Биографии Характеристики Анализ

Области применения искусственного интеллекта. Влияние на рынок труда

Искусственный интеллект ИИ (artificial intelligence) обычно трактуется как свойство автоматических систем брать на себя отдельные функции мыслительной способности человека, например, выбирать и принимать оптимальные решения на основе ранее полученного опыта и рационального анализа внешних воздействий. Речь идет, в первую очередь, о системах, в основу которых положены принципы обучения, самоорганизации и эволюции при минимальном участии человека, но привлечении его в качестве учителя и партнёра, гармоничного элемента человеко-машинной системы.

Естественно, что попытки создать ИИ на базе компьютеров начались на заре развития компьютерной техники. Тогда господствовала компьютерная парадигма, ключевыми тезисами которой утверждалось, что машина Тьюринга является теоретической моделью мозга, а компьютер - реализацией универсальной машины и любой информационный процесс может быть воспроизведён на компьютере. Такая парадигма была доминирующей долгое время, принесла много интересных результатов, но главной задачи - построения ИИ в смысле моделирования мышления человека, так и не достигла. Компьютерная парадигма создания ИИ, потерпевшая крах в связи с неправильным набором ключевых предпосылок, логично трансформировалась в нейроинформатику, развивающую некомпьютерный подход к моделированию интеллектуальных процессов. Человеческий мозг, оперирующий с нерасчленённой информацией, оказался значительно сложнее машины Тьюринга. Каждая человеческая мысль имеет свой контекст, вне которого она бессмысленна, знания хранятся в форме образов, которые характеризуются нечёткостью, размытостью, система образов слабо чувствительна к противоречиям. Система хранения знаний человека характеризуется высокой надёжностью вследствие распределённого хранения знаний, а оперирование с информацией характеризуется большой глубиной и высоким параллелизмом.

Переработка информации в любых интеллектуальных системах основывается на использовании фундаментального процесса - обучения. Образы обладают характерными объективными свойствами в том смысле, что разные распознающие системы, обучающиеся на различном материале наблюдений, большей частью одинаково и независимо друг от друга классифицируют одни и те же объекты. Именно эта объективность образов позволяет людям всего мира понимать друг друга. Обучением обычно называют процесс выработки в некоторой системе специфической реакции на группы внешних идентичных сигналов путем многократного воздействия на распознающую систему сигналов внешней корректировки. Механизм генерации этой корректировки, которая чаще всего имеет смысл поощрения и наказания, практически полностью определяет алгоритм обучения. Самообучение отличается от обучения тем, что здесь дополнительная информация о верности реакции системе не сообщается.

Интеллектуальные информационные системы могут использовать "библиотеки" самых различных методов и алгоритмов, реализующих разные подходы к процессам обучения, самоорганизации и эволюции при синтезе систем ИИ. Поскольку к настоящему времени нет ни обобщающей теории искусственного интеллекта, ни работающего образца полнофункциональной ИИ-модели, то нельзя сказать, какой из этих подходов является правильным, а какой ошибочным: скорее всего они способны гармонично дополнять друг друга. Подробнее о проблемах искусственного интеллекта можно узнать на сайтах www.ccas.ru и www.iseu.by/rus/educ/envmon.

Искусственный интеллект реализуется с использованием четырех подходов (с трудом удержимся, чтобы не произнести модное "парадигм"): логического, эволюционного, имитационного и структурного. Все эти четыре направления развиваются параллельно, часто взаимно переплетаясь.

Основой для логического подхода служит булева алгебра и ее логические операторы (в первую очередь, знакомый всем оператор IF ["если"]). Свое дальнейшее развитие булева алгебра получила в виде исчисления предикатов, в котором она расширена за счет введения предметных символов, отношений между ними, кванторов существования и всеобщности. Практически каждая система ИИ, построенная на логическом принципе, представляет собой машину доказательства теорем. При этом исходные данные хранятся в базе данных в виде аксиом, а правила логического вывода - как отношения между ними.

Для большинства логических методов характерна большая трудоемкость, поскольку во время поиска доказательства возможен полный перебор вариантов. Поэтому данный подход требует эффективной реализации вычислительного процесса, и хорошая работа обычно гарантируется при сравнительно небольшом размере базы данных. Примером практической реализации логических методов являются деревья решений, которые реализуют в концентрированном виде процесс "обучения" или синтеза решающего правила.

Добиться большей выразительности логическому подходу позволяет такое сравнительно новое направление, как нечеткая логика. После основополагающих работ Л. Заде термин fuzzy (англ. нечеткий, размытый) стал ключевым словом. В отличие от традиционной математики, требующей на каждом шаге моделирования точных и однозначных формулировок закономерностей, нечеткая логика предлагает совершенно иной уровень мышления, благодаря которому творческий процесс моделирования происходит на более высоком уровне абстракции, при котором постулируется лишь минимальный набор закономерностей. Например, правдивость логического высказывания может принимать в нечетких системах, кроме обычных "да / нет" (1/0), еще и промежуточные значения: "не знаю" (0.5), "пациент скорее жив, чем мертв" (0.75), "пациент скорее мертв, чем жив" (0.25) и т.д. Данный подход больше похож на мышление человека, который редко отвечает на вопросы только "да" или "нет". Теоретические основы и прикладные аспекты интеллектуальных систем оценивания и прогнозирования в условиях неопределенности, основанные на теории нечетких множеств, подробно изложены в литературных источниках [Аверкин с соавт, 1986; Борисов с соавт., 1989; Нетрадиционные модели.., 1991; Васильев, Ильясов, 1995].

Под термином "самоорганизация" понимается по мнению Ивахненко "процесс самопроизвольного (спонтанного) увеличения порядка, или организации в системе, состоящей из многих элементов, происходящий под действием внешней среды".

Принципы самоорганизации были предметом исследования многих выдающихся ученых: Дж. фон Неймана, Н. Винера, У.Р. Эшби и др. Большой вклад в развитие этого направления внесли работы украинских кибернетиков под руководством А.Г. Ивахненко, разработавших целый класс адаптивных самоорганизующихся моделей (англ. selforganisation models), который можно было бы назвать "интеллектуальным обобщением" эмпирико-статистических методов.

Можно отметить следующие принципы самоорганизации математических моделей:

  • - принцип неокончательных решений (предложен Д. Габором и заключается в необходимости сохранения достаточной "свободы выбора" нескольких лучших решений на каждом шаге самоорганизации),
  • - принцип внешнего дополнения (базируется на теореме К. Геделя и заключается в том, что только внешние критерии, основанные на новой информации, позволяют синтезировать истинную модель объекта, скрытую в зашумленных экспериментальных данных);
  • - принцип массовой селекции (предложен А.Г. Ивахненко и указывает наиболее целесообразный путь постепенного усложнения самоорганизующейся модели, с тем чтобы критерий ее качества проходил через свой минимум).

Для возникновения самоорганизации необходимо иметь исходную структуру, механизм случайных ее мутаций и критерии отбора, благодаря которому мутация оценивается с точки зрения полезности для улучшения качества системы. Т.е. при построении этих систем ИИ исследователь задает только исходную организацию и список переменных, а также критерии качества, формализующие цель оптимизации, и правила, по которым модель может изменяться (самоорганизовываться или эволюционировать). Причем сама модель может принадлежать самым различным типам: линейная или нелинейная регрессия, набор логических правил или любая другая модель.

Самоорганизующиеся модели служат, в основном, для прогнозирования поведения и структуры экосистем, так как по самой логике их построения участие исследователя в этом процессе сведено к минимуму. Можно привести ряд конкретных примеров использования алгоритмов МГУА: для долгосрочных прогнозов экологической системы оз. Байкал, моделирования геоботанических описаний; системы "хищник-жертва", прироста деревьев, прогнозирования токсикологических показателей поллютантов, оценки динамики численности сообществ зоопланктона.

В математической кибернетике различают два вида итеративных процессов развития систем:

  • - адаптация, при которой экстремум (цель движения системы) остается постоянной;
  • - эволюция, при которой движение сопровождается изменением и положения экстремума.

Если самоорганизация связана только с адаптационными механизмами подстройки реакций системы (например, изменением значений весовых коэффициентов), то понятие эволюции связано с возможностью эффектора (термин, введенный С. Лемом) изменять свою собственную структуру, т.е. количество элементов, направленность и интенсивность связей, настраивая их оптимальным образом относительно поставленных задач в каждый конкретный момент времени. В процессе эволюции в условиях сложной и меняющейся среды эффектор способен приобрести принципиально новые качества, выйти на следующую ступень развития. Например, в процессе биологической эволюции возникли чрезвычайно сложные и вместе с тем удивительно продуктивно функционирующие живые организмы.

Эволюционное моделирование представляет собой существенно универсальный способ построения прогнозов макросостояний системы в условиях, когда полностью отсутствует апостериорная информация, а априорные данные задают лишь предысторию этих состояний. Общая схема алгоритма эволюции выглядит следующим образом:

  • - задается исходная организация системы (в эволюционном моделировании в этом качестве может фигурировать, например, конечный детерминированный автомат Мили);
  • - проводят случайные "мутации", т.е. изменяют случайным образом текущий конечный автомат;
  • - отбирают для дальнейшего "развития" ту организацию (тот автомат), которая является "лучшей" в смысле некоторого критерия, например, максимальной точности предсказания последовательности значений макросостояний экосистемы.

Критерий качества модели в этом случае мало чем отличается, например, от минимума среднеквадратической ошибки на обучающей последовательности метода наименьших квадратов (со всеми вытекающими отсюда недостатками). Однако, в отличии от адаптации, в эволюционном программировании структура решающего устройства мало меняется при переходе от одной мутации к другой, т.е. не происходит перераспределения вероятностей, которые бы закрепляли мутации, приведшие к успеху на предыдущем шаге. Поиск оптимальной структуры происходит в большей степени случайным и нецеленаправленным, что затягивает процесс поиска, но обеспечивает наилучшее приспособление к конкретным изменяющимся условиям.

Под структурным подходом подразумеваются попытки построения систем ИИ путем моделирования структуры человеческого мозга. В последние десять лет впечатляет феномен взрыва интереса к структурным методам самоорганизации - нейросетевому моделированию, которое успешно применяется в самых различных областях - бизнесе, медицине, технике, геологии, физике, т.е. везде, где нужно решать задачи прогнозирования, классификации или управления.

Способность нейронной сети к обучению впервые была исследована Дж. Маккалоком и У. Питтом, когда в 1943 г. вышла их работа "Логическое исчисление идей, относящихся к нервной деятельности". В ней была представлена модель нейрона и сформулированы принципы построения искусственных нейронных сетей.

Крупный толчок развитию нейрокибернетики дал американский нейрофизиолог Ф. Розенблатт, предложивший в 1962 г. свою модель нейронной сети - персептрон. Воспринятый первоначально с большим энтузиазмом, персептрон вскоре подвергся интенсивным нападкам со стороны крупных научных авторитетов. И, хотя подробный анализ их аргументов показывает, что они оспаривали не совсем тот персептрон, который предлагал Розенблатт, крупные исследования по нейронным сетям были свернуты почти на 10 лет.

Другой важный класс нейронных систем был введен в рассмотрение финном Т. Кохоненом. У этого класса красивое название: "самоорганизующиеся отображения состояний, сохраняющие топологию сенсорного пространства". Теория Кохонена активно использует теорию адаптивных систем, которую развивал на протяжении многих лет академик РАН Я.З. Цыпкин.

Весьма популярна сейчас во всем мире оценка возможностей обучающихся систем, в частности, нейронных сетей, основанная на теории размерности, созданной в 1966 г. советскими математиками В.Н. Вапником и А.Я. Червоненкисом. Еще один класс нейроподобных моделей представляют сети с обратным распространением ошибок, в развитии современных модификаций которых ведущую роль сыграл проф. А.Н. Горбань и возглавляемая им красноярская школа нейроинформатики. Большую научную и популяризаторскую работу проводит Российская ассоциации нейроинформатики под руководством президента В.Л. Дунина-Барковского.

В основе всего нейросетевого подхода лежит идея построения вычислительного устройства из большого числа параллельно работающих простых элементов - формальных нейронов. Эти нейроны функционируют независимо друг от друга и связаны между собой однонаправленными каналами передачи информации. Ядром нейросетевых представлений является идея о том, что каждый отдельный нейрон можно моделировать довольно простыми функциями, а вся сложность мозга, гибкость его функционирования и другие важнейшие качества определяются связями между нейронами. Предельным выражением этой точки зрения может служить лозунг: "структура связей - все, свойства элементов - ничто".

Нейронные сети (НС) - очень мощный метод моделирования, позволяющий воспроизводить чрезвычайно сложные зависимости, нелинейные по свой природе. Как правило, нейронная сеть используется тогда, когда неизвестны предположения о виде связей между входами и выходами (хотя, конечно, от пользователя требуется какой-то набор эвристических знаний о том, как следует отбирать и подготавливать данные, выбирать нужную архитектуру сети и интерпретировать результаты).

На вход нейронной сети подаются представительные данные и запускается алгоритм обучения, который автоматически анализирует структуру данных и генерирует зависимость между входом и выходом. Для обучения НС применяются алгоритмы двух типов: управляемое ("обучение с учителем") и неуправляемое ("без учителя").

Простейшая сеть имеет структуру многослойного персептрона с прямой передачей сигнала (см. рис. 3), которая характеризуется наиболее устойчивым поведением. Входной слой служит для ввода значений исходных переменных, затем последовательно отрабатывают нейроны промежуточных и выходного слоев. Каждый из скрытых и выходных нейронов, как правило, соединен со всеми элементами предыдущего слоя (для большинства вариантов сети полная система связей является предпочтительной). В узлах сети активный нейрон вычисляет свое значение активации, беря взвешенную сумму выходов элементов предыдущего слоя и вычитая из нее пороговое значение. Затем значение активации преобразуется с помощью функции активации (или передаточной функции), и в результате получается выход нейрона. После того, как вся сеть отработает, выходные значения элементов последнего слоя принимаются за выход всей сети в целом.

Рис. 3.

Наряду с моделью многослойного персептрона, позднее возникли и другие модели нейронных сетей, различающихся по строению отдельных нейронов, по топологии связей между ними и по алгоритмам обучения. Среди наиболее известных сейчас вариантов можно назвать НС с обратным распространением ошибки, основанные на радиальных базисных функциях, обобщенно-регрессионные сети, НС Хопфилда и Хэмминга, самоорганизующиеся карты Кохонена, стохастические нейронные сети и т.д. Существуют работы по рекуррентным сетям (т.е. содержащим обратные связи, ведущие назад от более дальних к более ближним нейронам), которые могут иметь очень сложную динамику поведения. Начинают эффективно использоваться самоорганизующиеся (растущие или эволюционирующие) нейронные сети, которые во многих случаях оказываются более предпочтительными, чем традиционные полносвязные НС.

Для моделей, построенных по мотивам человеческого мозга, характерны как легкое распараллеливание алгоритмов и связанная с этим высокая производительность, так и не слишком большая выразительность представленных результатов, не способствующая извлечению новых знаний о моделируемой среде. Поэтому основное назначение нейросетевых моделей, - прогнозирование.

Важным условием применения НС, как и любых статистических методов, является объективно существующая связь между известными входными значениями и неизвестным откликом. Эта связь может носить случайный характер, искажена шумом, но она должна существовать. Это объясняется, во-первых, тем, что итерационные алгоритмы направленного перебора комбинаций параметров нейросети оказываются весьма эффективными и очень быстрыми лишь при хорошем качестве исходных данных. Однако, если это условие не соблюдается, число итераций быстро растет и вычислительная сложность оказывается сопоставимой с экспоненциальной сложностью алгоритмов полного перебора возможных состояний. Во-вторых, сеть склонна обучаться прежде всего тому, чему проще всего обучиться, а, в условиях сильной неопределенности и зашумленности признаков, это - прежде всего артефакты и явления "ложной корреляции".

Отбор информативных переменных в традиционной регрессии и таксономии осуществляют путем "взвешивания" признаков с использованием различных статистических критериев и пошаговых процедур, основанных, в той или иной форме, на анализе коэффициентов частных корреляций или ковариаций. Для этих целей используют различные секвенциальные (последовательные) процедуры, не всегда приводящие к результату, достаточно близкому к оптимальному. Эффективный автоматизированный подход к выбору значимых входных переменных может быть реализован с использованием генетического алгоритма.

В связи с этим, в общей схеме статистического моделирования методами ИИ рекомендуется последовательное выполнение двух разных процедур:

  • - с помощью эволюционных методов в бинарном пространстве признаков ищется такая минимальная комбинация переменных, которая обеспечивает незначительную потерю информации в исходных данных,
  • - полученная на предыдущем этапе минимизированная матрица данных подается на вход нейронной сети для обучения.

Искусственный интеллект (ИИ, англ. Artificial intelligence, AI) - наука и технология создания интеллектуальных машин, особенно интеллектуальных компьютерных программ. ИИ связан со сходной задачей использования компьютеров для понимания человеческого интеллекта, но не обязательно ограничивается биологически правдоподобными методами.

Что такое искусственный интеллект

Интеллект (от лат. intellectus - ощущение, восприятие, разумение, понимание, понятие, рассудок), или ум - качество психики, состоящее из способности приспосабливаться к новым ситуациям, способности к обучению и запоминанию на основе опыта, пониманию и применению абстрактных концепций и использованию своих знаний для управления окружающей средой. Интеллект - это общая способность к познанию и решению трудностей, которая объединяет все познавательные способности человека: ощущение, восприятие, память, представление, мышление, воображение.

В начале 1980-х гг. ученые в области теории вычислений Барр и Файгенбаум предложили следующее определение искусственного интеллекта (ИИ):


Позже к ИИ стали относить ряд алгоритмов и программных систем, отличительным свойством которых является то, что они могут решать некоторые задачи так, как это делал бы размышляющий над их решением человек.

Основные свойства ИИ - это понимание языка, обучение и способность мыслить и, что немаловажно, действовать.

ИИ – комплекс родственных технологий и процессов, развивающихся качественно и стремительно, например:

  • обработка текста на естественном языке
  • экспертные системы
  • виртуальные агенты (чат-боты и виртуальные помощники)
  • системы рекомендаций.

Исследования в сфере ИИ

  • Основная статья: Исследования в сфере искусственного интеллекта

Стандартизация в области ИИ

2018: Разработка стандартов в области квантовых коммуникаций, ИИ и умного города

Технический комитет «Кибер-физические системы» на базе РВК совместно с Региональным инжиниринговым центром «СэйфНет» 6 декабря 2018 года начали разработку комплекса стандартов для рынков Национальной технологической инициативы (НТИ) и цифровой экономики . К марту 2019 года планируется разработать документы технической стандартизации в области квантовых коммуникаций , и , сообщили в РВК. Подробнее .

Влияние искусственного интеллекта

Риск для развития человеческой цивилизации

Влияние на экономику и бизнес

  • Влияние технологий искусственного интеллекта на экономику и бизнес

Влияние на рынок труда

Предвзятость искусственного интеллекта

В основе всего того, что является практикой ИИ (машинный перевод, распознавание речи, обработка текстов на естественных языках, компьютерное зрение , автоматизация вождения автомобилей и многое другое) лежит глубинное обучение. Это подмножество машинного обучения , отличающееся использованием моделей нейронных сетей , о которых можно сказать, что они имитируют работу мозга, поэтому их с натяжкой можно отнести к ИИ. Любая модель нейронной сети обучается на больших наборах данных , таким образом, она обретает некоторые «навыки», но то, как она ими пользуется - для создателей остается не ясным, что в конечном счете становится одной из важнейших проблем для многих приложений глубинного обучения. Причина в том, что такая модель работает с образами формально, без какого-либо понимания того, что она делает. Является ли такая система ИИ и можно ли доверять системам, построенным на основе машинного обучения? Значение ответа на последний вопрос выходит за пределы научных лабораторий. Поэтому заметно обострилось внимание средств массовой информации к явлению, получившему название AI bias. Его можно перевести как «необъективность ИИ» или «пристрастность ИИ». Подробнее .

Рынок технологий искусственного интеллекта

Рынок ИИ в России

Мировой рынок ИИ

Сферы применения ИИ

Сферы применения ИИ достаточно широки и охватывают как привычные слуху технологии, так и появляющиеся новые направления, далекие от массового применения, иначе говоря, это весь спектр решений, от пылесосов до космических станций. Можно разделить все их разнообразие по критерию ключевых точек развития.

ИИ - это не монолитная предметная область. Более того, некоторые технологические направления ИИ фигурируют как новые подотрасли экономики и обособленные сущности, одновременно обслуживая большинство сфер в экономике.

Развитие применения использования ИИ ведет к адаптации технологий в классических отраслях экономики по всей цепочке создания ценности и преобразует их, приводя к алгоритмизированию практически всего функционала, от логистики до управления компанией.

Использование ИИ в целях обороны и в военном деле

Использование в образовании

Использование ИИ в бизнесе

ИИ в электроэнергетики

  • На уровне проектирования: улучшенное прогнозирование генерации и спроса на энергоресурсы, оценка надежности энергогенерирующего оборудования, автоматизация повышения генерации при скачке спроса.
  • На уровне производства: оптимизация профилактического обслуживания оборудования, повышение эффективности генерации, снижение потерь, предотвращение краж энергоресурсов.
  • На уровне продвижения: оптимизация ценообразования в зависимости от времени дня и динамическая тарификация.
  • На уровне предоставления обслуживания: автоматический выбор наиболее выгодного поставщика, подробная статистика потребления, автоматизированное обслуживание клиентов, оптимизация энергопотребления с учетом привычек и поведения клиента.

ИИ в производственной сфере

  • На уровне проектирования: повышение эффективности разработки новых продуктов, автоматизированная оценка поставщиков и анализ требований к запчастям и деталям.
  • На уровне производства: совершенствование процесса исполнения задач, автоматизация сборочных линий, снижение количества ошибок, уменьшение сроков доставки сырья.
  • На уровне продвижения: прогнозирование объемов предоставления услуг поддержки и обслуживания, управление ценообразованием.
  • На уровне предоставления обслуживания: улучшение планирования маршрутов парка транспортных средств, спроса на ресурсы автопарка, повышение качества подготовки сервисных инженеров.

ИИ в банках

  • Распознавание образов - используется в т.ч. для узнавания клиентов в отделениях и передачи им специализированных предложений.

ИИ на транспорте

  • Автоиндустрия на пороге революции: 5 вызовов эры беспилотного вождения

ИИ в логистике

ИИ в пивоварении

Использование ИИ в госуправлении

ИИ в криминалистике

  • Распознавание образов - используется в т.ч. для выявления преступников в общественных пространствах.
  • В мае 2018 года стало известно об использовании голландской полицией искусственного интеллекта для расследования сложных преступлений.

Как сообщает издание The Next Web, правоохранительные органы начали оцифровывать более 1500 отчетов и 30 млн страниц, связанных с нераскрытыми делами. В компьютерный формат переносят материалы, начиная с 1988 года, в которых преступление не раскрывалось не менее трех лет, и преступник были приговорен к более 12 годам лишения свободы.

После оцифровки всего контента он будет подключен к системе машинного обучения , которая будет анализировать записи и решать, в каких делах используются самые достоверные доказательства. Это должно снизить время обработки дел и раскрытия прошлых и будущих преступлений с нескольких недель до одного дня.

Искусственный интеллект будет распределять дела по их «разрешимости» и указывать на возможные результаты экспертизы ДНК. Затем планируется автоматизировать анализ и в других областях судебной экспертизы и, возможно, даже охватить данные в таких областях, как общественные науки и свидетельские показания.

Кроме того, как рассказал один разработчиков системы Джерун Хаммер (Jeroen Hammer), в будущем могут быть выпущены API -функции для партнёров.


В голландской полиции есть специальное подразделение, специализирующееся на освоении новых технологий для раскрытия преступлений. Именно он и создало ИИ-систему для быстрого поиска преступников по уликам.

ИИ в судебной системе

Разработки в области искусственного интеллекта помогут кардинально изменить судебную систему, сделать ее более справедливой и свободной от коррупционных схем. Такое мнение высказал летом 2017 года доктор технических наук, технический консультант Artezio Владимир Крылов.

Ученый считает, что уже существующие сейчас решения в области AI можно успешно применять в разных сферах экономики и общественной жизни. Эксперт указывает, что AI успешно применяется в медицине, однако в будущем способен полностью изменить и судебную систему.

«Ежедневно просматривая новостные сообщения о разработках в области ИИ только поражаешься неисчерпаемости фантазии и плодотворности исследователей и разработчиков в этой области. Сообщения о научных исследований постоянно чередуются с публикациями о новых продуктах, врывающихся на рынок и сообщениями об удивительных результатах, полученных с помощью применения ИИ в различных областях. Если же говорить об ожидаемых событиях, сопровождаемых заметным хайпом в СМИ, в котором ИИ станет снова героем новостей, то я, наверное, не рискну делать технологических прогнозов. Могу предположить, что ближайшим событием станет появление где-то предельно компетентного суда в форме искусственного интеллекта, справедливого и неподкупного. Случится это, видимо, в 2020-2025 году. И процессы, которые пройдут в этом суде приведут к неожиданным рефлексиям и стремлению многих людей передать ИИ большинство процессов управления человеческим обществом».

Использование искусственного интеллекта в судебной системе ученый признает «логичным шагом» по развитию законодательного равенства и справедливости. Машинный разум не подвержен коррупции и эмоциям, может четко придерживаться законодательных рамок и выносить решения с учетом многих факторов, включая данные, которые характеризуют участников спора. По аналогии с медицинской сферой, роботы -судьи могут оперировать большими данными из хранилищ государственных служб. Можно предположить, что машинный интеллект сможет быстро обрабатывать данные и учитывать значительно больше факторов, чем судья-человек.

Эксперты-психологи, впрочем, считают, что отсутствие эмоциональной составляющей при рассмотрении судебных дел негативно скажется на качестве решения. Вердикт машинного суда может оказаться слишком прямолинейным, не учитывающим важность чувств и настроения людей.

Живопись

В 2015 году команда Google тестировала нейронные сети на предмет возможности самостоятельно создавать изображения. Тогда искусственный интеллект обучали на примере большого количества различных картинок. Однако, когда машину «попросили» самостоятельно что-нибудь изобразить, то оказалось, что она интерпретирует окружающий нас мир несколько странно. Например, на задачу нарисовать гантели, разработчики получили изображение, в котором металл был соединён человеческими руками. Вероятно, произошло это из-за того, что на этапе обучения анализируемые картинки с гантелями содержали руки, и нейронная сеть неверно это интерпретировала.

26 февраля 2016 года в Сан-Франциско на специальном аукционе представители Google выручили с психоделических картин, написанных искусственным интеллектом, порядка $98 тыс. Данные средства были пожертвованы на благотворительность. Одна из наиболее удачных картин машины представлена ниже.

Картина, написанная искусственным интеллектом Google.

Указывает: «Проблема состоит в том, что пока мы не можем в целом определить, какие вычислительные процедуры мы хотим называть интеллектуальными. Мы понимаем некоторые механизмы интеллекта и не понимаем остальные. Поэтому под интеллектом в пределах этой науки понимается только вычислительная составляющая способности достигать целей в мире» .

В то же время существует и точка зрения, согласно которой интеллект может быть только биологическим феноменом .

Как указывает председатель Петербургского отделения Российской ассоциации искусственного интеллекта Т. А. Гаврилова, в английском языке словосочетание artificial intelligence не имеет той слегка фантастической антропоморфной окраски, которую оно приобрело в довольно неудачном русском переводе. Слово intelligence означает «умение рассуждать разумно», а вовсе не «интеллект», для которого есть английский аналог intellect .

Участники Российской ассоциации искусственного интеллекта дают следующие определения искусственного интеллекта:

Одно из частных определений интеллекта, общее для человека и «машины», можно сформулировать так: «Интеллект - способность системы создавать в ходе самообучения программы (в первую очередь эвристические) для решения задач определённого класса сложности и решать эти задачи» .

Нередко искусственным интеллектом называют и простейшую электронику, чтобы обозначить наличие датчиков и автоматический выбор режима работы. Слово искусственный в этом случае означает, что не стоит ждать от системы умения найти новый режим работы в не предусмотренной разработчиками ситуации.

Предпосылки развития науки искусственного интеллекта

История искусственного интеллекта как нового научного направления начинается в середине XX века . К этому времени уже было сформировано множество предпосылок его зарождения: среди философов давно шли споры о природе человека и процессе познания мира, нейрофизиологи и психологи разработали ряд теорий относительно работы человеческого мозга и мышления, экономисты и математики задавались вопросами оптимальных расчётов и представления знаний о мире в формализованном виде; наконец, зародился фундамент математической теории вычислений - теории алгоритмов - и были созданы первые компьютеры.

Возможности новых машин в плане скорости вычислений оказались больше человеческих, поэтому в учёном сообществе закрался вопрос: каковы границы возможностей компьютеров и достигнут ли машины уровня развития человека? В 1950 году один из пионеров в области вычислительной техники, английский учёный Алан Тьюринг , пишет статью под названием «Может ли машина мыслить?» , в которой описывает процедуру, с помощью которой можно будет определить момент, когда машина сравняется в плане разумности с человеком, получившую название теста Тьюринга .

История развития искусственного интеллекта в СССР и России

В СССР работы в области искусственного интеллекта начались в 1960-х годах . В Московском университете и Академии наук был выполнен ряд пионерских исследований, возглавленных Вениамином Пушкиным и Д. А. Поспеловым .

В 1964 году была опубликована работа ленинградского логика Сергея Маслова «Обратный метод установления выводимости в классическом исчислении предикатов», в которой впервые предлагался метод автоматического поиска доказательства теорем в исчислении предикатов.

До 1970-х годов в СССР все исследования ИИ велись в рамках кибернетики . По мнению Д. А. Поспелова , науки «информатика» и «кибернетика» были в это время смешаны, по причине ряда академических споров. Только в конце 1970-х в СССР начинают говорить о научном направлении «искусственный интеллект» как разделе информатики . При этом родилась и сама информатика, подчинив себе прародительницу «кибернетику». В конце 1970-х создаётся толковый словарь по искусственному интеллекту, трёхтомный справочник по искусственному интеллекту и энциклопедический словарь по информатике, в котором разделы «Кибернетика» и «Искусственный интеллект» входят наряду с другими разделами в состав информатики. Термин «информатика» в 1980-е годы получает широкое распространение, а термин «кибернетика» постепенно исчезает из обращения, сохранившись лишь в названиях тех институтов, которые возникли в эпоху «кибернетического бума» конца 1950-х - начала 1960-х годов . Такой взгляд на искусственный интеллект, кибернетику и информатику разделяется не всеми. Это связано с тем, что на Западе границы данных наук несколько отличаются .

Подходы и направления

Подходы к пониманию проблемы

Единого ответа на вопрос, чем занимается искусственный интеллект, не существует. Почти каждый автор, пишущий книгу об ИИ, отталкивается в ней от какого-либо определения, рассматривая в его свете достижения этой науки.

  • нисходящий (англ. Top-Down AI ), семиотический - создание экспертных систем , баз знаний и систем логического вывода, имитирующих высокоуровневые психические процессы : мышление, рассуждение, речь, эмоции, творчество и т. д.;
  • восходящий (англ. Bottom-Up AI ), биологический - изучение нейронных сетей и эволюционных вычислений, моделирующих интеллектуальное поведение на основе биологических элементов, а также создание соответствующих вычислительных систем, таких как нейрокомпьютер или биокомпьютер .

Последний подход, строго говоря, не относится к науке о ИИ в смысле, данном Джоном Маккарти, - их объединяет только общая конечная цель.

Тест Тьюринга и интуитивный подход

Эмпирический тест был предложен Аланом Тьюрингом в статье «Вычислительные машины и разум» (англ. Computing Machinery and Intelligence ) , опубликованной в 1950 году в философском журнале «Mind ». Целью данного теста является определение возможности искусственного мышления, близкого к человеческому.

Стандартная интерпретация этого теста звучит следующим образом: «Человек взаимодействует с одним компьютером и одним человеком. На основании ответов на вопросы он должен определить, с кем он разговаривает: с человеком или компьютерной программой. Задача компьютерной программы - ввести человека в заблуждение, заставив сделать неверный выбор ». Все участники теста не видят друг друга.

  • Самый общий подход предполагает, что ИИ будет способен проявлять поведение, не отличающееся от человеческого, причём в нормальных ситуациях. Эта идея является обобщением подхода теста Тьюринга , который утверждает, что машина станет разумной тогда, когда будет способна поддерживать разговор с обычным человеком, и тот не сможет понять, что говорит с машиной (разговор идёт по переписке).
  • Писатели-фантасты часто предлагают ещё один подход: ИИ возникнет тогда, когда машина будет способна чувствовать и творить . Так, хозяин Эндрю Мартина из «Двухсотлетнего человека » начинает относиться к нему как к человеку, когда тот создаёт игрушку по собственному проекту. А Дейта из Звёздного пути , будучи способным к коммуникации и научению, мечтает обрести эмоции и интуицию .

Однако последний подход вряд ли выдерживает критику при более детальном рассмотрении. К примеру, несложно создать механизм, который будет оценивать некоторые параметры внешней или внутренней среды и реагировать на их неблагоприятные значения. Про такую систему можно сказать, что у неё есть чувства («боль» - реакция на срабатывание датчика удара, «голод» - реакция на низкий заряд аккумулятора, и т. п.). А кластеры, создаваемые картами Кохонена , и многие другие продукты «интеллектуальных» систем можно рассматривать как вид творчества.

Символьный подход

Исторически символьный подход был первым в эпоху цифровых машин, так как именно после создания Лисп , первого языка символьных вычислений, у его автора возникла уверенность в возможности практически приступить к реализации этими средствами интеллекта. Символьный подход позволяет оперировать слабоформализованными представлениями и их смыслами.

Успешность и эффективность решения новых задач зависит от умения выделять только существенную информацию, что требует гибкости в методах абстрагирования. Тогда как обычная программа устанавливает один свой способ интерпретации данных, из-за чего её работа и выглядит предвзятой и чисто механической. Интеллектуальную задачу в этом случае решает только человек, аналитик или программист, не умея доверить этого машине. В результате создается единственная модель абстрагирования, система конструктивных сущностей и алгоритмов. А гибкость и универсальность выливается в значительные затраты ресурсов для не типичных задач, то есть система от интеллекта возвращается к грубой силе.

Основная особенность символьных вычислений - создание новых правил в процессе выполнения программы. Тогда как возможности не интеллектуальных систем завершаются как раз перед способностью хотя бы обозначать вновь возникающие трудности. Тем более эти трудности не решаются и наконец компьютер не совершенствует такие способности самостоятельно.

Недостатком символьного подхода является то, что такие открытые возможности воспринимаются не подготовленными людьми как отсутствие инструментов. Эту, скорее культурную проблему, отчасти решает логическое программирование.

Логический подход

Логический подход к созданию систем искусственного интеллекта направлен на создание экспертных систем с логическими моделями баз знаний с использованием языка предикатов.

Учебной моделью систем искусственного интеллекта в 1980-х годах был принят язык и система логического программирования Пролог . Базы знаний, записанные на языке Пролог, представляют наборы фактов и правил логического вывода, записанных на языке логических предикатов.

Логическая модель баз знаний позволяет записывать не только конкретные сведения и данные в форме фактов на языке Пролог, но и обобщённые сведения с помощью правил и процедур логического вывода, и в том числе логических правил определения понятий, выражающих определённые знания как конкретные и обобщённые сведения.

В целом исследования проблем искусственного интеллекта в рамках логического подхода к проектированию баз знаний и экспертных систем направлены на создание, развитие и эксплуатацию интеллектуальных информационных систем , включая вопросы обучения студентов и школьников, а также подготовки пользователей и разработчиков таких интеллектуальных информационных систем.

Агентно-ориентированный подход

Последний подход, развиваемый с начала 1990-х годов , называется агентно-ориентированным подходом , или подходом, основанным на использовании интеллектуальных (рациональных) агентов . Согласно этому подходу, интеллект - это вычислительная часть (грубо говоря, планирование) способности достигать поставленных перед интеллектуальной машиной целей. Сама такая машина будет интеллектуальным агентом, воспринимающим окружающий его мир с помощью датчиков , и способной воздействовать на объекты в окружающей среде с помощью исполнительных механизмов .

Этот подход акцентирует внимание на тех методах и алгоритмах, которые помогут интеллектуальному агенту выживать в окружающей среде при выполнении его задачи. Так, здесь значительно тщательнее изучаются алгоритмы поиска пути и принятия решений .

Гибридный подход

Основная статья: Гибридный подход

Гибридный подход предполагает, что только синергетическая комбинация нейронных и символьных моделей достигает полного спектра когнитивных и вычислительных возможностей. Например, экспертные правила умозаключений могут генерироваться нейронными сетями, а порождающие правила получают с помощью статистического обучения. Сторонники данного подхода считают, что гибридные информационные системы будут значительно более сильными, чем сумма различных концепций по отдельности.

Модели и методы исследований

Символьное моделирование мыслительных процессов

Основная статья: Моделирование рассуждений

Анализируя историю ИИ, можно выделить такое обширное направление как моделирование рассуждений . Долгие годы развитие этой науки двигалось именно по этому пути, и теперь это одна из самых развитых областей в современном ИИ. Моделирование рассуждений подразумевает создание символьных систем , на входе которых поставлена некая задача, а на выходе требуется её решение. Как правило, предлагаемая задача уже формализована , то есть переведена в математическую форму, но либо не имеет алгоритма решения, либо он слишком сложен, трудоёмок и т. п. В это направление входят: доказательство теорем , принятие решений и теория игр , планирование и диспетчеризация , прогнозирование .

Работа с естественными языками

Немаловажным направлением является обработка естественного языка , в рамках которого проводится анализ возможностей понимания, обработки и генерации текстов на «человеческом» языке. В рамках этого направления ставится цель такой обработки естественного языка, которая была бы в состоянии приобрести знание самостоятельно, читая существующий текст, доступный по Интернету. Некоторые прямые применения обработки естественного языка включают информационный поиск (в том числе, глубокий анализ текста) и машинный перевод .

Представление и использование знаний

Направление инженерия знаний объединяет задачи получения знаний из простой информации , их систематизации и использования. Это направление исторически связано с созданием экспертных систем - программ, использующих специализированные базы знаний для получения достоверных заключений по какой-либо проблеме.

Производство знаний из данных - одна из базовых проблем интеллектуального анализа данных . Существуют различные подходы к решению этой проблемы, в том числе - на основе нейросетевой технологии , использующие процедуры вербализации нейронных сетей .

Машинное обучение

Проблематика машинного обучения касается процесса самостоятельного получения знаний интеллектуальной системой в процессе её работы. Это направление было центральным с самого начала развития ИИ . В 1956 году, на Дартмундской летней конференции, Рей Соломонофф написал отчёт о вероятностной машине, обучающейся без учителя , назвав её: «Индуктивная машина вывода» .

Робототехника

Основная статья: Интеллектуальная робототехника

Машинное творчество

Основная статья: Машинное творчество

Природа человеческого творчества ещё менее изучена, чем природа интеллекта. Тем не менее, эта область существует, и здесь поставлены проблемы написания компьютером музыки , литературных произведений (часто - стихов или сказок), художественное творчество . Создание реалистичных образов широко используется в кино и индустрии игр.

Отдельно выделяется изучение проблем технического творчества систем искусственного интеллекта. Теория решения изобретательских задач , предложенная в 1946 году Г. С. Альтшуллером , положила начало таким исследованиям.

Добавление данной возможности к любой интеллектуальной системе позволяет весьма наглядно продемонстрировать, что именно система воспринимает и как это понимает. Добавлением шума вместо недостающей информации или фильтрация шума имеющимися в системе знаниями производит из абстрактных знаний конкретные образы, легко воспринимаемые человеком, особенно это полезно для интуитивных и малоценных знаний, проверка которых в формальном виде требует значительных умственных усилий.

Другие области исследований

Наконец, существует масса приложений искусственного интеллекта, каждое из которых образует почти самостоятельное направление. В качестве примеров можно привести программирование интеллекта в компьютерных играх , нелинейное управление , интеллектуальные системы информационной безопасности .

Можно заметить, что многие области исследований пересекаются. Это свойственно для любой науки. Но в искусственном интеллекте взаимосвязь между, казалось бы, различными направлениями выражена особенно сильно, и это связано с философским спором о сильном и слабом ИИ .

Современный искусственный интеллект

Можно выделить два направления развития ИИ:

  • решение проблем, связанных с приближением специализированных систем ИИ к возможностям человека, и их интеграции, которая реализована природой человека (см. Усиление интеллекта );
  • создание искусственного разума, представляющего интеграцию уже созданных систем ИИ в единую систему, способную решать проблемы человечества (см. Сильный и слабый искусственный интеллект ).

Но в настоящий момент в области искусственного интеллекта наблюдается вовлечение многих предметных областей, имеющих скорее практическое отношение к ИИ, а не фундаментальное. Многие подходы были опробованы, но к возникновению искусственного разума ни одна исследовательская группа пока так и не подошла. Ниже представлены лишь некоторые наиболее известные разработки в области ИИ.

Применение

Турнир RoboCup

Некоторые из самых известных ИИ-систем:

Банки применяют системы искусственного интеллекта (СИИ) в страховой деятельности (актуарная математика), при игре на бирже и управлении собственностью. Методы распознавания образов (включая, как более сложные и специализированные, так и нейронные сети) широко используют при оптическом и акустическом распознавании (в том числе текста и речи), медицинской диагностике, спам-фильтрах, в системах ПВО (определение целей), а также для обеспечения ряда других задач национальной безопасности.

Психология и когнитология

Методология когнитивного моделирования предназначена для анализа и принятия решений в плохо определённых ситуациях. Была предложена Аксельродом .

Основана на моделировании субъективных представлений экспертов о ситуации и включает: методологию структуризации ситуации: модель представления знаний эксперта в виде знакового орграфа (когнитивной карты) (F, W), где F - множество факторов ситуации, W - множество причинно-следственных отношений между факторами ситуации; методы анализа ситуации. В настоящее время методология когнитивного моделирования развивается в направлении совершенствования аппарата анализа и моделирования ситуации. Здесь предложены модели прогноза развития ситуации; методы решения обратных задач.

Философия

Наука «о создании искусственного разума» не могла не привлечь внимание философов. С появлением первых интеллектуальных систем были затронуты фундаментальные вопросы о человеке и знании, а отчасти о мироустройстве.

Философские проблемы создания искусственного интеллекта можно разделить на две группы, условно говоря, «до и после разработки ИИ». Первая группа отвечает на вопрос: «Что такое ИИ, возможно ли его создание, и, если возможно, то как это сделать?» Вторая группа (этика искусственного интеллекта) задаётся вопросом: «Каковы последствия создания ИИ для человечества?»

Термин «сильный искусственный интеллект» ввёл Джон Сёрль , его же словами подход и характеризуется:

Более того, такая программа будет не просто моделью разума; она в буквальном смысле слова сама и будет разумом, в том же смысле, в котором человеческий разум - это разум .

При этом нужно понять, возможен ли «чистый искусственный» разум («метаразум»), понимающий и решающий реальные проблемы и, вместе с тем, лишённый эмоций, характерных для человека и необходимых для его индивидуального выживания.

Напротив, сторонники слабого ИИ предпочитают рассматривать программы лишь как инструмент, позволяющий решать те или иные задачи, которые не требуют полного спектра человеческих познавательных способностей.

Этика

Научная фантастика

Тема ИИ рассматривается под разными углами в творчестве Роберта Хайнлайна : гипотеза возникновения самоосознания ИИ при усложнении структуры далее определённого критического уровня и наличии взаимодействия с окружающим миром и другими носителями разума («The Moon Is a Harsh Mistress», «Time Enough For Love», персонажи Майкрофт, Дора и Ая в цикле «История будущего»), проблемы развитии ИИ после гипотетического самоосознания и некоторые социально-этические вопросы («Friday»). Социально-психологические проблемы взаимодействия человека с ИИ рассматривает и роман Филипа К. Дика «Снятся ли андроидам электроовцы? », известный также по экранизации «Бегущий по лезвию».

В творчестве фантаста и философа Станислава Лема описано и во многом предвосхищено создание виртуальной реальности, искусственного интеллекта, нанороботов и многих других проблем философии искусственного интеллекта. Особенно стоит отметить футурологию Сумма технологии . Кроме того, в приключениях Ийона Тихого неоднократно описываются взаимоотношения живых существ и машин: бунт бортового компьютера с последующими неожиданными событиями (11 путешествие), адаптация роботов в человеческом обществе («Стиральная трагедия» из «Воспоминаний Ийона Тихого»), построение абсолютного порядка на планете путём переработки живых жителей (24-ое путешествие), изобретения Коркорана и Диагора («Воспоминания Ийона Тихого»), психиатрическая клиника для роботов («Воспоминания Ийона Тихого»). Кроме того, существует целый цикл повестей и рассказов Кибериада , где почти всеми персонажами являются роботы, которые являются далёкими потомками роботов, сбежавших от людей (людей они именуют бледнотиками и считают их мифическими существами).

Фильмы

Начиная практически с 60-х годов вместе с написанием фантастических рассказов и повестей, снимаются фильмы об искусственном интеллекте. Многие повести авторов, признанных во всём мире, экранизируются и становятся классикой жанра, другие становятся вехой в развитии кинофантастики , например Терминатор и Матрица .

См. также

Примечания

  1. FAQ от Джона Маккарти , 2007
  2. М. Эндрю. Реальная жизнь и искусственный интеллект // «Новости искусственного интеллекта», РАИИ, 2000
  3. Гаврилова Т. А. Хорошевский В. Ф. Базы знаний интеллектуальных систем: Учебник для вузов
  4. Аверкин А. Н., Гаазе-Рапопорт М. Г., Поспелов Д. А. Толковый словарь по искусственному интеллекту. - М.:Радио и связь, 1992. - 256 с.
  5. Г. С. Осипов. Искусственный интеллект: состояние исследований и взгляд в будущее
  6. Ильясов Ф. Н. Разум искусственный и естественный // Известия АН Туркменской ССР, серия общественных наук. 1986. № 6. С. 46-54.
  7. Алан Тьюринг, Могут ли машины мыслить?
  8. Интеллектуальные машины С. Н. Корсакова
  9. Д. А. Поспелов. Cтановление информатики в России
  10. К истории кибернетики в СССР. Очерк первый , Очерк второй
  11. Jack Copeland. What is Artificial Intelligence? 2000
  12. Alan Turing, «Computing Machinery and Intelligence », Mind, vol. LIX, no. 236, October 1950, pp. 433-460.
  13. Обработка естественного языка :
  14. Приложения обработки естественного языка, включают информационный поиск (в том числе: анализ текста и машинный перевод):
  15. Горбань П. А. Нейросетевое извлечение знаний из данных и компьютерный психоанализ
  16. Машинное обучение :
  17. Алан Тюринг обсуждал как центральную тему уже в 1950, в его классической статье Computing Machinery and Intelligence. ()
  18. (pdf scanned copy of the original) (version published in 1957, An Inductive Inference Machine, " IRE Convention Record, Section on Information Theory, Part 2, pp. 56-62)
  19. Робототехника :
  20. , pp. 916–932
  21. , pp. 908–915
  22. Проект Blue Brain - Искусственный мозг
  23. Mild-Mannered Watson Skewers Human Opponents on Jeopardy
  24. 20Q.net Inc
  25. Axelrod R. The Structure of Decision: Cognitive Maps of Political Elites. - Princeton. University Press, 1976
  26. Джон Сёрль. Разум мозга - компьютерная программа?
  27. Пенроуз Р. Новый ум короля. О компьютерах, мышлении и законах физики. - М .: УРСС, 2005. - ISBN 5-354-00993-6
  28. ИИ как фактор глобального риска
  29. …поведет тебя в Жизнь Вечную
  30. http://www.rc.edu.ru/rc/s8/intellect/rc_intellect_zaharov_2009.pdf Православный взгляд на проблему искусственного интеллекта
  31. Гарри Гаррисон. Выбор по Тьюрингу. - М .: Эксмо-Пресс, 1999. - 480 с. - ISBN 5-04-002906-3

Литература

  • Компьютер учится и рассуждает (ч. 1) // Компьютер обретает разум = Artificial Intelligence Computer Images / под ред. В. Л. Стефанюка. - Москва: Мир , 1990. - 240 с. - 100 000 экз. - ISBN 5-03-001277-X (рус.); ISBN 705409155 (англ.)
  • Девятков В. В. Системы искусственного интеллекта / Гл. ред. И. Б. Фёдоров. - М .: Изд-во МГТУ им. Н. Э. Баумана, 2001. - 352 с. - (Информатика в техническом университете). - 3000 экз. - ISBN 5-7038-1727-7
  • Корсаков С.Н. Начертание нового способа исследования при помощи машин, сравнивающих идеи / Под ред. А.С. Михайлова. - М .: МИФИ, 2009. - 44 с. - 200 экз. -

Одержит ли верх искусственный интеллект (ИИ) над человечеством? Илон Маск, основоположник Tesla, отрицает такое предположение. Чтобы убедиться в этом, известный новатор вложил 10 млн. долларов США в 37 разных научных проектов.

Несмотря на категоричность Илона Маска и его единомышленников, среди которых есть Билл Гейтс и Стивен Хокинг, большинство ученых прогнозирует принятие людьми ИИ. Стоит только глянуть на MindMeld (обработка естественного языка посредством голосовых и чат-помощников) либо VIV (развитие «умных» помощников). Считается, что переломным периодом для населения планеты станут ближайшие 10-15 лет. Причем внедрение произойдет не только на уровне информационных технологий, но и в общественном мнении, законах и повседневных привычках.

Это обуславливается двумя факторами.

Во-первых, робот с ИИ может автоматизировать процессы, для которых требуется участие человека. Во-вторых, он способен обработать и проанализировать огромный объем информации. Преимущество компьютера состоит в том, что его трудоспособность не связана с человеческим фактором, будь то личные проблемы или плохое настроение.

Таким образом, искусственный интеллект имеет широкое применение: его повсеместно встречают в медицине, промышленности, образовании, агроиндустрии, дорожном движении и быту.

Медицина

В данной сфере ценится память ИИ, а также возможность генерировать и сопоставлять огромные объемы информации.
Уже несколько лет у всех на слуху и DeepMind Health (разработка компании Google) - умные помощники, которые не только дают советы врачам, но и выясняют генетическую предрасположенность к патологиям. Так, IBM Watson уже определяет и разрабатывает план терапии 13 видов злокачественных новообразований: от рака шейки матки до толстой кишки.

Искусственный интеллект приходит на помощь даже пациентам. Все более популярными становятся приложения телемедицины, собирающие данные с фитнес-браслетов и прочих датчиков, а также «опросники», устанавливающие точные симптомы и заболевания пациентов. Так, ИИ способен распознать туберкулез и нарушение работы внутренних органов, в т.ч. головного мозга.

Некоторые из приложений разбирают человеческую речь и отвечают устно, другие же отдают предпочтение письменной коммуникации. Приложения получают необходимую информацию, а затем дают рекомендации, какие меры принимать дальше, или же отправляют данные терапевту. Наиболее популярные интеллектуальные помощники - Your.MD и Ada, которые можно скачать в App Store или Google Play.

Особое значение отводится системам, способным разрабатывать новые лекарственные средства. По словам топ-менеджера компании Pfizer, Джуди Сюардс, разработка и вывод на рынок нового медикамента в среднем занимает 12 лет. ИИ позволит создавать молекулярную структуру и моделировать лекарство, что увеличит его качество и сократит время выпуска новых препаратов. Пионерами в сфере создания суперкомпьютеров, решающих эту проблему, являются компании Atomwise и Berg Health.

Промышленность

Крупные промышленные компании таких государств, как Япония, Китай, США, Германия и Швейцария, инвестируют в новые технологии. Сегодня прослеживается тенденция сокращения рабочих мест, связанных с интеллектуальным трудом, и увеличение количества компьютеров.

В ближайшие десятилетия пострадают такие рабочие места:

  1. Сбор деталей. С каждым днем происходит все больше сокращений рабочего персонала. Робот, запоминая последовательность действий, справляется с соединением деталей самостоятельно.
  2. Бухгалтерские расчеты. По сравнению с человеком, машина безошибочно рассчитывает данные и не ведет «черную» и «белую» бухгалтерию, что очень выгодно для государства. Суперкомпьютеры учатся и принимают логические решения.
  3. Замена консультантов. Робот, наравне с человеком, может вести диалог с покупателем на высоком уровне и дать ответы на стандартные вопросы. Алгоритм общения усложняется, благодаря способности машины к обучению и накоплению опыта.

Роботизация в скором будущем также коснется таких профессий, как секретари, кассиры, дальнобойщики и официанты.Примером успешного внедрения ИИ стал линейный завод H&H. Технология, которая отслеживает взгляд рабочих, помогла за 1 год сэкономить 400 часов на обучение стажеров и снизить вероятность несчастных случаев.

Агентство MIT Technology Review сообщило, что Эндрю Ын, исследователь робототехники и машинного обучения, разрабатывает новый проект Landing.AI. Он призван наладить механизм производства на заводах и фабриках. Его первый партнер – компания Foxconn, которая занимается производством гаджетов Apple.

Образование

В ближайшем будущем сфера образования будет развиваться быстрыми темпами в двух руслах – адаптивном обучении и прокторинге.
Адаптивное обучение призвано решить проблему разной успеваемости учеников и студентов. Дело в том, что один человек усваивает материал намного быстрее и успешнее, чем другой. Поэтому ИИ будет отслеживать уровень знаний обучающегося и адаптировать порядок блоков курсов под его способности или же информировать преподавателя, насколько хорошо ученик усвоил материал. Примером такой системы может стать платформа Third Space Learning, которая сейчас находится на стадии разработки.

Прокторинг представляет контроль учеников и студентов во время прохождения контрольных и экзаменационных тестов. Если в прошлом обучающиеся находились «под прицелом» веб-камеры, то сейчас на помощь приходит ИИ. Он отслеживает, как часто студент отводит взгляд от экрана компьютера, сменяет ли вкладку в браузере, нет ли лишних голосов в помещении. Как только ИИ замечает какое-либо нарушение, он тут же оповещает об этом человека-проктора.

Но может ли машина заменить обычного преподавателя? Роза Лукин, профессор University College London, отрицает это. По ее словам, стоит найти компромисс. Ведь цель не в том, чтобы заменить учителей машинами, а улучшить процесс образования. Здесь уж точно не обойтись без преподавателя-человека.

Сельское хозяйство

Мнение о том, что земледелие и животноводство – отстающие и старомодные отрасли, осталось в прошлом. Сегодня интенсивный рост мирового рынка ИИ в аграрной индустрии вызван такими факторами: введением системы управления данными, автоматизацией орошения, увеличением производительности с/х культур посредством внедрения методов обучения, ростом количества людей на планете. В то же время увеличение рынка ИИ ограничивается высокой стоимостью сбора информации о с/х угодьях.

Повсеместное внедрение робототехники в сельском хозяйстве представлено такими разработками:

  • Беспилотные летательные аппараты. Дроны, оснащенные радарами и GPS-мониторингом, опрыскивают с/х культуры, обеспечивают надежную доставку опасных химикатов и аэрофотосъемку.
  • Роботы для сбора урожая. Если зерноуборочные машины существуют уже давно, то робота, который собирает клубнику, удалось создать совсем недавно.
  • ИИ, уничтожающий сорняк. Hortibot, разработка Орхусского университета (Aarhus Universitet) в Дании, распознает и устраняет сорняки двумя способами: механическим путем и точечным опрыскиванием гербицидами. Этот робот стал настоящим прорывом, ведь распознавание сорняков от полезных растений – большой успех современной робототехники в сельском хозяйстве. Вдобавок создаются машины, распознающие вредителей и болезни с/х культур.

Согласно прогнозам Energias Market Research, к 2024 году рынок ИИ в агроиндустрии вырастет на 24,3%. Он будет активно развиваться в США и Азиатско-Тихоокеанском регионе. В список центральных игроков на рынке интеллектуального агробизнеса попали Agworld, Farmlogs, Cropx, Microsoft, AGCO и другие.

Дорожное движение

Цель внедрения ИИ в данной сфере – борьба с пробками. Такие системы уже успешно работают в крупных городах Европы, Северной Америки и Азии.

Сбор информации со светофоров, анализ плотности движения, ДТП, метеоданных и прочих факторов, создающих пробки – вот, что входит в функции компьютера. Как результат, интеллектуальная система в режиме онлайн контролирует дороги, прогнозирует, каким будет трафик, и согласно этому, переключает светофоры.

Она следит не только за движением транспорта на дороге, но и помогает водителям. К примеру, система при необходимости вызывает эвакуатор. Понятно, что полностью избавить от пробок данное решение не сможет, однако в разы ускорить движение – вполне возможно.
Вероятно, прогресс будет заметен, если в широкое использование войдут беспилотные автомобили – это транспортные средства, которые способны передвигаться без участия человека. Их разработкой занимается компания Google, AKTIV, Tesla Motors и некоторые другие.

Быт

Безусловно, у всех на слуху « » (smart house), который в дальнейшем станет типичным примером ИИ. Крупнейшими производителями считаются Yamaha, Siemens, Abb, Beckhoff и Legrand.

Такие разработки предельно упрощают быт человека. К примеру, такая система раздвинет занавески с утра, разбудит хозяев и сварит кофе. В дальнейшем функционал «умного дома» будет расширен вплоть до того, что шкаф будет автоматически распаривать одежду, а холодильник – заказывать еду. Такое решение оптимизирует расходы, связанные с энергопитанием, вентиляцией, обогревом, подстраиваясь под удобное расписание.

Также популярными остаются пылесосы, способные не только выполнить уборку, но и передвигать предметы и самостоятельно заряжаться.
Еще одним примером бытового применения ИИ являются автоматические переводчики. Если раньше «машинный перевод» оставлял желать лучшего, то сегодня ситуация кардинально изменилась. Это демонстрирует Google Translate: алгоритм построен на том, что компьютер воспринимает не отдельные слова, а полное предложение. Он позволяет получить качественный текст, поэтому в ближайшем времени такой метод станет основой автоматического перевода.

Человекоподобных андроидов используют не только по хозяйству, но и для общения. Железный «друг» не даст умереть со скуки, а иногда становится полноправным членом семьи. Так, в Китае один счастливчик успел жениться на роботе. Им оказался инженер Чжэн Цзяцзя, который сам смастерил себе невесту.

Несомненно, будущее человечества переплетается с роботами, ведь с каждым годом развиваются все новые области применения искусственного интеллекта. Скорее всего, он превзойдет способности человека, но в то же время значительно улучшит качество его жизни. Здесь главное - найти разумные рамки, пока ИИ не научился воспроизводить себя. По словам Илона Маска, стоит занять проактивную позицию и уже сейчас ограничить использование ИИ, по крайней мере, в военной отрасли.

  • Мустафина Наиля Мугаттаровна , бакалавр, студент
  • Башкирский Государственный Аграрный Университет
  • Шарафутдинов Айдар Газизьянович , кандидат наук, доцент, доцент
  • Башкирский государственный аграрный университет
  • ВЫЧИСЛИТЕЛЬНЫЕ МАШИНЫ
  • ТЕХНИКА
  • НАУКА
  • ИСКУССТВЕННЫЙ ИНТЕЛЛЕКТ

Сегодня стремительно развивается научно-технический прогресс. Одним из его быстроразвивающихся отраслей является искусственный интеллект.

Сегодня стремительно развивается технический прогресс. Наука не стоит на месте и с каждым годом люди придумывают все более усовершенствованные технологии. Одним из новых направлений развития технического прогресса является искусственный интеллект.

Впервые человечество услышало об искусственном интеллекте более 50 лет назад. Это случилось на конференции, проходившей в 1956 году в Дартмутском университете, на которой Джон Маккарти дал термину чёткое и ясное определение. «Искусственный интеллект является наукой о создании интеллектуальных машин и компьютерных программ. В целях данной науки компьютеры используются как средство для понимания особенностей человеческого интеллекта, в то же время, изучение ИИ не должно ограничиваться применением биологически правдоподобных методов.

Искусственный интеллект современных компьютеров довольно высокого уровня, но не до того уровня, чтобы их поведенческие способности не уступали хотя бы самым примитивным животным.

Итогом исследований по вопросам «искусственного интеллекта» является стремление понять работу мозга, раскрыть секреты человеческого сознания и проблему создания машин обладающих определенным уровнем человеческого интеллекта. Принципиальная возможность моделирования интеллектуальных процессов следует, что любую функцию мозга, любую умственную деятельность, описанную языком со строго однозначной семантикой с помощью конечного числа слов, в принципе можно передать электронной цифровой вычислительной машине.

В настоящее время разработаны некоторые модели искусственного интеллекта в различных областях, но до сих пор не создан компьютер способный обрабатывать информацию в любой новой области.

Среди важнейших классов задач, которые ставились перед разработчиками интеллектуальных систем с момента определения искусственного интеллекта как научного направления, следует выделить следующие направления искусственного интеллекта:

  • Доказательство теорем. Изучение приемов доказательства теорем сыграло важную роль в развитии искусственного интеллекта. Много неформальных задач, например, медицинская диагностика, применяют при решении методические подходы, которые использовались при автоматизации доказательства теорем. Поиск доказательства математической теоремы требует не только провести дедукцию, исходя из гипотез, но также создать интуитивные предположения о том, какие промежуточные утверждение следует доказать для общего доказательства основной теоремы.
  • Распознавание изображений. Применение искусственного интеллекта для распознавании образов позволила создавать практически работающие системы идентификации графических объектов на основе аналогичных признаков. В качестве признаков могут рассматриваться любые характеристики объектов, подлежащих распознаванию. Признаки должны быть инвариантны к ориентации, размера и формы объектов. Алфавит признаков формируется разработчиком системы. Качество распознавания во многом зависит от того, насколько удачно сложившийся алфавит признаков. Распознавания состоит в априорном получении вектора признаков для выделенного на изображении отдельного объекта и, затем, в определении которой из эталонов алфавита признаков этот вектор отвечает.
  • Машинный перевод и понимание человеческой речи. Задача анализа предложений человеческой речи с применением словаря является типичной задачей систем искусственного интеллекта. Для ее решения был создан язык-посредник, облегчающий сопоставление фраз из разных языков. В дальнейшем этот язык-посредник превратилась в семантическую модель представления значений текстов, подлежащих переводу. Эволюция семантической модели привела к созданию языка для внутреннего представления знаний. В результате, современные системы осуществляют анализ текстов и фраз в четыре основных этапа: морфологический анализ, синтаксический, семантический и прагматический анализ.
  • Игровые программы. В основу большинства игровых программ положены несколько базовых идей искусственного интеллекта, таких как перебор вариантов и самообучения. Одна из наиболее интересных задач в сфере игровых программ, использующих методы искусственного интеллекта, заключается в обучении компьютера игры в шахматы. Она была основана еще на заре вычислительной техники, в конце 50-х годов. В шахматах существуют определенные уровни мастерства, степени качества игры, которые могут дать четкие критерии оценки интеллектуального роста системы. Поэтому компьютерными шахматами активно занимался ученые со всего мира, а результаты их достижений применяются в других интеллектуальных разработках, имеющих реальное практическое значение.
  • Машинная творчество. К одной из областей применений искусственного интеллекта можно отнести программные системы, способные самостоятельно создавать музыку, стихи, рассказы, статьи, дипломы и даже диссертации. Сегодня существует целый класс музыкальных языков программирования (например, язык C-Sound). Для различных музыкальных задач было создано специальное программное обеспечение: системы обработки звука, синтеза звука, системы интерактивного композиции, программы алгоритмической композиции.
  • Экспертные системы. Методы искусственного интеллекта нашли применение в создании автоматизированных консультирующих систем или экспертных систем. Первые экспертные системы были разработаны, как научно-исследовательские инструментальные средства в 1960-х годах. Они были системами искусственного интеллекта, специально предназначенными для решения сложных задач в узкой предметной области, такой, например, как медицинская диагностика заболеваний. Классической целью этого направления изначально было создание системы искусственного интеллекта общего назначения, которая была бы способна решить любую проблему без конкретных знаний в предметной области. Ввиду ограниченности возможностей вычислительных ресурсов, эта задача оказалась слишком сложной для решения с приемлемым результатом.

Можно сказать, что основная цель разработки искусственного интеллекта – это оптимизация, вы только представьте, как человек не подвергаясь опасности, смог бы изучать другие планеты, добывал бы драгоценные металлы.

Таким образом, можно сделать вывод, что изучение и развитие искусственного интеллекта имеет важное значение для всего общества. Ведь с применением данной системы можно обезопасить и облегчить человеческую жизнь.

Список литературы

  1. Ясницкий Л.Н. О возможностях применения искусственного интеллекта [Электронный ресурс]: научная электронная библиотека. URL: http://cyberleninka.ru/ (дата обращения 01.06.2016)
  2. Ястреб Н.А. Искусственный интеллект [Электронный ресурс]: научная электронная библиотека. URL: http://cyberleninka.ru/ (дата обращения 01.06.2016)
  3. Абдулатипова М.А. Искусственный интеллект [Электронный ресурс]: научная электронная библиотека. URL: http://cyberleninka.ru/ (дата обращения 01.06.2016)