Биографии Характеристики Анализ

Что такое инерция? Значение слова "инерция". Инерция твердого тела

Наблюдения и опыт показывают, что тела получают ускорение относительно Земли, т. е. изменяют свою скорость относительно Земли, только при действии на них других тел. Каждый раз, когда какое-либо тело получает ускорение по отношению к Земле, можно указать другое тело, которое это ускорение вызвало. Например, бросаемый мяч приходит в движение, т. е. получает ускорение, под действием мышц руки. Ловя мяч, мы замедляем и останавливаем его, также действуя на него рукой. Пробка воздушного «пистолета» (рис. 53) приходит в движение под действием воздуха, сжимаемого вдвигаемым поршнем. Пуля, вылетающая с большой скоростью под действием пороховых газов, постепенно уменьшает свою скорость под действием воздуха. Скорость камня, брошенного вверх, уменьшается под действием силы притяжения Земли; затем камень останавливается и начинает двигаться вниз со все увеличивающейся скоростью (также вследствие притяжения Земли).

Рис. 53. Воздушный «пистолет»

Во всех этих и других подобных случаях изменение скорости, т. е. возникновение ускорения, есть результат действия на данное тело других тел, причем в одних случаях это действие проявляется при непосредственном соприкосновении (рука, сжатый воздух), а в других - на расстоянии (воздействие Земли на камень).

Что же будет происходить, если на данное тело никакие другие тела не действуют? В этом случае тело будет либо оставаться в покое относительно Земли, либо двигаться относительно нее равномерно и прямолинейно, т. е. без ускорения. Проверить простыми опытами, что в отсутствие действия других тел данное тело движется относительно Земли без ускорений, практически невозможно, потому что невозможно полностью устранить действия всех окружающих тел. Но чем тщательнее устранены эти действия, тем ближе движение данного тела к равномерному и прямолинейному.

Труднее всего устранить действие трения, возникающего между движущимся телом и подставкой, по которой оно катится или скользит, или средой (воздух, вода), в которой оно движется. Так, стальной шарик, катящийся по горизонтальной поверхности, посыпанной песком, останавливается очень быстро. Но если шарик хорошо отполирован, то, катясь по гладкой, например стеклянной, поверхности, он довольно долго сохранит свою скорость почти неизменной.

В некоторых физических приборах удается осуществить движение элементарных частиц, при котором каждая частица практически не испытывает действия никаких других частиц вещества (для этого из прибора необходимо тщательно удалить воздух). В этих условиях движение частиц очень близко к прямолинейному и равномерному (благодаря большой скорости и малой массе частиц притяжение Земли в таких опытах практически не сказывается).

Тщательные опыты по изучению движения тел были впервые произведены Галилеем в конце XVI и начале XVII веков. Они позволили установить следующий основной закон.

Если на тело не действуют никакие другие тела, то тело сохраняет состояние покоя или равномерного прямолинейного движения относительно Земли.

Как при покое, так и при равномерном прямолинейном движении ускорение отсутствует. Следовательно, закон, установленный Галилеем, означает: чтобы тело двигалось с ускорением относительно Земли, на него должны действовать другие тела. Причина ускорения - это действие других тел.

Свойство тел сохранять свою скорость при отсутствии действия на них других тел называют инерцией тел (от латинского слова inertia - бездеятельность, косность). Поэтому и указанный закон называют законом инерции, а движение при отсутствии действия на тело других тел называют движением по инерции.

Закон инерции явился первым шагом в установлении основных законов механики, в то время еще совершенно неясных. Впоследствии (в конце XVII века) великий английский математик и физик Исаак Ньютон (1643-1727), формулируя общие законы движения тел, включил в их число закон инерции в качестве первого закона движения. Закон инерции часто называют поэтому первым законом Ньютона.

Итак, тела получают ускорения под действием других тел. Если действия, оказываемые на разные части тела, различны, то эти части получат разные ускорения и через некоторое время приобретут различные скорости. В результате может измениться сам характер движения тела в целом. Например, при резком изменении скорости вагона трение о пол будет увлекать за собой ноги пассажира, но ни на туловище, ни на голову никакого действия со стороны пола оказано не будет, и эти части тела будут продолжать двигаться по инерции. Поэтому, например, при торможении вагона скорость ног уменьшится, а туловище и голова, скорость которых останется без изменений, опередят ноги; в результате тело пассажира наклонится вперед по движению. Наоборот, при резком увеличении скорости вагона туловище и голова, сохраняя по инерции прежнюю скорость, отстанут от ног, увлекаемых вагоном, и тело пассажира отклонится назад. Подобные проявления инерции тел широко используются в технике и в быту. Вытряхивание пыльной тряпки, стряхивание лишней капли чернил с пера, стряхивание столбика ртути в медицинском термометре - все эти действия используют инерцию тел (частиц пыли, капли чернил, ртути в капилляре термометра).

Инерция использована и при устройстве взрывателей артиллерийских снарядов. Когда снаряд, ударяясь о препятствие, внезапно останавливается, взрывной капсюль, помещающийся внутри снаряда, но не связанный жестко с его корпусом, продолжает двигаться и ударяется о жало взрывателя, связанного с корпусом.

Исаак Ньютон сформулировал закон инерции, который гласит, что если физическому телу ничего не мешает (равнодействующая всех сил рав­на нулю), то оно продолжит равномерное движение (инерция движения) или будет оставаться в состоянии покоя (инерция покоя).

Идея, заложенная в этом законе, оказалась настолько содержательной, что неявно получила статус универсальной. Ссылки на инерцию можно най­ти не только в физике, но и в психологии, экономике, во многих других на­уках и даже - в самой человеческой жизни.


С практической точки зрения, всякий раз, когда на основе ожидания продолжения чего-то прежнего прогнозируется будущее течение событий (цепь неприятностей или успехов, тенденция положения к ухудшению или улучшению и т.д.), - это, по существу, в той или иной форме и мере и есть ставка на закон инерции.

Неудивительно, что он давно уже обнаружен и в движении биржевых цен. Здесь любое развитие событий можно представить, как произвольную комбинацию двух состояний:
инерции покоя (результат отсутствия каких-либо заслуживаю­щих внимания информационных вводных);
инерции движения, которое когда-то возникло под воздействи­ем определенного импульса любой природы: макроэкономика, психология, слухи-страшилки, воля случая и т.д., а теперь, выйдя из периода покоя, продолжается.

В фактическом признании существования инерции применительно к поведению рынка преуспели и техники. Это выражается, в частности, в том, насколько высоко на пьедестал почета возведено явление тренда в дви­жении цен. В 60-х годах появился целый ряд научных работ, в которых при­водилось математическое обоснование существования тенденции и ее со­хранности. Идея тренда живет и здравствует по сей день.

Кроме того, надежды технических аналитиков именно на инерцию явно просматриваются в сигналах некоторых систем чтения поведения рынка.

Если рассматривать пространства случайных событий и, в частности, наше дополнительное измерение, то там, надо полагать, тоже действует какая-то своя инерция.

Таким образом, с методической точки зрения различные сценарии (конфи­гурации) развития событий в дополнительном измерении, в том числе и такие наиболее вероятные, как тренды и волны, удобно рассматривать в ка­честве проявления некой разновидности инерции, понимая, однако, су­ществующую здесь известную долю условности.

Как движение графика, так и его зависание (отсутствие вы­раженного направления) в дополнительном измерении - это разные проявления инерции.

В самом общем виде формулировка закона инерции применительно к дополнительному измерению может звучать примерно так:
если нечто (движение или покой) началось, то, скорее всего, оно будет продолжаться еще некоторое время.

Разумеется, в каждой конкретной серии испытаний будет складываться своя неповторимая конфигурация кривой. Но всегда можно обнаружить самые разнообразные следы инерции движения и/или покоя в виде тех или иных тенденций.

Это несложно увидеть на графике случайного блуждания, построенном по первым 1000 случайным числам:

На уровне микроскопического анализа приведенного рисунка мож­но видеть многократные переходы инерции движения в зависание и обратно.

С прикладной точки зрения важность данного закона заключается в том, что он позволяет внести в хаос случайности долю упорядочен­ности.

Иначе говоря, если в движении кривой дополнительного измерения обнаруживаются элементы порядка, то, исходя из закона инерции, можно строить расчет на наиболее вероятном сценарии - сохранение текущего положения в течение какого-то времени. Именно на этой основе можно за­ тем принимать соответствующие практические решения.

О каком порядке может идти речь в условиях неопределенности?

Действи­тельно, всякое упоминание упорядоченности при рассмотрении случайных событий может показаться весьма неуместным.

И все же, своя упорядоченность в случайных событиях существует.

Она вполне зримо проявляется хотя бы в том, что, согласно расчетам, в рам­ках принятой математической модели есть только два наиболее вероятных сценария развития событий (тренд и полуволна).

Можно обозначить по крайней мере три источника упорядоченности, проявляющейся в виде закона инерции:
случайные совпадения (иногда они складываются в удивитель­но осмысленный порядок);
исходное соотношение исходных вероятностей преимуществен­ но в пользу успеха (р) или неудачи (q), что заранее опреде­ляет упорядоченное тяготение исходов к соответствующему сум­марному результату (менее вероятное событие будет происхо­дить реже, чем более вероятный исход) ;
удачливость игрока, которая проявляет себя в конфигурации, со­гласно теоремам арксинуса (в классической теории вероятнос­тей говорится об относительной трудности возвращения точ­ки блуждания в начало координат, поскольку, согласно объяс­нению В. Феллера, если уж точка случайно отклонилась от нулевого уровня, то ей труднее вернуться обратно).

Итак, хотя пуассоновское блуждание беспамятно, оно подчиняется за­кону инерции движения, который проявляется, прежде всего, в том, что всякое состояние (некое направление движения или покой) может продол­жаться еще в течение некоторого времени, так сказать, по инерции.

Коротко говоря, благодаря закону инерции случайные пространства вы­глядят не столь уж хаотично.

Конечно, вероятностный характер этой упорядоченности означает и не­ определенность. В заданной серии испытаний неопределенность возникает по двум основным пунктам:
какая тенденция будет иметь место;
как долго она будет продолжаться.

И на сей счет мы можем делать лишь вероятностные суждения исходя из действующих закономерностей чисто случайных пространств.

Под тенденцией в расширительном понимании мы имеем в виду не только сохранение определенных графических фигур, по которым можно судить о направлении будущего движения или покое.

Проявления инерции можно ожидать также и в тенденции к сохра­нению во времени любых обнаруженных правил или закономерностей блуждания, которые носят не только графический, но и какой-то иной характер.

Время действия инерции.

Это наиболее важный параметр, от которого зависит процесс принятия решений в дополнительном измерении.

Сразу подчеркнем, что продолжительность времени действия инерции как параметра, имеющего конкретную величину, - явление само по себе неопределенное. Мы никогда заранее не знаем не только то, какого вида инерция возникнет в следующий момент, но и сколько она будет длиться. Мож­но быть уверенным только в том, что это, как принято говорить при ана­лизе поведения рынка, будет продолжаться до тех пор, пока не закончится.

Мы рассматриваем время действия инерции как величину чисто случайную, которая, следовательно, сама должна подчиняться закону инер­ции и всем действующим вероятностным закономерностям.

Методические следствия: Рождение и смерть разных тенденций в дополнительном измерении происходит по воле случая, который будет да­вать о себе знать все новыми вариантами. Важно суметь вовремя их обнару­жить и оседлать.

Рассмотренные выше понятия и закономерности, которым подчиняются наиболее вероятные конфигурации кривой в дополнительном измерении, в качестве следствий позволяют сформулировать, по меньшей мере, два вы­вода, имеющих непосредственное методическое приложение.

Первое следствие:
если в ходе наблюдения обнаруживается некоторая тенденция к сохранению определенного направления движения, то, вероят­нее всего, оно будет по инерции продолжаться.

Поэтому второе следствие:
если на каком-то этапе наблюдения обнаруживается неопреде­ленность в направлении (отсутствие тенденции), то она будет по инерции сохраняться в течение некоторого времени.

Кроме того, если понимание инерции применять к более широкому кругу явлений, то сказанное выше можно дополнить еще следующим положением:
если при анализе случайного движения на каком-то участке на­блюдения удается выявить какую-то частную закономерность или неопределенность, то такая ситуация, вероятнее всего, бу­дет сохранять свою инерцию в течение еще некоторого про­странственно-временного периода.

Особо подчеркнем, что для предметной разработки методов необходимо с помощью достаточно понятных и однозначно понимаемых критериев точ­но определить понятия тенденция и неопределенность движения.

При этом придется прояснить содержание параметров наблюдения, ко­торые описывают те пределы, где:
кончается неопределенность и начинается направление движения;
кончается выраженность направления движения и начинается неопределенность.

Если в этих понятиях не будет достигнуто необходимой четкости, то затруднительной станет и разработка соответствующих прикладных методик.

Наконец, затронем еще один методический вопрос, который возникает в связи с практическим приложением закона инерции: имеет ли дополни­тельное измерение преимущества в сравнении с применением закона не­посредственно в традиционных пространствах?

На наш взгляд, ответ положительный.

Причина в том, что в дополнительном измерении, как уже ранее подчер­кивалось, действует только воля чистого случая. В то же время чистота традиционных пространств в этом смысле значительно подпорчена пси­хологией участников рынка.

Что такое теория относительности Ландау Лев Давидович

Закон инерции

Закон инерции

Из принципа относительности движения вытекает, что тело, на которое не действует никакая внешняя сила, может находиться не только в состоянии покоя, но и в состоянии прямолинейного равномерного движения. Это положение в физике называется законом инерции.

Однако в повседневной жизни он как бы завуалирован и непосредственно не проявляется. Ведь по закону инерции тело, находящееся в состоянии прямолинейного равномерного движения, должно - и без воздействия внешних сил - продолжать свое движение без конца. Однако из наблюдений нам известно, что тела, к которым мы силы не прилагаем, останавливаются.

Разгадка заключается в том, что на все тела, наблюдаемые нами, действуют некоторые внешние силы - силы трения. Поэтому условие, необходимое для наблюдения закона инерции - отсутствие внешних сил, действующих на тело, - не выполняется. Но, улучшая условия опыта, уменьшая силы трения, можно приблизиться к идеальным условиям, необходимым для наблюдения закона инерции, доказав, таким образом, правильность этого закона и для движений, наблюдаемых в повседневной жизни.

Открытие принципа относительности движения является одним из величайших открытий. Без него развитие физики было бы невозможно. Этим открытием мы обязаны гению Галилео Галилея, смело выступившего против господствовавшего в те времена и поддерживаемого авторитетом католической церкви учения Аристотеля, согласно которому движение возможно только при наличии силы и без нее должно неминуемо прекратиться. Рядом блестящих опытов Галилей показал, что причиной остановки движущихся тел, наоборот, является сила трения и в отсутствие этой силы приведенное раз в движение тело двигалось бы вечно.

Из книги Физики продолжают шутить автора Конобеев Юрий

Закон Мэрфи Дональд МИЧИ Я думаю, что самое глубокое и прочное впечатление в своей жизни каждый научный работник получает от того, как неожиданно, как несправедливо, как удручающе трудно хоть что-нибудь открыть или доказать. Многих осложнений и разочарований можно было

Из книги Физическая химия: конспект лекций автора Березовчук А В

7. Закон Генри Фугитивность растворителя в разбавленном растворе не зависит от природы растворенного вещества и вычисляется по закону Рауля, то есть: Так как фугитивность жидкости или твердого раствора равна фугитивности насыщенного пара, когда растворитель в

Из книги Тайны пространства и времени автора Комаров Виктор

2. Закон Гесса При изобарных и изохорных условиях теплота является функцией состояния.В 1840 г. Г. Н. Гесс формулирует закон: «Тепловой эффект химической реакции не зависит от промежуточных стадий, а зависит только от начального и конечного состояния системы».?QP = dH,?QV = dUвн,QP =

Из книги Движение. Теплота автора Китайгородский Александр Исаакович

Из книги История лазера автора Бертолотти Марио

Закон сохранения массы Если растворить сахар в воде, то масса раствора будет строго равна сумме масс сахара и воды.Этот и бесчисленное количество подобных опытов показывают, что масса тела есть неизменное свойство. При любом дроблении и при растворении масса остается

Из книги Кто изобрел современную физику? От маятника Галилея до квантовой гравитации автора Горелик Геннадий Ефимович

Закон инерции Не приходится спорить – инерциальная система отсчета удобна и обладает неоценимыми преимуществами.Но единственная ли это система или, может быть, существует много инерциальных систем? Древние греки, например, стояли на первой точке зрения. В их сочинениях

Из книги Гравитация [От хрустальных сфер до кротовых нор] автора Петров Александр Николаевич

Закон сохранения импульса Произведение массы тела на его скорость называется импульсом тела (другое название – количество движения). Так как скорость – вектор, то и импульс является векторной величиной. Разумеется, направление импульса совпадает с направлением

Из книги автора

Центр инерции Вполне законно задать вопрос: где находится центр тяжести группы тел? Если на плоту много людей, то от места нахождения их общего центра тяжести (вместе с плотом) будет зависеть устойчивость плота.Смысл понятия остается тем же. Центр тяжести есть точка

Из книги автора

Закон Архимеда Подвесим гири к безмену. Пружина растянется и покажет вес гири. Не снимая гири с безмена, опустим ее в воду. Изменится ли показание безмена? Да, вес тела как бы уменьшится. Если опыт проделать с килограммовой железной гирей, то «уменьшение» веса составит

Из книги автора

Закон Авогадро Пусть вещество представляет собой смесь различных молекул. Нет ли такой физической величины, характеризующей движение, которая была бы одинакова для всех этих молекул, например для водорода и кислорода, находящихся при одинаковой температуре?Механика

Из книги автора

Закон преломления В работе Dioptrique Декарт излагает свою теорию света, основанную на вихрях, и обсуждает законы отражения и преломления, впервые выразив принцип, что отношение углов падения и преломления зависит от среды, через которую проходит свет.Уже греки знали, что

Из книги автора

Закон Рэлея К концу 1899 г. были проведены более точные измерения в области более длинных волн, которые показали, что в этой области закон Вина уже несправедлив. В июне того же года лорд Рэлей (который был при рождении Джоном Вильямом Стрэтгом (1842-1919)) опубликовал вывод закона

Из книги автора

Закон Планка Теоретическая ситуация, как описывают, была следующей. Когда в воскресенье 7 октября 1900 г. X. Рубенс со своей женой посетил Планков, он рассказал Планку об измерениях на длинах волн до 50 мкм, которые он произвел вместе с Ф. Курлбаумом в Берлинском институте. Эти

Из книги автора

Из книги автора

Закон красного смещения Эта история началась с замечательного открытия, сделанного в 1908 году Генриеттой Ливитт, которая тогда не была еще астрономом. Она смотрела не вверх, в звездное небо, а вниз - на фотопластинки, сделанные в Гарвардской обсерватории за много лет. В те

Из книги автора

Закон Ньютона Закон всемирного тяготения после обсуждения в третьем чтении был отправлен на доработку… Фольклор Проверка закона Ньютона. Осмысление закона Ньютона до сих пор играет очень важную роль для осмысления представлений о гравитации вообще. Как можно

Выпуск 18

Восемнадцатая серия видеоуроков физики посвящена одному из законов, открытому великим Исааком Ньютоном, а именно — закону инерции Ньютона. Во многом благодаря действию этого закона, наш мир таков, каким мы привыкли его видеть. Также Даниил Эдисонович расскажет юным телезрителям о силе трения, которая также вносит немалый вклад в устройство нашего мироздания.

Закон инерции Ньютона

Инерция — основное свойство материальных тел. А вы знаете, в чём оно заключается? В одной из прошлых передач Даниил Эдисонович рассказывал о таком физическом понятии, как масса. Масса — это мера инертности тела. То есть, инерция напрямую зависит от массы. Закон инерции Ньютона называют ещё Первым законом Ньютона. Свободное тело, на которое не действуют силы со стороны других тел, находится в состоянии покоя или равномерного прямолинейного движения (понятие скорости здесь применяется к центру масс тела в случае непоступательного движения). Иными словами, телам свойственна инерция, то есть явление сохранения скорости, если внешние воздействия на них скомпенсированы. Иными словами, существуют такие системы отсчета, относительно которых тело (материальная точка) при отсутствии на него внешних воздействий (или при их взаимной компенсации) сохраняет состояние покоя или равномерного прямолинейного движения. Системы отсчёта, в которых выполняется закон инерции Ньютона, называют инерциальными системами отсчёта (ИСО). Явлением инерции также является возникновение фиктивных сил инерции в неинерциальных системах отсчета. Впервые закон инерции был сформулирован Галилео Галилеем, который после множества опытов заключил, что для движения свободного тела с постоянной скоростью не нужно какой-либо внешней причины. До этого общепринятой была иная точка зрения (восходящая к Аристотелю), которая гласила, что свободное тело находится в состоянии покоя, а для движения с постоянной скоростью необходимо приложение постоянной силы. Впоследствии Ньютон сформулировал закон инерции в качестве первого из трёх своих знаменитых законов. Инерция — это не только стремление тела к сохранению покоя, но и стремление сохранить движение, если уж оно начало двигаться. А что ещё мешает телу двигаться, кроме силы инерции? Может быть, вам уже приходилось слышать о трении? Трение — это сила, которая возникает при взаимодействии поверхности одного тела с поверхностью другого тела. Также трение возникает при движении тела в газообразной или жидкой среде. Сила трения — это сила, возникающая в месте соприкосновения тел и препятствующая их относительному движению. Причинами возникновения силы трения являются шероховатость соприкасающихся поверхностей и взаимное притяжение молекул этих поверхностей.

2014-05-26

Результаты экспериментов Галилея свидетельствовали о том, что чем меньше сопротивление движению, тем меньше изменение скорости и тем дольше движется шарик. Размышляя над такими результатами, Галилей пришел гениальному выводу: при полном отсутствии силы трения или сопротивления скорость тела постоянна, и для поддержания движения не нужно прилагать никакой силы. Математически это можно записать так: = const, если = const. Явление сохранения телом скорости при отсутствии внешних воздействий на него со стороны других тел называют инерцией, а это свойство тела — инертностью. А закон, открытый Галилеем, называют законом инерции и формулируют так: если на тело не действуют другие тела, оно движется прямолинейно и равномерно или находится в состоянии покоя.

Отметим, что физический смысл закона инерции заключается в том, что свободные друг относительно друга материальные точки (материальные точки, на которые не действуют другие тела) движутся прямолинейно и равномерно.

О том, что телу свойственно хранить любое движение, а именно прямолинейный, свидетельствует такой опыт (рис. 2). Шарик движется прямолинейно по плоской горизонтальной поверхности, сталкиваясь с препятствием, которое имеет криволинейную форму, под действием этого препятствия вынуждена двигаться по дуге. Однако когда шарик доходит до конца препятствия, она перестает двигаться криволинейно и снова начинает двигаться по прямой.

Рассматривая механические движения в доме на берегу моря и в каюте корабля, Г. Галилей обнаружил, что они осуществляются одинаково, когда корабль плывет по гладкой поверхности без ускорения. Очень важным для всего последующего развития физики оказалось утверждение Галилея о том, что никакими механическими опытами, которые проводятся внутри инерционной системы отсчета (для пассажира ней есть каюта корабля), невозможно установить, находится эта система в покое, или движется равномерно и прямолинейно. Это утверждение называют принципом относительности Галилея. Человек в каюте корабля может установить факт движения только тогда, когда она будет наблюдать внешние тела: остров, берег моря и т.д..

Инерционными Ньютон назвал такие системы, для которых единственным источником ускорения есть сила, то есть взаимодействие с другими телами. Системы отсчета, которые движутся относительно инерциальных систем с ускорением (поступательно или вращательно), он назвал неинерциальных. Ньютон, рассматривая инерциальную систему отсчета (ИСО), так и не смог указать тело, которое было бы для нее телом отсчета. Окружающие тела движутся ускоренно: дом вращается вокруг оси Земли, а вместе с ее поверхностью — вокруг Солнца. Системы отсчета, связанные с окружающими телами, неинерциальные, но их ускорения в основном очень малы. Ускорение автобуса составляет около 1 м/с2, большого корабля — несколько cм/с2, Земли — 6 мм/с2, Солнца — около 10-4 см/с2. Соответственно, чем больше масса тела отсчета, тем меньше его ускорение. Поэтому ИСО — это абстрактное понятие, если бы она существовала, то имела бы бесконечно большую массу. Очевидно, что наибольшую массу из тел, окружающих нас, имеет Солнце, поэтому связанная с ним система отсчета почти инерционной. В этой ИСО начало отсчета координат совмещают с центром Солнца, а координаты осей проводят в направлении реальных звезд, которые можно считать неподвижными.

Однако для описания многих механических явлений с земных условий ИСО связывают с Землей, пренебрегая при этом вращательными движениями Земли вокруг своей оси и вокруг Солнца. Например, изучая свободное падение, нужно было бы учитывать ускорение лаборатории (2-3 см/с2), поскольку Земля вращается вокруг своей оси. Но ускорение лаборатории в несколько сотен раз меньше ускорения свободного падения, поэтому им обычно пренебрегают. В большинстве задач Землю считают идеальным телом отсчета, а связанные с ней системы — инерционными.

Сейчас понятно, что абсолютно неподвижных тел или тел, которые движутся строго равномерно и прямолинейно, в природе не существует, поэтому инерционная система отсчета — такая же абстракция, как и материальная точка или абсолютно твердое тело. Инерционными системами отсчета называют системы, относительно которых тело движется равномерно прямолинейно или находится в покое. Время во всех ИСО измеряют одинаково. Масса тела m = const, его ускорения и силы взаимодействия не зависят от скорости ИСО. В любых ИСО все механические явления происходят одинаково при одних и тех же начальных условиях (другая формулировка принципа относительности Галилея).