Биографии Характеристики Анализ

Космологические парадоксы – суть и исследование. Космологические парадоксы

КОСМОЛОГИЧЕСКИЕ ПАРАДОКСЫ, затруднения (противоречия), возникающие при распространении законов физики на Вселенную в целом или достаточно большие её области. Обычно термин «космологические парадоксы» объединяет фотометрические, термодинамические и гравитационные парадоксы. Первый космологический парадокс - фотометрический парадокс (парадокс Шезо-Ольберса) - был независимо рассмотрен швейцарским астрономом Ж. де Шезо в 18 веке и Г. Ольберсом в начале 19 века. Суть его заключается в том, что предположение о вечной и бесконечной Вселенной противоречит видимой яркости неба. Простые рассуждения показывают, что допущение однородного распределения звёзд в пространстве, а также предположение о бесконечном времени их существования приводят к заключению, что луч, идущий от наблюдателя в произвольном направлении, рано или поздно «упрётся» в поверхность какой-либо звезды. Из этого рассуждения следует, что яркость любого участка неба должна быть близка к яркости солнечной поверхности, что явно противоречит наблюдениям. Объяснение этого парадокса состоит в том, что в однородной изотропной расширяющейся Вселенной наблюдатель принимает излучение с расстояний не далее горизонта частиц, смещённое в красную область спектра, и от объектов, родившихся после начала расширения. Поэтому в современной космологии парадокс Шезо-Ольберса отсутствует.

Одним из самых обсуждаемых в современной космологии является термодинамический парадокс. Этот парадокс связан с применением законов термодинамики к космологии. Второй закон термодинамики утверждает, что в любой замкнутой системе энтропия должна увеличиваться, уменьшая количество структур во Вселенной и приближая вещество в ней к однородному состоянию. Тогда возникает вопрос: почему наблюдаемое состояние так сильно отличается от состояния, требуемого вторым законом термодинамики. Одно из возможных объяснений - предположение о том, что наша часть Вселенной является флуктуацией в полной Вселенной, обладающей большим значением энтропии. В современной космологии эту теорию развил российский физик А. Д. Линде (так называемая теория хаотической Вселенной). Согласно Линде, наша Вселенная - «домен» большой Вселенной, причём причинная связь между отдельными доменами может отсутствовать. Тому факту, что наш домен обладает наблюдаемыми свойствами, даёт объяснение антропный принцип, который наиболее изящно сформулировал российский учёный А. Л. Зельманов: «...мы являемся свидетелями процессов определённого типа, поскольку процессы другого типа протекают без свидетелей».

Третий космологический парадокс - гравитационный парадокс (парадокс Неймана - Зелигера); состоит в том, что закон всемирного тяготения Ньютона в применении к бесконечной, однородной и изотропной Вселенной не даёт разумного ответа на вопрос о гравитационном поле, создаваемом бесконечной системой масс. Для космологических масштабов ответ даёт теория А. Эйнштейна, в которой закон всемирного тяготения уточняется для случая сильных гравитационных полей.

Лит. смотри при ст. Космология.

Известно, что основные возражения против возможности существования бесконечной во времени и пространстве Вселенной заключаются в следующем.

1. «В 1744 г. швейцарский астроном Ж.Ф. Шезо первым усомнился в правильности представления о бесконечной Вселенной: если количество звезд во Вселенной бесконечно, то почему все небо не сверкает, как поверхность единой звезды? Почему небо темное? Почему звезды разделены темными промежутками?». Как полагают, такое же возражение против модели бесконечной Вселенной выдвинул немецкий философ Г. Олберс в 1823 г. «Контраргумент Олберса состоял в том, что свет, идущий к нам от далеких звезд, должен ослабляться из-за поглощения в находящемся на его пути веществе. Но в таком случае само это вещество должно нагреться и ярко светиться, как звезды». Однако так оно и есть в действительности! Согласно современным представлениям, вакуум не есть «ничто», но представляет собой «нечто», обладающее вполне реальными физическими свойствами. Тогда почему не предположить, что свет взаимодействует с этим «нечто» таким образом, что каждый фотон света при движении в этом «нечто» теряет энергию пропорционально пройденному им расстоянию, вследствие чего излучение фотона смещается в красную часть спектра.

Естественно, что поглощение вакуумом энергии фотонов сопровождается повышением температуры вакуума, вследствие чего вакуум становится источником вторичного излучения, которое можно назвать фоновым. Когда расстояние от Земли до излучающего объекта – звезды, галактики – достигает некоторого предельного значения, излучение от этого объекта получает настолько большое красное смещение, что сливается с фоновым излучением вакуума. Поэтому, хотя количество звезд в бесконечной Вселенной бесконечно, количество звезд, наблюдаемых с Земли, и вообще из любой точки Вселенной, конечно – в любой точке пространства наблюдатель видит себя как бы в центре Вселенной, из которого наблюдается некоторое ограниченное количество звезд (галактик). Вместе с тем, на частоте фонового излучения все небо сверкает как поверхность единой звезды, что и наблюдается в действительности.

2. В 1850 г. немецкий физик Р. Клаузиус «... пришел к выводу, что в природе теплота переходит от теплого тела к холодному... состояние Вселенной должно все больше изменяться в определенном направлении... Эти представления развил английский физик Уильям Томсон, согласно которому все физические процессы во Вселенной сопровождаются превращением световой энергии в теплоту». Следовательно, Вселенную ожидает «тепловая смерть», поэтому бесконечное существование Вселенной во времени невозможно. В действительности, это не так. Согласно современным представлениям, в «световую энергию» и «теплоту» вещество превращается в результате термоядерных процессов, идущих в звездах. «Тепловая смерть» наступит, как только все вещество Вселенной «сгорит» в термоядерных реакциях. Очевидно, что в бесконечной Вселенной и запасы вещества также являются бесконечными, следовательно, все вещество Вселенной «сгорит» за бесконечно большое время. «Тепловая смерть» угрожает скорее конечной Вселенной, поскольку запасы вещества в ней ограничены. Впрочем, и в случае конечной Вселенной ее «тепловая смерть» не является обязательной. Еще Ньютон сказал примерно следующее: «Природа любит превращения. Почему бы в ряду различных превращений не может быть таких, в которых вещество превращается в свет, а свет – в вещество». В настоящее время такие превращения хорошо известны: с одной стороны, вещество превращается в свет в результате термоядерных реакций, с другой – фотоны, т.е. свет, при определенных условиях превращаются в две вполне материальных частицы – электрон и позитрон. Таким образом, в природе осуществляется кругооборот вещества и энергии, что исключает «тепловую смерть» Вселенной.

3. В 1895 г. немецкий астроном Х. Зелигер «... пришел к выводу, что представление о бесконечном пространстве, заполненном веществом при конечной его плотности, несовместимо с законом тяготения Ньютона... Если в бесконечном пространстве плотность вещества не бесконечно мала, а каждые две частицы по закону Ньютона взаимно притягиваются, то сила тяготения, действующая на любое тело, была бы бесконечно большой, и под ее воздействием тела получили бы бесконечно большое ускорение».

Как объясняет, например, И.Д. Новиков в, суть гравитационного парадокса заключается в следующем. «Пусть Вселенная в среднем равномерно заполнена небесными телами, так что средняя плотность вещества в очень больших объемах пространства одинакова. Попытаемся рассчитать в соответствии с законом Ньютона, какая гравитационная сила, вызванная всем бесконечным веществом Вселенной, действует на тело (например, галактику), помещенную в произвольную точку пространства. Предположим сначала, что Вселенная пуста. Поместим в произвольную точку пространства пробное тело A . Окружим это тело веществом плотности, заполняющим шар радиуса R , чтобы тело A было в центре шара. Ясно без всяких расчетов, что в силу симметрии тяготение всех частичек вещества шара в его центре уравновешивает друг друга, и результирующая сила равна нулю, т.е. на тело A не действует никакая сила. Будем теперь добавлять к шару новые и новые сферические слои вещества той же плотности... сферические слои вещества не создают сил тяготения во внутренней полости и добавление этих слоев ничего не меняет, т.е. по-прежнему равнодействующая сила тяготения для A равна нулю. Продолжая процесс дополнения слоев, мы приходим в пределе к бесконечной Вселенной, равномерно заполненной материей, в которой результирующая гравитационная сила, действующая на A , равна нулю.

Однако рассуждения можно проводить и иначе. Возьмем снова однородный шар радиуса R в пустой Вселенной. Поместим наше тело не в центр этого шара с той же плотностью вещества, что и раньше, а на краю его. Теперь сила тяготения, которая действует на тело A , будет равна согласно закону Ньютона

F = GMm /R 2 ,

где M – масса шара; m – масса пробного тела A .

Будем теперь добавлять сферические слои вещества к шару. После того, как к этому шару добавлена сферическая оболочка, она не добавит гравитационных сил внутри себя. Следовательно, сила тяготения, действующая на тело A , не изменится и по-прежнему равна F .

Продолжим процесс добавления сферических оболочек вещества одинаковой плотности. Сила F остается неизменной. В пределе мы снова получаем Вселенную, заполненную однородным веществом с той же плотностью. Однако теперь на тело A действует сила F . Очевидно, в зависимости от выбора первоначального шара, можно получить силу F после перехода к однородно заполненной веществом Вселенной. Вот эта неоднозначность и получила название гравитационного парадокса... теория Ньютона не дает возможности без добавочных предположений однозначно рассчитать гравитационные силы в бесконечной Вселенной. Только теория Эйнштейна позволяет рассчитать эти силы без всяких противоречий» пишет сайт news-chel.ru .

Противоречия, однако, сразу же исчезают, если мы вспомним, что бесконечная Вселенная – это не то же самое, что очень большая:

  • в бесконечной Вселенной сколько слоев вещества мы бы не прибавляли к шару, за его пределами остается еще бесконечно большое количество вещества;
  • в бесконечной Вселенной шар любого, сколь угодно большого радиуса с пробным телом на его поверхности, всегда можно окружить сферой еще большего радиуса таким образом, что и шар, и пробное тело на его поверхности, окажутся внутри этой новой сферы, заполненной веществом той же плотности, что и внутри шара; в этом случае величина сил тяготения, действующих на пробное тело со стороны шара, окажется равной нулю.

Таким образом, сколько бы мы не увеличивали радиус шара и сколько бы слоев вещества не прибавляли, в бесконечной Вселенной, равномерно заполненной веществом, величина сил тяготения, действующих на пробное тело, всегда будет равна нулю. Другими словами, величина сил тяготения, создаваемых всем веществом Вселенной, в любой ее точке равна нулю. Однако если за пределами шара, на поверхности которого лежит пробное тело, нет вещества, т.е. если все вещество Вселенной сосредоточено внутри этого шара, тогда на пробное тело, лежащее на поверхности этого тела, действует сила тяготения, пропорциональная массе заключенного в шаре вещества. Под действием этой силы пробное тело, и вообще все внешние слои вещества шара, будет притягиваться к его центру – шар конечных размеров, однородно заполненный веществом, неизбежно будет сжиматься под действие сил тяготения. Этот вывод следует как из закона всемирного тяготения Ньютона, так и из общей теории относительности Эйнштейна: Вселенная конечных размеров не может существовать, так как под действием сил тяготения ее вещество должно непрерывно сжиматься к центру Вселенной.

«Ньютон понимал, что по его теории тяготения звезды должны притягиваться друг к другу и поэтому, казалось бы... должны упасть друг на друга, сблизившись в какой-то точке... Ньютон говорил, что так (здесь и далее выделено мной – В.П. ) действительно должно было бы быть , если бы у нас было лишь конечное число звезд в конечной области пространства. Но... если число звезд бесконечно и они более или менее равномерно распределены по бесконечному пространству, то этого никогда не произойдет, так как нет центральной точки, куда им нужно было бы падать. Эти рассуждения – пример того, как легко попасть впросак, ведя разговоры о бесконечности. В бесконечной Вселенной любую точку можно считать центром, так как по обе стороны от нее число звезд бесконечно. (Тогда можно – В.П.)... взять конечную систему, в которой все звезды падают друг на друга, стремясь к центру, и посмотреть, какие будут изменения, если добавлять еще и еще звезд, распределенных приблизительно равномерно вне рассматриваемой области. Сколько бы звезд мы ни добавили, они всегда будут стремиться к центру» . Таким образом, чтобы не «попасть впросак», мы должны выделить из бесконечной Вселенной некоторую конечную область, убедиться в том, что в такой конечной области звезды будут падать по направлению к центру этой области, после чего распространить этот вывод на бесконечную Вселенную и заявить, что существование такой Вселенной невозможно. Вот пример того, как «... на вселенную в целом...» переносится «... как нечто абсолютное такое состояние,...которому... может быть подвержена... только часть материи» (Ф. Энгельс. Анти-Дюринг), например, отдельно взятая звезда или скопление звезд. В действительности, так как «в бесконечной Вселенной любую точку можно считать центром», количество таких точек бесконечно. По направлению к какой же из этого бесконечного множества точек будут двигаться звезды? И еще: если даже вдруг обнаружится такая точка, то бесконечное количество звезд будет двигаться в направлении этой точки бесконечное время и сжатие в этой точке всей бесконечной Вселенной произойдет также за бесконечное время, т.е. никогда. Иное дело, если Вселенная конечна. В такой Вселенной существует единственная точка, которая и есть центр Вселенной – это точка, из которой началось расширение Вселенной и в которой опять сосредоточится все вещество Вселенной, когда ее расширение сменится сжатием. Таким образом, именно конечная Вселенная, т.е. Вселенная, размеры которой в каждый момент времени и величина сосредоточенного в ней вещества могут быть выражена какими-то конечными числами, обречена на сжатие. Находясь в состоянии сжатия, Вселенная никогда не сможет выйти из этого состояния без какого-то внешнего воздействия. Поскольку, однако, вне Вселенной нет ни вещества, ни пространства, ни времени, единственной причиной расширения Вселенной может быть действие, выраженное словами «Да будет свет!». Как написал однажды Ф. Энгельс, «Мы можем вертеться и изворачиваться как нам угодно, но... мы каждый раз опять возвращаемся... к персту Божию» (Ф. Энгельс. Анти-Дюринг). Однако перст Божий не может быть предметом изучения науки.

Заключение

Анализ так называемых космологических парадоксов позволяет заключить следующее.

1. Мировое пространство не является пустым, но заполнено некоторой средой, назовем ли мы эту среду эфиром или физическим вакуумом. При движении в этой среде фотоны теряют энергию пропорционально пройденному им и расстоянию, вследствие чего излучение фотонов смещается в красную часть спектра. В результате взаимодействия с фотонами температура вакуума или эфира повышается на несколько градусов выше абсолютного нуля, вследствие чего вакуум становится источником вторичного излучения, соответствующего его абсолютной температуре, что и наблюдается в действительности. На частоте этого излучения, которое действительно является фоновым излучением вакуума, все небо оказывается одинаково ярким, как это и предполагал Ж.Ф. Шезо.

2. Вопреки предположению Р. Клаузиуса, «тепловая смерть» не угрожает бесконечной Вселенной, включающей бесконечное количество вещества, которое может превратиться в теплоту за бесконечно большое время, т.е. никогда. «Тепловая смерть» угрожает конечной Вселенной, включающей конечное количество вещества, превращение которого в тепло может произойти за конечное время. Именно поэтому существование конечной Вселенной оказывается невозможным.

3. В бесконечной Вселенной, размеры которой не могут быть выражены никаким, сколь угодно большим числом, равномерно заполненной веществом при ненулевой его плотности, величина сил тяготения, действующих в любой точке Вселенной, равна нулю – это и есть истинный гравитационный парадокс бесконечной Вселенной. Равенство нулю сил тяготения в любой точке бесконечной Вселенной, равномерно заполненной веществом, означает, что пространство в такой Вселенной всюду является Эвклидовым.

В конечной Вселенной, т.е. во Вселенной, размеры которой могут быть выражены какими-то, пусть и очень большими числами, на пробное тело, находящееся «на краю» Вселенной, действует сила притяжения, пропорциональная массе заключенного в ней вещества, вследствие чего это тело будет стремиться к центру Вселенной – конечная Вселенная, вещество которой равномерно распределено во всем ее ограниченном объеме, обречена на сжатие, которое никогда не сменится расширением без какого-то внешнего воздействия.

Таким образом, все возражения, или парадоксы направленные, как считают, против возможности существования бесконечной во времени и пространстве Вселенной, в действительности направлены против возможности существования именно конечной Вселенной. В действительности, Вселенная бесконечна и в пространстве, и во времени; бесконечна в том смысле, что ни размеры Вселенной, ни количество заключенного в ней вещества, ни время ее жизни не могут быть выражены никакими, сколь угодно большими числами – бесконечность, она и есть бесконечность. Бесконечная Вселенная никогда не возникала ни как результат внезапного и необъяснимого расширения и дальнейшего развития некоторого «доматериального» объекта, ни как результат Божественного творения.

Надо полагать, тем не менее, что приведенные выше доводы покажутся сторонникам теории Большого взрыва абсолютно неубедительными. Как считает известный ученый Х. Альвен «Чем меньше существует научных доказательств, тем более фанатичной делается вера в этот миф. Похоже на то, что в теперешней интеллектуальной атмосфере огромным преимуществом космологии «Большого взрыва» служит то, что она является оскорблением здравого смысла: credo, quia absurdum (верю, ибо абсурдно)» (цитируется по ). К сожалению, с некоторых пор «фанатичная вера» в ту или иную теорию является традицией: чем больше появляется доказательств научной несостоятельности таких теорий, тем более фанатичной становится вера в их абсолютную непогрешимость.

В свое время, полемизируя с известным церковным реформатором Лютером, Эразм Роттердамский писал: «Здесь, я знаю, некоторые, зажав уши, конечно закричат: «Эразм посмел сразиться с Лютером!» То есть муха со слоном. Если кто-нибудь захочет приписать это моему слабоумию или невежеству, то я с ним не стану спорить, только пусть даже и слабоумным – пусть даже научения ради – разрешат поспорить с теми, кого Бог одарил богаче... Может быть, мое мнение меня обманывает; поэтому я хочу быть собеседником, а не судьей, исследователем, а не основоположником; я готов учиться у каждого, кто предлагает что-то более правильное и достоверное... Если же читатель увидит, что оснастка моего сочинения равна той, которая имеется у противоположной стороны, тогда он сам взвесит и рассудит, что имеет большее значение: суждение всех просвещенных людей..., всех университетов..., или же частное мнение того или иного человека... Я знаю, в жизни нередко случается, что большая часть побеждает лучшую. Я знаю, что при исследовании истины никогда не лишне добавить свое прилежание к тому, что было сделано прежде».

Этими словами мы и закончим наше краткое исследование.

Источники информации:

  1. Климишин И.А. Релятивистская астрономия. М.: Наука, 1983.
  2. Хокинг С. От большого взрыва до черных дыр. М.: Мир, 1990.
  3. Новиков И.Д. Эволюция Вселенной. М.: Наука, 1983.
  4. Гинзбург В.Л. О физике и астрофизике. Статьи и выступления. М.: Наука, 1985.

Введение. 3

1. Космологические парадоксы.. 4

2. Концепция расширяющейся Вселенной. 8

3. Концепция «Большого Взрыва». 14

Заключение. 20

Список использованных источников и литературы: 21

Приложения………………………………………………………………..22


Введение

Наша планета – одна из планет Солнечной системы. окружающие Солнце звёзды и само Солнце – это ничтожно малая часть гигантского коллектива звёзд и туманностей, называемого «Галактикой». . Но Вселенная состоит из огромного количества даже не галактик, а метагалактик, являющихся скоплениями галактик. Собственно, метагалактика – это и есть известная в настоящее время Вселенная. Здесь масштабы и расстояния приобретают характер, совершенно не представимый человеческому воображению.

Изменение в представлениях о форме и размерах Вселенной на протяжении веков и до наших дней описано в начальных главах многих научно-популярных книг по космологии. Главные темы космологии сейчас - это ядерные превращения в звездах и физика субатомных частиц. А космогония (от слова gonia - угол), являясь в наше время лишь частью более общей науки - космологии, говорит именно о крупномасштабных пространственных характеристиках Вселенной - не об архитектурных и конструктивных деталях мироздания, а как бы со стороны целиком показывает модель, макет этого «здания», в котором мы живем.

Цель нашей работы раскрыть концепцию Большого Взрыва. Для этого необходимо решить следующие задачи:

1. Выявить космологические парадоксы;

2. Рассмотреть концепцию расширяющейся Вселенной;

3. Изучить концепцию непосредственно Большого Взрываю


Космологические парадоксы

В истории познания окружающего нас мира четко прослеживается общее направление - постепенное признание неисчерпаемости природы, ее бесконечности во всех отношениях. Вселенная бесконечна в пространстве и во времени, и если отбросить идеи И. Ньютона о "первом толчке", то такого рода мировоззрение можно считать вполне материалистическим. Ньютоновская Вселенная утверждала, что пространство есть вместилище всех небесных тел, с движением и массой которых оно никак не связано; Вселенная всегда одна и та же, т. е. стационарна, хотя в ней постоянно происходит гибель и рождение миров.

Казалось бы, небо ньютоновской космологии обещало быть безоблачным. Однако очень скоро пришлось убедиться в обратном. В течение XIX в. обнаружились три противоречия, которые были сформулированы в форме трех парадоксов, названных космологическими. Они, казалось, подрывали представление о бесконечности Вселенной.

Фотометрический парадокс. Если Вселенная бесконечна и звезды в ней распределены равномерно, то по любому направлению мы должны видеть какую-нибудь звезду. В этом случае фон неба был бы ослепительно ярким, как Солнце.

Гравитационный парадокс. Если Вселенная бесконечна и звезды равномерно занимают ее пространство, то сила тяготения в каждой его точке должна быть бесконечно велика, а стало быть, бесконечно велики были бы и относительные ускорения космических тел, чего, как известно, нет.

Термодинамический парадокс. По второму закону термодинамики все физические процессы во Вселенной в конечном счете сводятся к выделению теплоты, которая необратимо рассеивается в мировом пространстве. Рано или поздно все тела остынут до температуры абсолютного нуля, движение прекратится и наступит навсегда "тепловая смерть". Вселенная имела начало, и ее ждет неизбежный конец.

Первая четверть XX в. прошла в томительном ожидании развязки. Никто, разумеется, не хотел отрицать бесконечность Вселенной, но, с другой стороны, никому не удавалось устранить космологические парадоксы стационарной Вселенной. Лишь гений Альберта Эйнштейна внес новую струю в космологические споры.

Ньютоновская классическая физика, как уже говорилось, рассматривала пространство как вместилище тел. Никакого взаимодействия между телами и пространством по Ньютону и быть не могло.

В 1916 г. А. Эйнштейн опубликовал основы общей теории относительности. Одна из главных ее идей состоит в том, что материальные тела, в особенности большой массы, заметно искривляют пространство. Из-за этого, например, луч света, проходящий вблизи Солнца, изменяет первоначальное направление.

Представим себе теперь, что во всей наблюдаемой нами части Вселенной материя равномерно "размазана" в пространстве и в любой его точке действуют одни и те же законы. При некоторой средней плотности космического вещества выделенная ограниченная часть Вселенной не только искривит пространство, но даже замкнет его "на себя". Вселенная (точнее, выделенная ее часть) превратится в замкнутый мир, напоминающий обычную сферу. Но только это будет четырехмерная сфера, или гиперсфера, представить себе которую мы, трехмерные существа, не в состоянии. Однако, мысля по аналогии, мы легко разберемся в некоторых свойствах гиперсферы. Она, как и обычная сфера, имеет конечный объем, заключающий в себе конечную массу вещества. Если в мировом пространстве лететь все время в одном направлении, то через некоторое число миллиардов лет можно попасть в исходную точку.



Идею о возможности замкнутости Вселенной впервые высказал А. Эйнштейн. В 1922 г. советский математик А. А. Фридман доказал, что "замкнутая Вселенная" Эйнштейна никак не может быть статичной. В любом случае ее пространство или расширяется, или сжимается со всем своим содержимым.

В 1929 г. американский астроном Э. Хаббл открыл замечательную закономерность: линии в спектрах подавляющего большинства галактик смещены к красному концу, причем смещение тел тем больше, чем дальше от нас находится галактика. Это интересное явление называется красным смещением. Объяснив красное смещение эффектом Доплера, т. е. изменением длины волны света в связи с движением источника, ученые пришли к выводу о том, что расстояние между нашей и другими галактиками непрерывно увеличивается. Конечно, галактики не разлетаются во все стороны от нашей Галактики, которая не занимает никакого особого положения в Метагалактике, а происходит взаимное удаление всех галактик. Это означает, что наблюдатель, находящийся в любой галактике, мог бы, подобно нам, обнаружить красное смещение, ему казалось бы, что от него удаляются все галактики. Таким образом, Метагалактика нестационарна. Открытие расширения Метагалактики свидетельствует о том, что Метагалактика в прошлом была не такой, как сейчас, и иной станет в будущем, т. е. Метагалактика эволюционирует.

По красному смещению определены скорости удаления галактик. У многих галактик они очень велики, соизмеримы со скоростью света. Самыми большими скоростями, иногда превышающими 250 тыс. км/с, обладают некоторые квазары, считающиеся самыми удаленными от нас объектами Метагалактики.

Закон, согласно которому красное смещение (а значит, и скорость удаления галактик) возрастает пропорционально расстоянию от галактик (закон Хаббла), можно записать в виде: v - Нr, где v - лучевая скорость галактики; r - расстояние до нее; Н - постоянная Хаббла. По современным оценкам, значение Н заключено в пределах:

Следовательно, наблюдаемый темп расширения Метагалактики таков, что галактики, разделенные расстоянием 1 Мпк (3 10 19 км), удаляются друг от друга со скоростью от 50 до 100 км/с. Если скорость удаления галактики известна, то можно вычислить расстояние до далеких галактик.

Итак, мы живем в расширяющейся Метагалактике. Это явление имеет свои особенности. Расширение Метагалактики проявляется только на уровне скоплений и сверхскоплений галактик, т. е. систем, элементами которых являются галактики. Другая особенность расширения Метагалактики заключается в том, что не существует центра, от которого разбегаются галактики.

Расширение Метагалактики - самое грандиозное из известных в настоящее время явлений природы. Правильное его истолкование имеет исключительно большое мировоззренческое значение. Не случайно в объяснении причины этого явления резко проявилось коренное отличие философских взглядов ученых. Некоторые из них, отождествляя Метагалактику со всей Вселенной, пытаются доказать, что расширение Метагалактики подтверждает религиозное о сверхъестественном, божественном происхождении Вселенной. Однако во Вселенной известны естественные процессы, которые в прошлом могли вызвать наблюдаемое расширение. По всей вероятности, это взрывы. Их масштабы поражают нас уже при изучении отдельных видов галактик.

На каждом этапе развития космологии находились ученые, которые полагали, что в основном в космологическом учении все основные проблемы решены, и осталось уточнить только некоторые детали. Но дальнейшие исследования открывали все новые обстоятельства и появлялись новые проблемы. Нечто аналогичное произошло и с классической космогонией, основанной на простых ньютонианских представлениях астрономов о пространстве и времени.

Фотометрический парадокс

Первая брешь в этой спокойной классической космогонии была пробита еще в XVIII в. В 1744 г. швейцарский астроном Ж.Шезо, известный открытием «пятихвостой» кометы, высказал сомнение в пространственной бесконечности Вселенной. В ту пору о существовании звездных систем и не подозревали, а потому рассуждения Шезо касались только звезд.

Если предположить, рассуждал Шезо, что в бесконечной Вселенной существует бесчисленное множество звезд и они распределены в пространстве равномерно, то тогда по любому направлению взгляд земного наблюдателя непременно натыкался на какую-нибудь звезду. Легко подсчитать, что небосвод, сплошь непрерывно усеянный звездами, имел бы такую поверхностную яркость, что даже Солнце на его фоне выглядело бы черным пятном! Независимо от Шезо в 1826 г. к таким же выводам пришел немецкий астроном Г.Ольберс. Это парадоксальное утверждение получило в астрономии наименование фотометрического парадокса Шезо-Ольберса. Таков был первый космологический парадокс, поставивший под сомнение бесконечность Вселенной .

Избавиться от него пытались по-разному. Можно допустить, например, что звезды распределены в пространстве неравномерно. Но тогда в некоторых направлениях на звездном небе было бы видно мало звезд, а в других, если звезд бесчисленное множество, их совокупная яркость создавал бы бесконечно яркие пятна, чего, как известно, нет. Когда открыли, что межзвездное пространство не пусто, а заполнено газово-пылевыми облаками, некоторые ученые стали считать, что такие облака, поглощая свет, избавляют нас от фотометрического парадокса. Однако в 1938 г. академик В.Г.Фесенков доказал, что поглотив свет звезд, газово-пулевые туманности вновь переизлучают поглощенную ими энергию, а это не избавляет нас от фотометрического парадокса. Таким образом, вопрос на многие годы оставался открытым.

Гравитационный парадокс

В конце XIX в. немецкий астроном Х.Зелигер обратил внимание и на другой парадокс, неизбежно вытекающий из представления о бесконечности Вселенной. Нетрудно подсчитать, если опираться на Закон всемирного тяготения Ньютона, что в бесконечной Вселенной с равномерно распределенными в ней небесными телами энергия тяготения (гравитационный потенциал) со стороны всех тел Вселенной на данное тело оказывается бесконечно большой. Результат зависит от способа вычисления, причем в этом случае относительные скорости небесных тел могли бы быть бесконечно большими .

Одно время казалось, что выход из затруднения найден. Если звезды образуют звездные системы, те – галактики, галактики, в свою очередь, сверхгалактики, и так до бесконечности, то в такой модели Вселенной, предложенной Ламбертом и Шарлье, мироздание будет состоять из иерархии материальных систем разных масштабов. Можно показать, что в такой «иерархической» Вселенной, несмотря на ее беспредельность, гравитационный парадокс, так же как и фотометрический, будет отсутствовать.

Однако наблюдения показали, что, по крайней мере, в пределах доступной нам части мироздания Вселенная не соответствует схеме Ламберта-Шарлье и, таким образом, гравитационный парадокс разрешен не был.

Термодинамический парадокс

В середине XIX в. был открыт великий закон природы – Закон сохранения энергии: при всех своих превращениях из одного вида в другой энергия не исчезает и не возникает из ничего. Общее количество энергии остается постоянным. Этот закон, множество раз проверенный опытом, практикой, и ныне считается основным законом природы.

Термодинамика – раздел физики, изучающий природу тепловых процессов и различные превращения тепловой энергии. То, что тепловая энергия, как и другие виды энергии, не исчезает при своих превращениях и не возникает из ничего, есть частное выражение Первого закона («Первого начала») термодинамики. Но в термодинамике существует Второй закон, говорящий не о количестве энергии, а об ее качестве.

Второй закон термодинамики состоит в том, что при всех превращениях различные виды энергии, в конечном счете, переходят в тепло, которое, будучи предоставлено само себе, рассеивается в мировом пространстве. Тепло может переходить только от более нагретого тела к менее нагретому телу. И когда все температуры уравняются, все процессы остановятся и наступит всеобщая смерть. Ее так и назвали – «Тепловая смерть».

В ходе рассуждений о «Тепловой смерти» немецкий физик Рудольф Клаузиус, сформулировавший проблему в 1850 г., ввел некоторую математическую величину, названную им энтропией. В буквальном переводе с греческого «энтропия» означает «обращение внутрь», то есть замыкание в себе, не использование. По существу же энтропия есть мера беспорядка в какой-либо системе тел. Чем больше беспорядок, тем больше и энтропия. По утверждению Клаузиуса, энтропия всюду в мире, в конечном счете, только возрастает. Мир неуклонно стремится к полному беспорядку, его энтропия стремится к максимуму.

«Чем больше Вселенная приближается к этому предельному состоянию, в котором энтропия достигнет своего максимума, тем меньше поводов к дальнейшим изменениям, – писал Клаузиус. – А если бы состояние было, наконец, достигнуто, то прекратились бы все изменения, и Вселенная застыла бы среди вечного покоя» .

Ошеломляющее впечатление, произведенное Вторым законом термодинамики на естествоиспытателей, было особенно сильным еще и потому, что вокруг себя в окружающей нас природе они не видели фактов, его опровергающих. Наоборот, казалось, все подтверждало мрачные прогнозы Клаузиуса.

Ни один материалист, твердо знающий, что Вселенная не может иметь конца, не мог согласиться с подобной точкой зрения. На опровержение Второго закона термодинамики были брошены силы всех материалистически мыслящих крупных ученых. Шведский ученый С.Аррениус писал, что «…если бы Второй закон имел универсальный характер, ведущий к тепловому вырождению всей Вселенной, то эта «смерть тепла» за бесконечно долгое время существования мира давно бы уже наступила, чего, однако, не случилось. Или нужно допустить, что мир существует не бесконечно долго и что он имел свое начало, это, однако, противоречит первой части положения Клаузиуса, устанавливающей, что энергия мира постоянна, ибо тогда пришлось бы допустить, что вся энергия возникла в момент творения. Но это для нас совершенно непонятно, и мы должны поискать случая, для которого формула энтропии Клаузиуса не приложима».

Мрачная гипотеза хотя и подвергла сомнению всеобщность и строгую обязательность «Второго начала», но она не смогла удовлетворить оптимистически мыслящих ученых. Поэтому поиски были продолжены, но они были направлены не на пересмотр исходных положений, приведших к космологическим «парадоксам», а на изыскание таких построений, которые бы, не затрагивая исходных моментов, дали бы все же вариант выхода из создавшегося тупика.

Возникла альтернатива: либо отказаться от одного из начал термодинамики, либо в той или иной форме признать возможность парадокса. От начал термодинамики не стали отказываться, ибо они представляют законы, регулирующие процессы, которые протекают в материальном мире.

Парадокс же, связанный с утверждениями о далеком прошлом, не представляет «прямой угрозы» известным тогда законам науки, и его разрешение можно было отодвинуть на неопределенное будущее.

В 1895 г. немецкий физик Л.Больцман предложил вероятностную трактовку «Второго начала». Больцман не сомневался, что Вселенная бесконечна в пространстве и во времени. Он полагал, что, в основном, она почти всегда и пребывает в состоянии «Тепловой смерти». Однако иногда в некоторых ее районах возникают крайне маловероятные отклонения (флуктуации) от обычного состояния Вселенной. К одной из них принадлежит Земля с ее населением и весь видимый нами космос. На Земле, а может быть и где-то еще в космосе, создались условия, благоприятные для возникновения и развития жизни вплоть до стадии «мыслящих существ». Но это лишь случайное и крайне маловероятное отклонение от нормы. В целом же, по Больцману, Вселенная это безбрежный мертвый океан с некоторым количеством островков жизни.

Уже в 20-м столетии последователи теории относительности Эйнштейна нашли иное объяснение вечности Вселенной. Поскольку Вселенная расширяется, чему свидетельством является «Красное смещение» спектров отдаленных галактик, то мы имеем дело с незамкнутыми процессами, поэтому, пока Вселенная расширяется, то «Тепловой смерти» не будет. Правда, затем она начнет сжиматься, но тогда она сожмется в безразмерную сингулярную точку, в которой сосредоточится вся масса Вселенной, и все процессы остановятся. Это, конечно, не та «Тепловая смерть», которую предсказал Р.Клаузиус, но некоторый ее эквивалент, который нас не должен особенно волновать, поскольку нас тоже к этому времени, наверное, не будет . Но такое объяснение тоже мало кого удовлетворило.

В середине 19-го столетия среди естествоиспытателей состоялась крупная дискуссия о том, что должно являться мерой движения – количество движения L = mv , т.е. произведение массы движущегося тела на скорость в первой степени, или энергия W = mv 2 /2, в формульное выражение которой скорость входит во второй степени.

Разбираясь с мерами движения, Ф.Энгельс в своей известной работе «Диалектика природы»

Энгельс показал, что у всякого движения есть две составляющие – не уничтожаемая и уничтожаемая. Не уничтожаемая часть способна воспроизводиться в явном движении. А уничтожаемая, это та часть, которая переходит в тепло и уже воспроизвестись в явном движении не может. Это и есть «потери», но потери не абсолютные, поскольку движение вообще не уничтожается, а потери лишь с точки зрения поставленной цели.

Сегодня этот переход можно оценить как переход части движения с макроуровня на микроуровень, внутрь движущихся тел. Поэтому, когда тела обмениваются энергией, это значит, что они обмениваются той частью энергии, которая способна перейти из формы явного движения в форму тепловую. Эта вторая часть в большинстве случаев оказывается необратимой, тогда это потери.

Однако здесь нашлось некоторое исключение из всех процессов, связанное с формированием эфирных (газовых) вихрей, в которых потенциальная энергия окружающей вихрь газовой среды способна самопроизвольно перейти в форму кинетической энергии вращения вихря, а затем в процессе диффузии вихря самопроизвольно же возвратиться обратно в тепловую форму энергии окружающей среды.

В свое время советский ученый П.К.Ощепков, открывший в печати дискуссию по холодильникам, показал, что отношение к коэффициенту полезного действия, сложившееся в мировой науке, не корректно. Это отношение о невозможности получения кпд больше единицы в любой системе нужно пересмотреть, исходя из следующих соображений .

1. Энергию, т.е. движение материи в пространстве и времени нельзя ни создать, ни уничтожить, ее можно преобразовать только из одной формы в другую.

2. Коэффициентом полезного действия нужно обозначить отношение величины энергии, полезной для данного конкретного использования, ко всей затраченной на это энергии.

3. Общее количество энергии, затраченной на любой процесс с учетом неиспользуемой части энергии, воспринимаемой как потери, на входе любой системы и на ее выходе всегда одно и то же.

4. С этой точки зрения кпд любого холодильника, если учитывать отдаваемое им во вне тепло, всегда больше единицы, поскольку он отдает в виде тепла не только ту энергию, которую он потребляет из сети, но и ту энергию, которую он принудительно отбирает у морозильной камеры. Если же в качестве полезного тепла рассматривать тепло самой холодильной камеры, то кпд всегд будет иметь отрицательное значение, поскольку в морозильной камере тепло не выделяется, а отбирается.

5. Поэтому все термодинамические процессы надо рассматривать не только с точки зрения кпд, которое пора уточнить, но и с точки зрения рассеивания или концентрации энергии в пространстве.

В настоящее время во всем мире создано множество устройств, у которых кпд больше единицы, но это означает, что они каким-то образом забирают энергию из некоторого резервуара, который обязан существовать, поскольку на самом деле дополнительную энергию создать нельзя, ее можно только откуда-то взять. Образование эфирных вихрей – элементарных частиц вещества и затем их распад и обеспечивает постоянство количества движения, а следовательно, и энергии во всей вселенной: при образовании вихрей часть энергии окружающего эфира переходит в энергию вращении тела вихрей, а при их распаде возвращается обратно в свободный эфир. Таким образом, здесь, как и в любых процессах макромира происходит переход энергии из одного иерархического уровня организации материи в другой, а затем возвращается обратно. Отличие с большинством процессов макромира заключается в том, что в них энергия, переходя из макроуровня – движения макротел, переходит в энергию микроуровня – тепловое движение молекул и обратно не возвращается, но и здесь при формировании газовых вихрей, например, воздушных, происходит преобразование тепловой энергии среды – потенциальной энергии давления атмосферы в кинетическую энергия вращения вихрей, а затем, после распада вихрей (смерчей, циклонов) происходит возврат их кинетической энергии вращения в тепловую энергию атмосферы. Поэтому П.К.Ощепков был прав, утверждая, что подобные процессы надо рассматривать с точки зрения рассеивания и концентрации энергии.

1.4 Современное состояние космологии и космогонии

Возникновение современной космологии связано с созданием релятивистской теории тяготения А.Эйнштейна в 1913–1917гг. . На первом этапе развития релятивистской космологии главное внимание уделялось геометрии Вселенной – кривизне пространства-времени и замкнутости пространства. На втором этапе работами А.Фридмана было показано, что искривленное пространство не может быть стационарным, что оно должно расширяться или сжиматься, что было признано за истину после открытия в 1929 г. Э.Хабблом «Красного смещения» спектров далеких галактик. Третий этап начинается моделями «горячей» Вселенной (2-я половина 40-х годов, Г.Гамов) . Основное внимание теперь переносится на физику Вселенной – состояние вещества и физические процессы, идущие на разных стадиях расширения Вселенной, включая наиболее ранние стадии, когда состояние было необычным.

В современной космогонии рассматриваются различные модели происхождения и эволюции планет, звезд и галактик. Здесь выдвигаются различные гипотезы, основными из которых являются концепции концентрации первоначально диффузных газа и пыли, о происхождении которых не говорится ничего, а также концепция распада находящегося в некоторых областях пространства «сверхплотного» вещества, которое и служит материалом для образования галактик и звезд, о происхождении этого вещества также не говорится ничего. Например, существует несколько гипотез о причинах испускания газа ядрами галактик (см., например, ). Суть их сводится в основном к тому, что в ядрах галактик имеется большое число звезд или большая масса, распад которой и ведет к истечению газа и излучениям. Существует также предположение о том, что в центре ядра имеется так называемая черная дыра, однако это предположение уже никак не вяжется с фактом истечения газа и может в лучшем случае оправдать наличие электромагнитного излучения.

Изложенные гипотезы представляются весьма искусственными, поскольку они подразумевают некоторые необратимые процессы. Кроме того, наличие в ядрах галактик сверхплотных образований, скоплений звезд или черной дыры, в свою очередь, требует объяснения причин их нахождения или появления в этих ядрах.

В современной космологии принято несколько типовых объяснений наблюдаемых явлений. К ним относятся:

– «Красное смещение» спектров далеких галактик, которое объясняется только как результат доплеровского эффекта разбегания галактик и расширения Вселенной; другие возможные объяснения игнорируются;

– взрывы галактик или их ядер как причина появления широких ярких полос спектров;

– торможение в магнитном поле электронов как причина нетеплового излучения, а также некоторые другие.

По мнению современных космологов, все три упомянутых выше парадокса – фотометрический, гравитационный и термодинамический разрешаются, если применить к космологии теорию относительности Эйнштейна, в которой уделено внимание кривизне пространства-времени, благодаря чему Вселенная замкнута сама на себя, а также ее не стационарности, открытой советским физиком Фридманом в 20-е годы прошлого столетия. Работы Фридмана получили признание после того, как в 1929 г. американский астроном Хаббл открыл закон «Красного смещения» спектров далеких галактик: оказалось, что спектры галактик смещены в сторону красной части, причем тем больше, чем дальше от нас находятся эти галактики. Отсюда был сделан вывод о расширении Вселенной в результате так называемого «Большого взрыва».

Смысл Большого взрыва следующий. Когда-то Вселенная была сосредоточена в одной безразмерной точке, названной сингулярной, и имела бесконечно большую плотность. Но потом она взорвалась, и с тех пор все еще разлетается во все стороны, что экспериментально и подтверждает «Красное смещение» спектров. Большой взрыв – акт рождения Вселенной произошел примерно 15-20 млрд. лет тому назад. Пока что процесс идет в одну сторону. Возможно, что через некоторое время Вселенная начнет сжиматься и снова соберется в сингулярную, т. е. безразмерную точку, а потом снова взорвется. Тогда это будет «пульсирующая» Вселенная. Но пока это неясно.

В современной космологической литературе много внимания уделяется процессам, происшедшим во Вселенной в первые моменты после Взрыва – через короткое время после Взрыва – через 1 с, через 1 мс и даже через 1 мкс. Но состояние Вселенной до Взрыва, скажем, за 1 с до Взрыва, не рассматривается, так как считается, что это бессмысленно: самой категории времени тогда не существовало, поскольку никаких процессов не было вообще. Отсчет времени исчисляется только с момента Большого Взрыв. Теоретики считают, что идея расширяющейся Вселенной позволила разрешить все упомянутые парадоксы, впрочем, для разрешения термодинамического парадокса этой идеи оказалось недостаточно. Поэтому привлекается дополнительное объяснение, в соответствии с которым любая сколь угодно большая часть Вселенной не является замкнутой, и потому вывод о неизбежности «Тепловой смерти» неверен. Правда, такое рассуждение противоречит идее о замкнутости Вселенной, вытекающей из теории относительности, но это не так важно, как полагают все те же теоретики. Зато остальные два парадокса разрешаются вполне успешно.

В целом же вся Вселенная однородна и изотропна. Это базируется на двух постулатах :

Постулат 1. Наилучшим описанием гравитационного поля являются уравнения Эйнштейна, откуда и вытекает кривизна пространства-времени. (Этим постулируется факт, что лучше Эйнштейна уже никто и никогда ничего придумать не сможет).

Постулат 2. Во Вселенной нет каких-либо выделенных точек (однородность Вселенной) и выделенных направлений (Здесь тоже все ясно: никто не интересуется, существуют ли такие выделенные направления; раз в соответствии с постулатом их нет, значит, и искать не надо).

Однако есть еще и третий постулат «горячей» Вселенной, в соответствии с которым при очень малых значениях интервала времени от «начала» Вселенной не могли существовать не только молекулы и атомы, но и атомные ядра, существовала лишь смесь разных элементарных частиц. При этом при t = 0 плотность Вселенной была бесконечно велика, и вся она была сосредоточена в безразмерной «сингулярной» точке пространства, а через 0,01 секунду после «Большого взрыва» плотность упала до 10 11 г/см 3 . Обсуждаются модели открытой Вселенной и замкнутой Вселенной. В первой модели расширение Вселенной может происходить бесконечно, во второй – расширение может смениться сжатием. Ни о причинах «Большого взрыва», ни о том, что было до этого взрыва, современная космология не говорит ничего.

Если к этому добавить, что уравнения Эйнштейна при равенстве нулю космологического члена λ приобретают простой вид, то это, как раз, и свидетельствует о правильности и красоте теории Эйнштейна.

Космологическая постоянная λ введена Эйнштейном в 1917 г. в свои уравнения, чтобы эти уравнения могли иметь решение, описывающее стационарную Вселенную, и удовлетворяли требованию относительности инерции. При λ 0 – отталкивание, возрастающее с увеличением расстояния, а не убывающее! Физический смысл введения космологической постоянной заключается в допущении существования особых космических сил, природа которых неизвестна, но это и неважно.

Поскольку требование стационарности Вселенной отпало в связи с открытием разбегания галактик, то Эйнштейн в 1931 г. отказался от космологической постоянной, которая до сих пор считается приближенно равной нулю, хотя допускается и другая возможность: космологическая постоянная крайне мала, но все же не равна нулю исоставляет λ ≈ 10 –55 см –2 .

В соответствии с представлениями Общей теории относительности полная масса Вселенной конечна и определяется выражением :

R √ 32 π 2

М = 2ρ π 2 R 3 = 4π 2 - = --- (1.2).

χ χ 3/2 ρ

Здесь R – радиус четырехмерного пространства замкнутой Вселенной. При λ ≈ 10 –55 см –2 R = 3·10 27 см.

Эйнштейн отмечает , что положительная кривизна прост-ранства, обусловленная находящейся в нем материей, получается и в том случае, если λ = 0, и что постоянная λ нужна для того, чтобы обеспечить квазистатическое распределение материи, соответствующее фактическим скоростям перемещения звезд.

На этой основе в современной космологии рассматриваются главным образом две модели Вселенной. В одной их них кривизна пространства отрицательна или в пределе равна нулю. Пространство бесконечно, все расстояния со временем неогра-ниченно возрастают. Это так называемая открытая модель. В другой – замкнутой модели кривизна пространства положите-льна, пространство конечно, но столь же безгранично, что и в открытой модели. В этой модели расширение со временем смени-тся сжатием. Начальные стадии для обеих моделей одинаковы – должно существовать особое начальное состояние с бесконечной плотностью масс и бесконечной кривизной пространства и взрывное, замедляющееся со временем, расширение.

Существует еще и третий вариант – вариант «горячей Вселенной», предполагающий высокую начальную температуру Вселенной, что также является постулатом. Из этого постулата вытекает, что при очень малых значениях начального времени не могли существовать не только молекулы или атомы, но даже и атомные ядра: существовала лишь некоторая смесь разных элементарных частиц, включая фотоны и нейтрино.

Если в самый «начальный момент, т.е. при t = 0 плотность ρ = ∞, то уже при t = 0,01 с. плотность снижается до значения ρ = 10 11 г/см 3 . В статье «Космология» Наан пишет, что «…незнание того, что происходило при плотностях, намного превышающих ядерную (за первые 10 –4 с расширения), не мешает делать более или менее достоверные суждения о более поздних состояниях, начиная с t = 0,01 с».

Основными наблюдательными фактами, подтверждающими не стационарность Вселенной и то, что она горячая, считаются космологическое «Красное смещение», открытое Хабблом в 1929 г., и открытое в 1965 г. реликтовое радиоизлучение. И только кривизна пространства непосредственно не поддается измере-нию, но и она определена косвенно. При этом средняя плотность светящегося вещества оказалась равной 10 –31 – 10 –29 г/см 3 . Но так как критическая средняя плотность составляет 6·10 –30 г/см 3 , то нельзя точно сказать, какова Вселенная – открытая, т. е. расширя-ющаяся безгранично, или замкнутая, т. е. она начнет через некоторое время сжиматься. Но все, что касается прошлого, ясно.

В процессе проработки современной космологии возникли некоторые теоретические трудности, например, отсутствие теории для изучения состояния вещества со сверхвысокой плотностью, нахождение математики для изучения состояния вещества с бесконечной плотностью, потребовалось обобщение понятия времени для подтверждения бессмысленности постановки вопроса о том, что же все-таки было до t = 0, здесь делаются лишь первые шаги. Недостаточно разработана тополо-гия пространства-времени, не совсем точно определен возраст Вселенной, не объяснены зарядовая симметрия Вселенной, преобладание вещества над антивеществом, нет убедительной теории возникновения звезд и галактик и т. д. Но это все никак не сказывается на общей уверенности в том, что основные перечисленные выше фундаментальные моменты решены правильно, и космология в целом находится на верном пути.

Первая брешь в этой спокойной классической космологии была пробита еще в XVIII в. В 1744 г. астроном Р. Шезо, известный открытием необычной «пятихвостой» кометы, высказал сомнение в пространственной бесконечности Вселенной. В ту пору о существовании звездных систем и не подозревали, поэтому рассуждения Шезо касались только звезд.

Если предположить, утверждал Шезо, что в бесконечной Вселенной существует бесчисленное множество звезд и они распределены в пространстве равномерно, то тогда по любому направлению взгляд земного наблюдателя непременно натыкался бы на какую-нибудь звезду. Легко подсчитать, что небосвод, сплошь усеянный звездами, имел бы такую поверхностную яркость, что даже Солнце на его Фоне казалось бы черным пятном. Независимо от Шезо в 1823 г. к таким же выводам пришел известный немецкий астроном Ф. Ольберс. Это парадоксальное утверждение получило в астрономии наименование фотометрического парадокса Шезо-Ольберса. Таков был первый космологический парадокс, поставивший под сомнение бесконечность Вселенной.

Устранить этот парадокс ученые пытались различными путями. Можно было допустить, например, что звезды распределены в пространстве неравномерно. Но тогда в некоторых направлениях на звездном небе было бы видно мало звезд, а в других, если звезд бесчисленное множество, их совокупная яркость создавала бы бесконечно яркие пятна, чего, как известно. нет.

Когда открыли, что межзвездное пространство не пусто, а заполнено разреженными газово-пылевыми облаками, некоторые ученые стали считать, что такие облака, поглощая свет звезд, делают из невидимыми для нас. Однако в 1938 г. академик В.Г. Фесенков доказал, что, поглотив свет звезд, газо-во-пылевые туманности вновь переизлучают поглощенную ими энергию, а это не избавляет нас от фотометрического парадокса.

В конце XIX в. немецкий астроном К. Зеелигер обратил внимание и на другой парадокс, неизбежно вытекающий из представлений о бесконечности Вселенной. Он получил название гравитационного парадокса. Нетрудно подсчитать, что в бесконечной Вселенной с равномерно распределенными в ней телами сила тяготения со стороны всех тел Вселенной па данное чело оказывается бесконечно большой или неопределенной. Результат зависит от способа вычисления, причем относительные скорости небесных тел могли быть бесконечно большими. Так как ничего похожего в космосе не наблюдается, Зеелигер сделал вывод, что количество небесных тел ограничено, а значит, Вселенная не бесконечна.

Эти космологические парадоксы оставались неразрешенными до двадцатых годов нашего столетия, когда на смену классической космологии пришла теория конечной и расширяющейся Вселенной.

Мы уже говорили о началах термодинамики и некоторых выводах из них. Мир полон энергии, которая подчиняется важнейшему закону природы - закону сохранения энергии. При всех своих превращениях из одного вида в другой энергия не исчезает и не возникает из ничего. Общее количество энергии остается постоянным. Казалось бы, из этого закона неизбежно вытекает вечный круговорот материи во Вселенной. В самом деле, если в Природе при всех изменениях материи она не исчезает и не возникает из ничего, а лишь переходит из одной формы существования в другую, то Вселенная вечна, и материя, ее составляющая, пребывает в вечном круговороте. Таким образом, погасшие звезды снова превращаются в источник света и тепла. Никто, конечно, не знал как это происходит, но убеждение в том, что Вселенная в целом всегда одна и та же, было в прошлом веке почти всеобщим.

Тем неожиданнее прозвучал вывод из второго закона термодинамики, открытого в прошлом веке англичанином У. Кельвином и немецким физиком Р. Клаузиусом. При всех превращениях различные виды энергии в конечном счете переходят в тепло, которое, будучи предоставлено себе, стремится к состоянию термодинамического равновесия, то есть рассеивается в пространстве. Так как такой процесс рассеяния тепла необратим, то рано или поздно все звезды погаснут, псе активные процессы в Природе прекратятся и Вселенная превратится в мрачное замерзшее кладбище. Наступит «тепловая смерть Вселенной».

Ошеломляющее впечатление, произведенное на естествоиспытателей прошлого века вторым началом термодинамики, было особенно сильно еще и потому, что вокруг себя, в окружающей нас Природе они не видели фактов, его опровергающих. Наоборот, все, казалось, подтверждало мрачные прогнозы Клаузиуса.

Конечно, есть в Природе и антиэнтропийные процессы, при которых беспорядок, а значит, и энтропия уменьшаются. Таковы процессы, происходящие в органическом мире, в человеческой деятельности. Но при более глубоком рассмотрении ситуации всегда оказывается, что уменьшение беспорядка в одном месте неизбежно сопровождается его увеличением в другом. Более того, возникший по вине человека беспорядок значительно превышает тот порядок, который он внес в Природу, так что в конечном счете энтропия и тут продолжает расти. Встать на позицию Клаузнуса - это значит признать, что Вселенная имела когда-то начало и неизбежно будет иметь конец. Действительно, если бы в прошлом Вселенная существовала вечно, то в ней давно наступило бы состояние тепловой смерти, а так как этого нет, то, по убеждению Клаузиуса и многих других его современников, Вселенная была сотворена сравнительно недавно. А в будущем, если не случится какое-нибудь чудо. Вселенную ждет тепловая смерть.

На опровержение второго начала термодинамики были брошены силы всех материалистически мыслящих ученых. Так, в 1895 г. Людвиг Больцман предложил свою вероятностную трактовку второго начала. По его гипотезе, возрастание энтропии происходит потому, что состояние беспорядка всегда более вероятно, чем состояние порядка. Но это не означает, что процессы противоположного характера, то есть самопроизвольные с уменьшением энтропии, абсолютно невозможны. Они в принципе возможны, хотя и крайне маловероятны.

Всюду мы наблюдаем, как тепло от более горячего тела переходит к более холодному. Однако в принципе возможно и другое: кусок льда, брошенный в печь, увеличит ее жар. Не исключено и такое событие, что все молекулы воздуха в нашей комнате соберутся вдруг в одном ее углу, а вы погибнете от удушья в другом. Наконец, возможно, что обезьяна, посаженная за пишущую машинку, случайно выстучит пальцем сонет Шекспира. Все эти события возможны, но вероятность их близка к нулю. Такова же, по Больцману, вероятность существования нас с вами.

Больцман не сомневался, что Вселенная бесконечна в пространстве и времени. В основном и почти всегда она пребывает в состоянии тепловой смерти. Однако иногда в некоторых ее районах возникают крайне маловероятные отклонения (флуктуации) от обычного состояния Вселенной. К одной из них принадлежит Земля и весь видимый нами космос. В целом же Вселенная - безжизненный мертвый океан с некоторым количеством островков жизни.

Гипотеза Больцмана хотя и подвергла сомнению всеобщность и строгую обязательность второго начала, не смогла удовлетворить оптимистически мыслящих ученых. К тому же и расчеты показали, что вероятность возникновения такой гигантской флуктуации в пространстве практически равна нулю.

Были и другие попытки объяснить этот термодинамический парадокс, но они так же не увенчались успехом.

Три космологических парадокса: фотометрический, гравитационный и термодинамический - заставили ученых серьезно усомниться в бесконечности и вечности Вселенной. Именно - они заставили А. Эйнштейна в 1917 г. выступить с гипотезой о конечной, но безграничной Вселенной.

Предположим, что вещество, составляющее планеты, звезды и звездные системы, равномерно рассеяно по всему мировому пространству. Тем самым мы допускаем, что Вселенная всюду однородна и к тому же изотропна, то есть во всех направлениях имеет одинаковые свойства. Будем считать, что средняя плотность вещества во Вселенной выше так называемой критической плотности. Если все эти требования соблюдены, мировое пространство, как это доказал Эйнштейн, замкнуто и представляет собой четырехмерную сферу, для которой верна не привычная школьная геометрия Евклида, а геометрия Римана.