных величин.

Выборочные средние для различных выборок объема n из одной и той же генеральной совокупности будут различны. Т. е. выборочное среднее можно рассматривать как случайную величину, а значит, можно говорить о распределении выборочного среднего и его числовых характеристиках.

Выборочное среднее удовлетворяет всем накладываемым к статистическим оценкам требованиям, т.е. дает несмещенную, эффективную и состоятельную оценку генерального среднего.

Можно доказать, что . Таким образом, выборочная дисперсия является смещенной оценкой генеральной дисперсии, давая ее заниженное значение. Т. е. при небольшом объеме выборки она будет давать систематическую ошибку. Для несмещенной, состоятельной оценки достаточно взять величину , которую называют исправленной дисперсией. Т. е.

На практике для оценки генеральной дисперсии применяют исправленную дисперсию при n < 30. В остальных случаях (n >30) отклонение от малозаметно. Поэтому при больших значениях n ошибкой смещения можно пренебречь.

Можно так же доказать,что относительная частота n i / n является несмещенной и состоятельной оценкой вероятности P (X =x i ). Эмпирическая функция распределения F *(x ) является несмещенной и состоятельной оценкой теоретической функции распределения F (x )= P (X < x ).

Пример:

Найдите несмещенные оценки математического ожиданияи дисперсии по таблице выборки.

x i
n i

Решение:

Объем выборки n =20.

Несмещенной оценкой математического ожидания является выборочное среднее.


Для вычисления несмещенной оценки дисперсии сначала найдем выборочную дисперсию:

Теперь найдем несмещенную оценку:

9. Интервальные оценки параметров распределения

Интервальной называется статистическая оценка, определяемая двумя числовыми значениями- концами исследуемого интервала.

Число > 0, при котором | Q - Q *|< , характеризует точность интервальной оценки.

Доверительным называется интервал , который с заданной вероятностью покрывает неизвестное значение параметра Q . Дополнение доверительного интервала до множества всех возможных значений параметра Q называется критической областью . Если критическая область расположена только с одной стороны от доверительного интервала, то доверительный интервал называется односторонним: левосторонним , если критическая область существует только слева, и правосторонним- если только справа. В противном случае, доверительный интервал называется двусторонним .

Надежностью, или доверительной вероятностью, оценки Q (с помощью Q *) называют вероятность, с которой выполняется следующее неравенство: | Q - Q *|< .

Чаще всего доверительную вероятность задают заранее (0,95; 0,99; 0,999) и на нее накладывают требование быть близкой к единице.

Вероятность называют вероятностью ошибки, или уровнем значимости.

Пусть | Q - Q *|< , тогда . Это означает, что с вероятностью можно утверждать, что истинное значение параметра Q принадлежит интервалу . Чем меньше величина отклонения , тем точнее оценка.

Границы (концы) доверительного интервала называют доверительными границами, или критическими границами.

Значения границ доверительного интервала зависят от закона распределения параметра Q *.

Величину отклонения равную половине ширины доверительного интервала, называют точностью оценки.

Методы построения доверительных интервалов впервые были разработаны американским статистом Ю. Нейманом. Точность оценки , доверительная вероятность и объем выборки n связаны между собой. Поэтому, зная конкретные значения двух величин, всегда можно вычислить третью.

Нахождение доверительного интервала для оценки математического ожидания нормального распределения, если известно среднеквадратическое отклонение.

Пусть произведена выборка из генеральной совокупности, подчиненной закону нормального распределения. Пусть известно генеральное среднеквадратическое отклонение , но неизвестно математическое ожидание теоретического распределения a ( ).

Справедлива следующая формула:

Т.е. по заданному значению отклонения можно найти, с какой вероятностью неизвестное генеральное среднее принадлежит интервалу . И наоборот. Из формулы видно, что при возрастании объема выборки и фиксированной величине доверительной вероятности величина - уменьшается, т.е. точность оценки увеличивается. С увеличением надежности (доверительной вероятности), величина -увеличивается, т.е. точность оценки уменьшается.

Пример:

В результате испытаний были получены следующие значения -25, 34, -20, 10, 21. Известно, что они подчиняются закону нормального распределения с среднеквадратическим отклонением 2. Найдите оценку а* для математического ожидания а. Постройте для него 90%-ый доверительный интервал.

Решение:

Найдем несмещенную оценку

Тогда


Доверительный интервал для а имеет вид: 4 – 1,47< a < 4+ 1,47 или 2,53 < a < 5, 47

Нахождение доверительного интервала для оценки математического ожидания нормального распределения, если неизвестно среднеквадратическое отклонение.

Пусть известно, что генеральная совокупность подчинена закону нормального распределения, где неизвестны а и . Точность доверительного интервала, покрывающего с надежностью истинное значение параметра а, в данном случае вычисляется по формуле:

, где n - объем выборки, , - коэффициент Стьюдента (его следует находить по заданным значениям n и из таблицы «Критические точки распределения Стьюдента»).

Пример:

В результате испытаний были получены следующие значения -35, -32, -26, -35, -30, -17. Известно, что они подчиняются закону нормального распределения. Найдите доверительный интервал для математического ожидания а генеральной совокупности с доверительной вероятностью 0,9.

Решение:

Найдем несмещенную оценку .

Найдем .

Тогда

Доверительный интервал примет вида (-29,2 - 5,62; -29,2 + 5,62) или (-34,82; -23,58).

Нахождение доверительного интерла для дисперсии и среднеквадратического отклонения нормального распределения

Пусть из некоторой генеральной совокупности значений, распределенной по нормальному закону, взята случайная выборка объема n < 30, для которой вычислены выборочные дисперсии: смещенная и исправленная s 2 . Тогда для нахождения интервальных оценок с заданной надежностью для генеральной дисперсии D генерального среднеквадратического отклонения используются следующие формулы.


или ,

Значения - находят с помощью таблицы значений критических точек распределения Пирсона.

Доверительный интервал для дисперсии находится из этих неравенств путем возведения всех частей неравенства в квадрат.

Пример:

Было проверено качество 15 болтов. Предполагая, что ошибка при их изготовлении подчинена нормальному закону распределения, причем выборочное среднеквадратическое отклонение равно 5 мм, определить с надежностью доверительный интервал для неизвестного параметра

Границы интервала представим в виде двойного неравенства:

Концы двустороннего доверительного интервала для дисперсии можно определить и без выполнения арифметических действий по заданному уровню доверия и объему выборки с помощью соответствующей таблицы (Границы доверительных интервалов для дисперсии в зависимости от числа степеней свободы и надежности). Для этого полученные из таблицы концы интервала умножают на исправленную дисперсию s 2 .

Пример:

Решим предыдущую задачу другим способом.

Решение:

Найдем исправленную дисперсию:

По таблице «Границы доверительных интервалов для дисперсии в зависимости от числа степеней свободы и надежности» найдем границы доверительного интервала для дисперсии при k =14 и : нижняя граница 0,513 и верхняя 2,354.

Умножим полученные границы на s 2 и извлечем корень (т.к. нам нужен доверительный интервал не для дисперсии, а для среднеквадратического отклонения).

Как видно из примеров, величина доверительного интервала зависит от способа его построения и дает близкие между собой, но неодинаковые результаты.

При выборках достаточно большого объема (n >30) границы доверительного интервала для генерального среднеквадратического отклонения можно определить по формуле: - некоторое число, которое табулировано и приводится в соответствующей справочной таблице.

Если 1- q <1, то формула имеет вид:

Пример:

Решим предыдущую задачу третьим способом.

Решение:

Ранее было найдено s = 5,17. q (0,95; 15) = 0,46 – находим по таблице.

Тогда:

Выборочное наблюдение применяется, когда применение сплошного наблюдения физически невозможно из-за большого массива данных или экономически нецелесообразно . Физическая невозможность имеет место, например, при изучении пассажиропотоков, рыночных цен, семейных бюджетов. Экономическая нецелесообразность имеет место при оценке качества товаров, связанной с их уничтожением, например, дегустация, испытание кирпичей на прочность и т.п.

Статистические единицы, отобранные для наблюдения, составляют выборочную совокупность или выборку , а весь их массив - генеральную совокупность (ГС). При этом число единиц в выборке обозначают n , а во всей ГС - N . Отношение n/N называется относительный размер или доля выборки .

Качество результатов выборочного наблюдения зависит от репрезентативности выборки , то есть от того, насколько она представительна в ГС. Для обеспечения репрезентативности выборки необходимо соблюдать принцип случайности отбора единиц , который предполагает, что на включение единицы ГС в выборку не может повлиять какой-либо иной фактор кроме случая.

Существует 4 способа случайного отбора в выборку:

  1. Собственно случайный отбор или «метод лото», когда статистическим величинам присваиваются порядковые номера, заносимые на определенные предметы (например, бочонки), которые затем перемешиваются в некоторой емкости (например, в мешке) и выбираются наугад. На практике этот способ осуществляют с помощью генератора случайных чисел или математических таблиц случайных чисел.
  2. Механический отбор, согласно которому отбирается каждая (N/n )-я величина генеральной совокупности. Например, если она содержит 100 000 величин, а требуется выбрать 1 000, то в выборку попадет каждая 100 000 / 1000 = 100-я величина. Причем, если они не ранжированы, то первая выбирается наугад из первой сотни, а номера других будут на сотню больше. Например, если первой оказалась единица № 19, то следующей должна быть № 119, затем № 219, затем № 319 и т.д. Если единицы генеральной совокупности ранжированы, то первой выбирается № 50, затем № 150, затем № 250 и так далее.
  3. Отбор величин из неоднородного массива данных ведется стратифицированным (расслоенным) способом, когда генеральная совокупность предварительно разбивается на однородные группы, к которым применяется случайный или механический отбор.
  4. Особый способ составления выборки представляет собой серийный отбор, при котором случайно или механически выбирают не отдельные величины, а их серии (последовательности с какого-то номера по какой-то подряд), внутри которых ведут сплошное наблюдение.

Качество выборочных наблюдений зависит и от типа выборки : повторная или бесповторная.
При повторном отборе попавшие в выборку статистические величины или их серии после использования возвращаются в генеральную совокупность, имея шанс попасть в новую выборку. При этом у всех величин генеральной совокупности одинаковая вероятность включения в выборку.
Бесповторный отбор означает, что попавшие в выборку статистические величины или их серии после использования не возвращаются в генеральную совокупность, а потому для остальных величин последней повышается вероятность попадания в следующую выборку.

Бесповторный отбор дает более точные результаты, поэтому применяется чаще. Но есть ситуации, когда его применить нельзя (изучение пассажиропотоков, потребительского спроса и т.п.) и тогда ведется повторный отбор.

Ошибки выборки

Выборочную совокупность можно сформировать по количественному признаку статистических величин, а также по альтернативному или атрибутивному. В первом случае обобщающей характеристикой выборки служит величина, обозначаемая , а во втором — выборочная доля величин, обозначаемая w . В генеральной совокупности соответственно: генеральная средняя и генеральная доля р .

Разности — и W р называются ошибкой выборки , которая делится на ошибку регистрации и ошибку репрезентативности . Первая часть ошибки выборки возникает из-за неправильных или неточных сведений по причинам непонимания существа вопроса, невнимательности регистратора при заполнении анкет, формуляров и т.п. Она достаточно легко обнаруживается и устраняется. Вторая часть ошибки возникает из-за постоянного или спонтанного несоблюдения принципа случайности отбора. Ее трудно обнаружить и устранить, она гораздо больше первой и потому ей уделяется основное внимание.

Величина ошибки выборки может быть разной для разных выборок из одной генеральной совокупности, поэтому в статистике определяется средняя ошибка повторной и бесповторной выборки по формулам:

Повторная;

- бесповторная;

Где Дв - выборочная дисперсия .

Например, на заводе с численностью работников 1000 чел. проведена 5%-ая случайная бесповторная выборка с целью определения среднего стажа работников. Результаты выборочного наблюдения приведены в первых двух столбцах следующей таблицы:

X , лет
(стаж работы)

f , чел.
(число работников в выборке)

X и

X иf

В 3-м столбце определены середины интервалов X (как полусумма нижней и верхней границ интервала), а в 4-м столбце - произведения X И f для нахождения выборочной средней по формуле средней арифметической взвешенной :

143,0/50 = 2,86 (года).

Рассчитаем выборочную дисперсию взвешенную:
= 105,520/50 = 2,110.

Теперь найдем среднюю ошибку бесповторной выборки:
= 0,200 (лет).

Из формул средних ошибок выборки видно, что ошибка меньше при бесповторной выборке, и, как доказано в теории вероятностей, она возникает с вероятностью 0,683 (то есть если провести 1000 выборок из одной генеральной совокупности, то в 683 из них ошибка не превзойдет средней ошибки выборки). Такая вероятность (0,683) является невысокой, поэтому она мало пригодна для практических расчетов, где нужна более высокая вероятность. Чтобы определить ошибку выборки с более высокой, чем 0,683 вероятностью, рассчитывают предельную ошибку выборки :

Где t – коэффициент доверия, зависящий от вероятности, с которой определяется предельная ошибка выборки.

Значения коэффициента доверия t рассчитаны для разных вероятностей и имеются в специальных таблицах (интеграл Лапласа), из которых в статистике широко применяются следующие сочетания:

Вероятность 0,683 0,866 0,950 0,954 0,988 0,990 0,997 0,999
t 1 1,5 1,96 2 2,5 2,58 3 3,5

Задавшись конкретным уровнем вероятности, выбирают из таблицы соответствующую ей величину t и определяют предельную ошибку выборки по формуле.
При этом чаще всего применяют = 0,95 и t = 1,96, то есть считают, что с вероятностью 95% предельная ошибка выборки в 1,96 раза больше средней. Такая вероятность (0,95) считается стандартной и применяется по умолчанию в расчетах.

В нашем , определим предельную ошибку выборки при стандартной 95%-ой вероятности (из берем t = 1,96 для 95%-ой вероятности): = 1,96*0,200 = 0,392 (года).

После расчета предельной ошибки находят доверительный интервал обобщающей характеристики генеральной совокупности . Такой интервал для генеральной средней величины имеет вид
То есть средний стаж работников на всем заводе лежит в интервале от 2,468 года до 3,252 года.

Определение численности выборки

Разрабатывая программу выборочного наблюдения, иногда задаются конкретным значением предельной ошибки с уровнем вероятности. Неизвестной остается минимальная численность выборки, обеспечивающая заданную точность. Ее можно получить из формул средней и предельной ошибок в зависимости от типа выборки. Так, подставляя и в и, решая ее относительно численности выборки, получим следующие формулы:
для повторной выборки n =
для бесповторной выборки n = .

Кроме того, при статистических величинах с количественными признаками надо знать и выборочную дисперсию, но к началу расчетов и она не известна. Поэтому она принимается приближенно одним из следующих способов (в приоритетном порядке):

При изучении не численных признаков, если даже нет приблизительных сведений о выборочной доле, принимается w = 0,5, что по формуле дисперсии доли соответствует выборочной дисперсии в максимальном размере Дв = 0,5*(1-0,5) = 0,25.