Биографии Характеристики Анализ

Лекции по микробиологии. Впервые увидел бактерии

№ 60 Классы иммуноглобулинов, их характеристика.

Иммуноглобулины по структуре, антигенным и иммунобио­логическим свойствам разделяются на пять классов: IgM, IgG, IgA, IgE, IgD.

Иммуноглобулин класса G . Изотип G состав­ляет основную массу Ig сыворотки крови. На его долю приходится 70-80 % всех сывороточ­ных Ig, при этом 50 % содержится в тканевой жидкости. Среднее содержание IgG в сыворот­ке крови здорового взрослого человека 12 г/л. Период полураспада IgG - 21 день.

IgG - мономер, имеет 2 антигенсвязывающих центра (может одновременно свя­зать 2 молекулы антигена, следовательно, его валентность равна 2), молекулярную массу около 160 кДа и константу седиментации 7S. Различают подтипы Gl, G2, G3 и G4. Синтезируется зрелыми В-лимфоцитами и плазматическими клетками. Хорошо опре­деляется в сыворотке крови на пике первич­ного и при вторичном иммунном ответе.

Обладает высокой аффинностью. IgGl и IgG3 связывают комплемент, причем G3 ак­тивнее, чем Gl. IgG4, подобно IgE, обладает цитофильностью (тропностью, или сродс­твом, к тучным клеткам и базофилам) и участ­вует в развитии аллергической реакции I типа. В иммунодиагностических реакциях IgG может проявлять себя как не­полное антитело.

Легко проходит через плацентарный барь­ер и обеспечивает гуморальный иммунитет новорожденного в первые 3-4 месяца жизни. Способен также выделяться в секрет слизис­тых, в том числе в молоко путем диффузии.

IgG обеспечивает нейтрализацию, опсонизацию и маркирование антигена, осуществля­ет запуск комплемент-опосредованного цито­лиза и антителозависимой клеточно-опосредованной цитотоксичности.

Иммуноглобулин класса М. Наиболее круп­ная молекула из всех Ig. Это пентамер, кото­рый имеет 10 антигенсвязывающих центров, т. е. его валентность равна 10. Молекулярная масса его около 900 кДа, константа седи­ментации 19S. Различают подтипы Ml и М2. Тяжелые цепи молекулы IgM в отличие от других изотипов построены из 5 доменов. Период полураспада IgM - 5 дней.

На его долю приходится около 5-10 % всех сывороточных Ig. Среднее содержание IgM в сыворотке крови здорового взрослого человека составляет около 1 г/л. Этот уровень у человека достигается уже к 2-4-летнему возрасту.

IgM филогенетически - наиболее древний иммуноглобулин. Синтезируется предшест­венниками и зрелыми В-лимфоцитами. Образуется в начале первичного иммунного ответа, также первым начинает синтезиро­ваться в организме новорожденного - опре­деляется уже на 20-й неделе внутриутробного развития.

Обладает высокой авидностью, наиболее эффективный активатор комплемента по клас­сическому пути. Участвует в формировании сывороточного и секреторного гуморального иммунитета. Являясь полимерной молекулой, содержащей J-цепь, может образовывать сек­реторную форму и выделяться в секрет сли­зистых, в том числе в молоко. Большая часть нормальных антител и изоагглютининов относится к IgM.

Не проходит через плаценту. Обнаружение специфических антител изотипа М в сыво­ротке крови новорожденного указывает на бывшую внутриутробную инфекцию или де­фект плаценты.

IgM обеспечивает нейтрализацию, опсонизацию и маркирование антигена, осуществля­ет запуск комплемент-опосредованного цито­лиза и антителозависимой клеточно-опосредованной цитотоксичности.

Иммуноглобулин класса А. Существует в сы­вороточной и секреторной формах. Около 60 % всех IgA содержится в секретах слизистых.

Сывороточный IgA : На его долю прихо­дится около 10-15% всех сывороточных Ig. В сыворотке крови здорового взрослого чело­века содержится около 2,5 г/л IgA, максимум достигается к 10-летнему возрасту. Период полураспада IgA - 6 дней.

IgA - мономер, имеет 2 антигенсвязывающих центра (т. е. 2-валентный), молекуляр­ную массу около 170 кДа и константу седи­ментации 7S. Различают подтипы А1 и А2. Синтезируется зрелыми В-лимфоцитами и плазматическими клетками. Хорошо опре­деляется в сыворотке крови на пике первич­ного и при вторичном иммунном ответе.

Обладает высокой аффинностью. Может быть неполным антителом. Не связывает комплемент. Не проходит через плацентар­ный барьер.

IgA обеспечивает нейтрализацию, опсони-зацию и маркирование антигена, осуществля­ет запуск антителозависимой клеточно-опос-редованной цитотоксичности.

Секреторный IgA : В отличие от сывороточ­ного, секреторный sIgA существует в полимерной форме в виде ди- или тримера (4- или 6-валентный) и содержит J- и S-пeптиды. Молекулярная масса 350 кДа и выше, константа седиментации 13S и выше.

Синтезируется зрелыми В-лимфоцитами и их по­томками - плазматическими клетками со­ответствующей специализации только в пре­делах слизистых и выделяется в их секреты. Объем продукции может достигать 5 г в сутки. Пул slgA считается самым многочисленным в организме - его количество превышает суммарное содержание IgM и IgG. В сыворотке крови не обнаруживается.

Секреторная форма IgA - основной фак­тор специфического гуморального местного иммунитета слизистых оболочек желудочно-кишечного тракта, мочеполовой системы и респираторного тракта. Благодаря S-цепи он устойчив к действию протеаз. slgA не активи­рует комплемент, но эффективно связывается с антигенами и нейтрализует их. Он препятс­твует адгезии микробов на эпителиальных клетках и генерализации инфекции в преде­лах слизистых.

Иммуноглобулин класса Е. Называют так­же реагином. Содержание в сыворотке крови крайне невысоко - примерно 0,00025 г/л. Обнаружение требует применения специаль­ных высокочувствительных методов диагнос­тики. Молекулярная масса - около 190 кДа, константа седиментации - примерно 8S, мо­номер. На его долю приходится около 0,002 % всех циркулирующих Ig. Этот уровень дости­гается к 10-15 годам жизни.

Синтезируется зрелыми В-лимфоцитами и плазматическими клетками преиму­щественно в лимфоидной ткани бронхолегочного дерева и ЖКТ.

Не связывает комплемент. Не проходит че­рез плацентарный барьер. Обладает выражен­ной цитофильностью - тропностью к тучным клеткам и базофилам. Участвует в развитии гиперчувствительности немедленного типа - реакция I типа.

Иммуноглобулин класса D . Сведений об Ig данного изотипа не так много. Практически полностью содержится в сыворотке крови в концентрации около 0,03 г/л (около 0,2 % от общего числа циркулирующих Ig). IgD имеет молекулярную массу 160 кДа и константу се­диментации 7S, мономер.

Не связывает комплемент. Не проходит че­рез плацентарный барьер. Является рецепто­ром предшественников В-лимфоцитов.

Микробиологией называют науку о микроскопических живых существах, размер которых не превышает 1 мм. Такие организмы можно рассмотреть только с помощью увеличительных приборов. Объектами микробиологии являются представители разных групп живого мира: бактерии, археи, простейшие, микроскопические водоросли, низшие грибы. Все они характеризуются малыми размерами и объединяются общим термином «микроорганизмы».

Микроорганизмы представляют собой самую большую группу живых существ на Земле, и ее члены распространены повсеместно.

Место микробиологии в системе биологических наук определяется спецификой ее объектов, которые, с одной стороны, в большинстве своем представляют собой одну клетку, а с другой - являются полноценным организмом. Как наука об определенном классе объектов и их разнообразии микробиология аналогична таким дисциплинам, как ботаника и зоология. В то же время она относится к физиолого-биохимической ветви биологических дисциплин, так как изучает функциональные возможности микроорганизмов, их взаимодействие с окружающей средой и другими организмами. И наконец, микробиология - это наука, исследующая общие фундаментальные законы существования всего живого, явления на стыке одно- и многоклеточности, развивающая представления об эволюции живых организмов.

Значение микроорганизмов в природных процессах и человеческой деятельности

Роль микробиологии определяется значением микроорганизмов в природных процессах и в человеческой деятельности. Именно они обеспечивают протекание глобального круговорота элементов на нашей планете. Такие его стадии, как фиксация молекулярного азота, денитрификация или минерализация сложных органических веществ, были бы невозможны без участия микроорганизмов. На деятельности микроорганизмов основан целый ряд необходимых человеку производств продуктов питания, различных химических веществ, лекарственных препаратов и т.д. Микроорганизмы используются для очистки окружающей среды от различных природных и антропогенных загрязнений. В то же время многие микроорганизмы являются возбудителями заболеваний человека, животных, растений, а также вызывают порчу продуктов питания и различных промышленных материалов. Представители других научных дисциплин часто используют микроорганизмы в качестве инструментов и модельных систем при проведении экспериментов.

История микробиологии

История микробиологии исчисляется примерно с 1661 г, когда голландский торговец сукном Антони ван Левенгук (1632-1723) впервые описал микроскопические существа, наблюдаемые им в микроскоп собственного изготовления. В своих микроскопах Левенгук использовал одну короткофокусную линзу, закрепленную в металлическую оправу. Перед линзой находилась толстая игла, к кончику которой прикреплялся исследуемый объект. Иглу можно было передвигать относительно линзы с помощью двух фокусирующих винтов. Линзу следовало приложить к глазу и через нее рассматривать объект на кончике иглы. Будучи по складу характера любознательным и наблюдательным человеком, Левенгук изучил различные субстраты естественного и искусственного происхождения, рассмотрел под микроскопом огромное количество объектов и сделал очень точные рисунки. Он исследовал микроструктуру растительных и животных клеток, сперматозоиды и эритроциты, строение сосудов растений и животных, особенности развития мелких насекомых. Достигнутое увеличение (50-300 раз) позволило Левенгуку увидеть микроскопические существа, названные им «зверушками», описать их основные группы, а также сделать вывод о том, что они вездесущи. Свои заметки о представителях мира микробов (простейших, плесневых грибах и дрожжах, различных формах бактерий - палочковидных, сферических, извитых), о характере их движения и устойчивых сочетаниях клеток Левенгук сопровождал тщательными зарисовками и в виде писем направлял в Английское Королевское общество, которое имело целью поддерживать обмен информацией среди научной общественности. После смерти Левенгука изучение микроорганизмов долго сдерживалось несовершенством увеличительных приборов. Только к середине XIX века были созданы модели световых микроскопов, позволившие другим исследователям детально описать основные группы микроорганизмов. Этот период истории микробиологии можно условно назвать описательным.

Физиологический этап развития микробиологии начался приблизительно с середины 19-го века и связан он с работами французского химика-кристаллографа Луи Пастера (1822-1895) и немецкого сельского врача Роберта Коха (1843-1910). Эти ученые положили начало экспериментальной микробиологии и существенно обогатили методологический арсенал этой науки.

При исследовании причин прокисания вина Л.Пастер установил, что сбраживание виноградного сока и образование спирта осуществляют дрожжи, а порчу вина (появление посторонних запахов, вкусов и ослизнение напитка) вызывают другие микробы. Для предохранения вина от порчи Пастер предложил способ тепловой обработки (нагревание до 70 о С) сразу после брожения, чтобы уничтожить посторонние бактерии. Такой прием, применяемый и сегодня для предохранения молока, вина и пива, получил название «пастеризация».

Исследуя другие виды брожения, Пастер показал, что каждое брожение имеет главный конечный продукт и вызывается микроорганизмами определенного типа. Эти исследования привели к открытию неизвестного ранее образа жизни - анаэробного (бескислородного) метаболизма , при котором кислород не только не нужен, но и часто вреден для микроорганизмов. В то же время для значительного числа аэробных микроорганизмов кислород является необходимым условием их существования. Изучая на примере дрожжей возможность переключения с одного типа обмена веществ на другой, Л.Пастер показал, что анаэробный метаболизм энергетически менее выгоден. Микроорганизмы, способные к такому переключению, он назвал факультативными анаэробами .

Пастер окончательно опроверг возможность самозарождения живых существ из неживой материи в обычных условиях. К тому времени вопрос о самозарождении животных и растений из неживого материала был уже решен отрицательно, а относительно микроорганизмов спор продолжался. Опыты итальянского ученого Ладзаро Спалланцани и французского исследователя Франсуа Аппера по длительному прогреванию питательных субстратов в герметичных сосудах для предотвращения развития микробов подвергались критике сторонников теории самозарождения: они считали, что именно укупорка сосудов препятствует проникновению внутрь некой «жизненной силы». Пастером был проведен изящный эксперимент, поставивший точку в этой дискуссии. Прогретый питательный бульон был помещен в открытый стеклянный сосуд, горлышко которого было вытянуто трубкой и S-образно изогнуто. Воздух мог беспрепятственно проникать внутрь колбы, а клетки микроорганизмов оседали в нижнем изгибе горлышка и не попадали в бульон. В этом случае бульон оставался стерильным неопределенно долго. Если же колбу наклоняли так, что жидкость заполняла нижний изгиб, а затем бульон возвращали обратно в сосуд, то внутри быстро начинали развиваться микроорганизмы.

Работы по изучению «болезней» вина позволили ученому предположить, что возбудителями инфекционных заболеваний животных и человека также могут быть микроорганизмы. Пастер выделил возбудителей ряда болезней и изучил их свойства. Опыты с патогенными микроорганизмами показали, что при определенных условиях они становились менее агрессивными и не убивали зараженный организм. Пастер сделал вывод о возможности прививать ослабленных возбудителей здоровым и зараженным людям и животным, чтобы стимулировать защитные силы организма в борьбе с инфекцией. Ученый назвал материал для прививок вакциной, а сам процесс - вакцинацией. Пастер разработал способы прививок против ряда опасных заболеваний животных и человека, в том от бешенства.

Роберт Кох, начав с доказательства бактериальной этиологии сибирской язвы, затем выделил возбудителей многих болезней в чистой культуре. В своих экспериментах он использовал мелких подопытных животных, а также наблюдал под микроскопом развитие бактериальных клеток в кусочках тканей зараженных мышей. Кохом были разработаны способы выращивания бактерий вне организма, различные методы окраски препаратов для микроскопии и предложена схема получения чистых культур микроорганизмов на твердых средах в виде отдельных колоний. Эти простые приемы до сих пор используются микробиологами всего мира. Кох окончательно сформулировал и экспериментально подтвердил постулаты, доказывающие микробное происхождение заболевания:

  1. микроорганизм должен присутствовать в материале больного;
  2. выделенный в чистой культуре, он должен вызывать ту же болезнь у экспериментально зараженного животного;
  3. из этого животного возбудитель должен быть опять выделен в чистую культуру, и две эти чистые культуры должны быть одинаковыми.

Эти правила получили в дальнейшем название «триада Коха». При исследовании возбудителя сибирской язвы ученый наблюдал образование клетками особых плотных телец (спор). Кох пришел к выводу, что устойчивость этих бактерий в окружающей среде связана со способностью к спорообразованию. Именно споры в течение длительного времени способны заражать скот и в тех местах, где ранее находились больные животные или устраивались скотомогильники.

В 1909 г. за труды по иммунитету русский физиолог Илья Ильич Мечников (1845-1916) и немецкий врач-биохимик Пауль Эрлих (1854—1915) получили Нобелевскую премию по физиологии и медицине.

И.И.Мечников разработал фагоцитарную теорию иммунитета, рассматривавшую процесс поглощения лейкоцитами животных чужеродных агентов как защитную реакцию макроорганизма. Инфекционное заболевание представлялось в этом случае как противостояние патогенных микроорганизмов и фагоцитов организма-хозяина, а выздоровление означало «победу» фагоцитов. В дальнейшем, работая в бактериологических лабораториях сначала в Одессе, а потом в Париже, И.И.Мечников продолжал изучение фагоцитоза, а также принимал участие в исследовании возбудителей сифилиса, холеры и других инфекционных заболеваний и разработке ряда вакцин. На склоне лет И.И.Мечников заинтересовался проблемами старения человека и обосновал полезность использования в пище больших количеств кисломолочных продуктов, содержащих «живые» закваски. Он пропагандировал использование суспензии молочнокислых микроорганизмов, утверждая, что такие бактерии и образуемые ими молочнокислые продукты способны подавлять гнилостные микроорганизмы, производящие вредные шлаки в кишечнике человека.

П.Эрлих, занимаясь экспериментальной медициной и биохимией лекарственных соединений, сформулировал гуморальную теорию иммунитета, согласно которой макроорганизм для борьбы с инфекционными агентами производит специальные химические вещества - антитела и антитоксины, нейтрализующие микробные клетки и выделяемые ими агрессивные субстанции. П.Эрлих разработал методы лечения ряда инфекционных заболеваний и участвовал в создании препарата для борьбы с сифилисом (сальварсана). Ученый первым описал феномен приобретения патогенными микроорганизмами устойчивости к лекарственным препаратам.

Русский эпидемиолог Николай Федорович Гамалея (1859-1948) изучал пути передачи и распространения таких серьезных инфекций как бешенство, холера, оспа, туберкулез, сибирская язва и некоторые заболевания животных. Им усовершенствован разработанный Л.Пастером способ профилактических прививок и предложена вакцина против холеры человека. Ученый разработал и внедрил комплекс санитарно-гигиенических и противоэпидемических мероприятий по борьбе с чумой, холерой, оспой, сыпным и возвратным тифами и другими инфекциями. Н.Ф.Гамалея открыл вещества, растворяющие бактериальные клетки (бактериолизины), описал явление бактериофагии (взаимодействия вирусов и бактериальной клетки) и внес существенный вклад в изучение микробных токсинов.

Признание огромной роли микроорганизмов в биологически важных круговоротах элементов на Земле связано с именами русского ученого Сергея Николаевича Виноградского (1856-1953) и голландского исследователя Мартинуса Бейеринка (1851-1931). Эти ученые изучали группы микроорганизмов, способных осуществлять химические превращения основных элементов и участвовать в биологически важных круговоротах на Земле. С.Н.Виноградский работал с микроорганизмами, использующими неорганические соединения серы, азота, железа и открыл уникальный образ жизни, свойственный только прокариотам, при котором для получения энергии используется восстановленное неорганическое соединение, а для биосинтезов - углерод углекислого газа. Ни животные, ни растения не могут существовать таким способом.

С.Н.Виноградский и М.Бейеринк независимо друг от друга показали способность некоторых прокариот использовать атмосферный азот в своем обмене веществ (фиксировать молекулярный азот). Ими были выделены в виде чистых культур свободноживущие и симбиотические микробы-азотфиксаторы и отмечена глобальная роль таких микроорганизмов в цикле азота. Только прокариотические микроорганизмы могут переводить газообразный азот в связанные формы, используя его для синтеза компонентов клетки. После отмирания азотфиксаторов соединения азота становятся доступными для других организмов. Таким образом, азотфиксирующие микроорганизмы замыкают биологический круговорот азота на Земле.

На рубеже XIX-XX веков русский физиолог растений и микробиолог Дмитрий Иосифович Ивановский (1864-1920) открыл вирус табачной мозаики, тем самым обнаружив особую группу биологических объектов, не имеющих клеточного строения. При исследовании инфекционной природы мозаичной болезни табака ученый попытался очистить сок растения от возбудителя, пропуская его через бактериальный фильтр. Однако после этой процедуры сок был способен заражать здоровые растения, т.е. возбудитель оказался гораздо меньше всех известных микроорганизмов. В дальнейшем оказалось, что целый ряд известных заболеваний вызывается подобными возбудителями. Их назвали вирусами. Увидеть вирусы удалось только в электронный микроскоп. Вирусы являются особой группой биологических объектов, не имеющих клеточного строения, изучением которых в настоящее время занимается наука вирусология.

В 1929 г. английским бактериологом и иммунологом Александром Флемингом (1881-1955) был открыт первый антибиотик пенициллин. Ученый интересовался вопросами развития инфекционных болезней и действия на них различных химических препаратов (сальварсана, антисептиков). Во время Первой мировой войны в госпиталях раненые сотнями умирали от заражения крови. Повязки с антисептиками лишь немного облегчали состояние больных. Флеминг поставил опыт, создав модель рваной раны из стекла и заполнив ее питательной средой. В качестве «микробного загрязнения» он использовал навоз. Промывая стеклянную «рану» раствором сильного антисептика и затем заполняя ее чистой средой Флеминг показал, что антисептики не убивают микроорганизмы в неровностях «раны» и не останавливают инфекционный процесс. Осуществляя множество посевов на твердые среды в чашках Петри, ученый проверял антимикробный эффект различных выделений человека (слюны, слизи, слезной жидкости) и открыл лизоцим, убивающий некоторые болезнетворные бактерии. Чашки с посевами сохранялись Флемингом длительное время и многократно просматривались. В тех чашках, куда случайно попали споры грибов и выросли колонии плесени, ученый заметил отсутствие роста бактерий вокруг этих колоний. Специально поставленные эксперименты показали, что вещество, выделяемое плесневым грибом из рода Penicillium губительно для бактерий, но не опасно для подопытных животных. Флеминг назвал это вещество пенициллином. Использование пенициллина в качестве лекарства стало возможным только после выделения его из питательного бульона и получения в химически чистом виде (в 1940 г.), что в дальнейшем привело к разработке целого класса лекарственных препаратов, названных антибиотиками. Начались активные поиски новых продуцентов антимикробных веществ и выделение новых антибиотиков. Так, в 1944 г. американский микробиолог Зельман Ваксман (1888-1973) получил с помощью ветвящихся бактерий рода Streptomyces широко применяемый антибиотик стрептомицин.

Ко второй половине XIX века микробиологами был накоплен огромный материал, свидетельствующий о чрезвычайном разнообразии типов микробного обмена веществ. Изучению многообразия жизненных форм и выявлению их общих черт посвящены работы голландского микробиолога и биохимика Алберта Яна Клюйвера (1888-1956) и его учеников. Под его руководством было проведено сравнительное изучение биохимии далеко отстоящих друг от друга систематических и физиологических групп микроорганизмов, а также анализ данных физиологии и генетики. Эти работы позволили делать вывод об однотипности макромолекул, составляющих все живое, и об универсальности биологической «энергетической валюты» - молекул АТФ. Разработка общей схемы метаболических путей в значительной степени базируется на исследованиях фотосинтеза высших растений и бактерий, проведенных учеником А.Я.Клюйвера Корнелиусом ван Нилем (1897-1985). К. ван Ниль изучил обмен веществ различных фотосинтезирующих прокариот и предложил обобщающее суммарное уравнение фотосинтеза: CO 2 +H 2 A+ һν → (CH 2 O) n +A, где H 2 A - либо вода, либо другое окисляемое вещество. Такое уравнение предполагало, что именно вода, а не углекислый газ, разлагается при фотосинтезе с выделением кислорода. К середине XX века выводы А.Я.Клюйвера и его учеников (в частности, К. ван Ниля) легли в основу принципа биохимического единства жизни.

Развитие отечественной микробиологии представлено различными направлениями и деятельностью многих известных ученых. Целый ряд научных учреждений нашей страны носит имена многих из них. Так, Лев Семенович Ценковский (1822-1877) изучил большое число простейших, микроводорослей, низших грибов и сделал вывод об отсутствии четкой границы между одноклеточными животными и растениями. Он также разработал способ прививки против сибирской язвы с применением «живой вакцины Ценковского» и организовал пастеровскую станцию вакцинации в Харькове. Георгий Норбертович Габричевский (1860-1907) предложил способ лечения дифтерии с помощью сыворотки и участвовал в создании производства бактериальных препаратов в России. Ученик С.Н.Виноградского Василий Леонидович Омелянский (1867-1928) исследовал микроорганизмы, участвующие в превращениях соединений углерода, азота, серы и в процессе анаэробного разложения целлюлозы. Его работы расширили представления о деятельности микроорганизмов почвы. В.Л.Омелянский предложил схемы круговоротов биогенных элементов в природе. Георгий Адамович Надсон (1867-1939) сначала занимался микробной геохимической деятельностью и воздействием различных повреждающих факторов на микробные клетки. В дальнейшем его работы были посвящены изучению наследственности и изменчивости микроорганизмов и получению устойчивых искусственных мутантов низших грибов под действием излучений. Одним из основоположников морской микробиологии является Борис Лаврентьевич Исаченко (1871-1948). Им была высказана гипотеза о биогенном происхождении месторождений серы и кальция. Владимир Николаевич Шапошников (1884-1968) является основателем отечественной технической микробиологии. Его работы по физиологии микроорганизмов посвящены изучению различных видов брожения. Им открыто явление двухфазности ряда микробиологических процессов и разработка способов управления ими. Исследования В.Н.Шапошникова стали основой для организации в СССР микробиологических производств органических кислот и растворителей. Работы Зинаиды Виссарионовны Ермольевой (1898-1974) внесли существенный вклад в физиологию и биохимию микроорганизмов, медицинскую микробиологию, а также способствовали становлению микробиологического производства ряда отечественных антибиотиков. Так, она исследовала возбудители холеры и другие холероподобные вибрионы, их взаимодействие с организмом человека и предложила санитарные нормы хлорирования водопроводной воды в качестве средства профилактики этого опасного заболевания. Ею был создан и применен для профилактики препарат холерного бактериофага, а в дальнейшем - и комплексный препарат против холеры, дифтерии и брюшного тифа. Применение лизоцима в медицинской практике основано на работах З.В.Ермольевой по обнаружению новых растительных источников лизоцима, установлению его химической природы, разработке метода выделения и концентрирования. Получение отечественного штамма продуцента пенициллина и организация промышленного производства препарата пенициллина-крустозина в годы Великой Отечественной войны - это неоценимая заслуга З.В.Ермольевой. Эти исследования явились импульсом для поиска и селекции отечественных продуцентов других антибиотиков (стрептомицина, тетрациклина, левомицетина, экмолина). Работы Николая Александровича Красильникова (1896-1973) посвящены изучению мицелиальных прокариотических микроорганизмов - актиномицетов. Подробное исследование свойств этих микроорганизмов позволило Н.А.Красильникову создать определитель актиномицетов. Ученый был одним из первых исследователей явления антагонизма в мире микробов, что позволило ему выделить актиномицетный антибиотик мицетин. Н.А.Красильников изучал также взаимодействие актиномицетов с другими бактериями и высшими растениями. Его работы по почвенной микробиологии посвящены роли микроорганизмов в почвообразовании, распределению их в почвах и влиянию на плодородие. Ученица В.Н.Шапошникова, Елена Николаевна Кондратьева (1925-1995) возглавляла изучение физиологии и биохимии фотосинтезирующих и хемолитотрофных микроорганизмов. Ею подробно проанализированы особенности метаболизма таких прокариот и выявлены общие закономерности фотосинтеза и углеродного обмена. Под руководством Е.Н.Кондратьевой был открыт новый путь автотрофной фиксации СО 2 у зеленых несерных бактерий, проведено выделение и подробное изучение штаммов фототрофных бактерий нового семейства. В ее лаборатории была создана уникальная коллекция бактерий-фототрофов. Е.Н.Кондратьева была инициатором исследований метаболизма микроорганизмов-метилотрофов, использующих в своем метаболизме одноуглеродные соединения.

В XX веке микробиология полностью сложилась как самостоятельная наука. Дальнейшее ее развитие происходило с учетом открытий, сделанных в других областях биологии (биохимии, генетике, молекулярной биологии и т.д.). В настоящее время многие микробиологические исследования проводятся совместно специалистами разных биологических дисциплин. Многочисленные достижения микробиологии конца XX - начала XXI веков будут кратко изложены в соответствующих разделах учебника.

Основные направления в современной микробиологии.

Уже к концу XIX века микробиология в зависимости от выполняемых задач начинает подразделяться на ряд направлений. Так, исследования основных законов существования микроорганизмов и их разнообразия относят к общей микробиологии, а частная микробиология изучает особенности их разных групп. Задача природоведческой микробиологии - выявление способов жизнедеятельности микроорганизмов в естественных местах обитания и их роли в природных процессах. Особенности болезнетворных микроорганизмов, вызывающих заболевания человека и животных, и их взаимодействие с организмом хозяина изучают медицинская и ветеринарная микробиология, а микробные процессы в земледелии и животноводстве исследует сельскохозяйственная микробиология. Почвенная, морская, космическая и т.д. микробиология - это разделы, посвященные свойствам специфических для этих природных сред микроорганизмам и процессам, с ними связанным. И наконец, промышленная (техническая) микробиология как часть биотехнологии изучает свойства микроорганизмов, используемых для различных производств. В то же время от микробиологии отделяются новые научные дисциплины, занимающиеся изучением определенных более узких групп объектов (вирусология, микология, альгология и др.). В конце XX века усиливается интеграция биологии наук и многие исследования происходят на стыке дисциплин, образуя такие направления, как молекулярная микробиология, генная инженерия и др.

В современной микробиологии можно выделить несколько основных направлений. С развитием и совершенствованием методологического арсенала биологии активизировались фундаментальные микробиологические исследования, посвященные выяснению путей метаболизма и способов их регуляции. Бурно развивается систематика микроорганизмов, ставящая цель создать такую классификацию объектов, которая отражала бы место микроорганизмов в системе всего живого, родственные связи и эволюцию живых существ, т.е. осуществить построение филогенетического древа. Изучение роли микроорганизмов в природных процессах и антропогенных системах (экологическая микробиология) крайне актуально в связи с повышенным интересом к современным экологическим проблемам. Значительное внимание привлекают исследования популяционной микробиологии, занимающейся выяснением природы межклеточных контактов и способов взаимодействия клеток в популяции. Не теряют актуальности те направления микробиологии, которые связаны с применением микроорганизмов в человеческой деятельности.

Дальнейшее развитие микробиологии в XXI веке наряду с накоплением фундаментальных знаний призвано помочь решению ряда глобальных проблем человечества. В результате варварского отношения к природе и повсеместного загрязнения окружающей среды антропогенными отходами возник значительный дисбаланс в круговоротах веществ на нашей планете. Только микроорганизмы, обладая широчайшими метаболическими возможностями, высокой пластичностью обмена веществ и значительной устойчивостью к повреждающим факторам, могут преобразовать стойкие и токсичные загрязнения в безвредные для природы соединения, а в ряде случаев и в пригодные для дальнейшего использования человеком продукты. Тем самым понизится выброс так называемых «парниковых газов» и стабилизируется газовый состав атмосферы Земли. Осуществляя защиту окружающей среды от загрязнений, микроорганизмы одновременно будут способствовать постоянству глобального круговорота элементов. Микроорганизмы, развиваясь на отходах промышленности и сельского хозяйства, могут служить альтернативными источниками топлива (биогаза, биоэтанола и других спиртов, биоводорода и т.д.). Это позволит решить энергетические проблемы человечества, связанные с истощением полезных ископаемых (нефти, угля, природного газа, торфа). Восполнение продовольственных ресурсов (особенно белковых) возможно путем введения в рацион питания дешевой микробной биомассы быстрорастущих штаммов, полученной на отходах пищевой промышленности или на очень простых средах. Сохранению здоровья человеческой популяции будут способствовать не только тщательное изучение свойств патогенных микроорганизмов и выработка методов защиты от них, но и переход на «природные лекарства» (пробиотики), повышающие иммунный статус человеческого организма.

Наука о формах, сочетаниях и размерах клеток микроорганизмов, их дифференциации, а также размножении и развитии. - наука о многообразии микроорганизмов и их классификации по степени родства. В настоящее время в основу систематики микроорганизмов положены молекулярно-биологические методы.- наука об обмене веществ (метаболизме) микроорганизмов, включающая способы потребления питательных веществ, их разложение, синтез веществ, а также способы получения микроорганизмами энергии в результате процессов брожения , анаэробного дыхания , аэробного дыхания и фотосинтеза .

  • Экология микроорганизмов - наука, изучающая влияние факторов внешней среды на микроорганизмы, взаимоотношения микроорганизмов с другими микроорганизмами и роль микроорганизмов в экосистемах.
  • Прикладная микробиология и биотехнология микроорганизмов - наука о практическом применении микроорганизмов, производстве биологически активных веществ (антибиотиков, ферментов, аминокислот, низкомолекулярных регуляторных соединений, органических кислот) и биотоплива (биогазы, спирты) с помощью микроорганизмов, условиях образования и способы регуляции образования данных продуктов.
  • Рекомендуемая литература

    Поль де Крюи. Охотники за микробами. Научно-популярное издание.

    Гучев М.В., Минеева Л.А. Микробиология. Учебник для ВУЗов.

    Нетрусов А.И., Котова И.Б. Общая микробиология. Учебник для ВУЗов.

    Нетрусов А.И., Котова И.Б. Микробиология. Учебник для ВУЗов.

    Практикум по микробиологии. Под ред. А.И. Нетрусова. Учебное пособие для ВУЗов.

    Экология микроорганизмов. Под ред. А.И. Нетрусова. Учебное пособие для ВУЗов.

    Заварзин Г.А. Лекции по природоведческой микробиологии. Научное издание.

    Колотилова Н.Н., Заварзин Г.А. Введение в природоведческую микробиологию. Учебное пособие для ВУЗов.

    Кондратьева Е.Н. Автотрофные прокариоты. Учебное пособие для ВУЗов.

    Егоров Н.С. Основы учения об антибиотиках. Учебник для ВУЗов.

    Промышленная микробиология. Под ред. Н.С. Егорова. Учебное пособие для ВУЗов.

    Классификация живого мира по Виттекеру.

    Plentae(растения)Fundi(грибы) Animalia (животные)

    Protista (одноклеточные)

    Monera (бактерии)

    Определение- Микробиология наука о животных организмах имеющих малые размеры и невидимых невооруженным глазом.

    Микроорганизмы не представляют собой единой систематической группы. К ним относятся одноклеточные и многоклеточные организмы растительного и животного происхождения, а также особая группа прокарестических организмов-бактерий и бактериофаги, вирусы.

    Размеры микроорганизмов.

    Группа микроорганизмов

    Размер микроорганизмов

    Наука изучающая данную группу

    Вирусология

    Бактерии

    Бактериология

    Цианобактерии

    Альгология

    Микроскопические водоросли

    Микроскопические животные

    Протозоология

    Микроскопические грибы

    Микология(Фунгология)

    История микробиологии.

    Человек в своей практической деятельности встречался с микроорганизмами с древнейших времен: хлебопечение; виноделие; пивоварение; инфекционные заболевания.

    Причины инфекционных заболеваний выяснялись начиная с древней Греции.

    Гиппократ IVвек до н.э. (тиазмы в воздухе)

    Фракастора Vвек до н.э. (учение о контагее)

    Микроорганизмы впервые увидел Антонио Ван Левенгук 17век (1632-1723)

    Vivaanimalika– маленькие зверушки.

    В середине 19 века Геккель изучая более внимательно строение бактериальных клеток обнаружил, что оно отличаться от строения клеток растений и животных. Он назвал эту группу прокариоты (клетки не имеющие настоящего ядра), а остальные растения, животные и грибы которые в клетке имеют ядро отошли в группу эукариоты.

    Начинается II период развития микробиологии пастеровский или физиологический.

    Работы Пастера. (1822-1895)

    Пастер поставил развитие микробиологии на новый путь. По воззрениям того времени брожение считалось чисто химическим процессом

      Пастер в своих работах показал, что каждый вид брожения вызывается свими специфическими возбудителями – микроорганизмами.

      Изучая масляно-кислое брожение Пастер установил, что для бактерий вызывающих это брожение воздух вреден и открыл новый тип жизни анаэробиоз.

      Пастер доказал невозможность самозарождения жизни.

      Пастер изучал инфекционные заболевания (сибирскую язву) и предложил метод предохранительных прививок как способ борьбы с инфекциями. Пастер сделал первый шаг и зарождению новой науки – иммунология. В 1888г. В Париже на средства собранные по подписке был построен институт микробиологии.

      Пастеризация.

    Роберт Кох (1843-1910)

      Окончательно доказал, что заразные болезни вызываются болезнетворными бактериями. Указал приемы борьбы с распространением инфекционных заболеваний – ДЕЗИНФЕКЦИЯ.

      Ввел в практику микробиологических исследованный использование твердых патотельных сред для получения чистых культур.

      Открыл возбудителей сибирской язвы (1877г.), туберкулеза (1882г.), холеры(1883г.).

    Русская микробиология.

    Н. Н. Мечников (1845-1916)

    Продолжил работы Пастера по предохранительным прививкам и обнаружил, что в ответ на введения в кровь ослабленного возбудителя болезни в крови появляется большое количество особых иммунных тел –фагоцитов, и т.о. обосновал теорию иммунитета.

    В 1909г. Получил за эту теорию Нобелевскую премию.

    С. Н. Виноградский (1856-1953)

    Следовал серобактерии, железобактерии, нитрифицирующие бактерии. Изучал почвенные бактерии. Открыл явление азотофикации. Открыл процесс хемосинтеза.

    Хемосинтез исп. химических связей внутри молекул, как источник энергии для настроения новых молекул.

    В. Л. Омелонский (1867-1928)

    Написал первый учебник по микробиологии.

    Методы микробиологических исследований.

      Бактериоскопический –это изучение внешней формы микроорганизмов с помощью увеличительных приборов.

      Бактериологический – это метод выращивания бактерий искусственных питательных средах. С помощью этого метода изучаеться форма бактериальных колоний, период роста, и др. характеристики роста бактериальных культур.

      Общебиологические :

      Методы молекулярной биологии,

      Цитохимии

      Генетики

      Биофизики

    Химический состав и строение бактериальной клетки.

      Поверхностные клеточные структуры и внеклеточные образования: 1- клеточная стенка; 2-капсула; 3-слизистые выделения; 4-чехол; 5-жгутики; 6-ворсинки.

      Цитоплазматические клеточные структуры: 7-ЦМП; 8-нуклеотид; 9-рибосомы; 10-цитоплазма; 11-хроматофоры; 12-хлоросомы; 13-пластинчатые тилакоиды; 16-мезасома; 17-аэросомы (газовые вакуоли) ; 18-ламелярные структуры;

      Запасные вещества: 19-полисахарные гранулы; 20-гранулы поли-β-оксимасляной кислоты; 21-гранулы полифосфата; 22-цианофициновые гранулы; 23-карбоксисомы (полиэдральные тела); 24-вкючения серы; 25-жировые капли; 26-углеводородные гранулы.

    Ультраструктура бактериальной клетки.

    Разные методы исследования позволили выявить различия внутренней и внешней структуры у бактерий.

    Поверхностная структура это:

    • Ворсинки

      Клеточная стенка

    Внутренние структуры:

      Цитоплазматическая мембрана (ЦПМ)

      Нуклеоид

      Рибосомы

      Мезосомы

      Включения

    Функции органеллы.

    Клеточная стенка – обязательная структура для прокариотов за исключением микоплазмы и L-формы. На долю клеточной стенки приходится от 5 до 50% сухого вещества клетки.

    Клеточная стенка имеет поры и пронизана сетью каналов и разрывов.

    Функции

      Поддержание постоянной внешней формы бактерий.

      Механическая защита клетки

      Дают возможности существовать в гипотонических растворах.

    Слизистая капсула (слизистый чехол)

    Капсула и слизистый чехол покрывают клетку снаружи. Капсулой называется слизистое образование покрывающее клеточную стенку, имеющеечетко очерченную поверхность.

    Различают:

      Микрокапсулу (меньше 0,2 мкм)

      Микрокапсулу (больше 0,2 мкм)

    Наличие капсулы зависит от вида микроорганизмов и условий культивирования.

    Различают капсульные колонии:

      S-типа (гладкие, ровные, блестящие)

      R-типа (шероховатые)

    Функции:

      Защищает клетку от механических повреждений

      Защищает от высыхания

      Создает дополнительный осмотический барьер

      Служит препятствием для проникновения вирусом

      Является источником запасных питательных веществ

      Может быть приспособлением к окружающей среде

    Под слизистым чехлом понимают аморфное бесструктурное слизистое вещество окружающее клеточную стенку и легко отделяющееся от неё.

    Иногда ослизнение происходит у нескольких клеток так, что образуется общий чехол (зоология)

    Функции:

    Те же, что у капсулы.

    Ворсинки представляют собой тонкие полые образования белковой природы (длина от 0,3-10 мкм, толщина 10 нм). Ворсинки подобно жгутикам являеться поверхностными придатками бактериальной клетки, но не выполняют локомоторную реакцию.

    Жгутики

    Функция

    Локомоторная

    ЦПМ – обязательный структурный элемент клетки. На долю ЦПМ приходиться 8-15% сухого вещества клетки из них 50-70% - белки 15-30% - липиды. Толщина ЦПМ 70-100Å (10⁻¹⁰).

    Функции:

      Перенос веществ – через мембраны,

      Активный (против градиента концентрации, осуществляется белками – ферментами с затратой энергии)

      Пассивный (по градиенту концентрации)

      Локализуется большинство ферментативных систем клетки

      Имеет специальные участки для прикрепления ДНК прекариотной клетки и именно рост мембраны обеспечивает разделение геномов при делении клетки.

    Нуклеоид . Вопрос о наличии ядра у бактерий в течении десятилетий носил дискуссионный характер.

    При помощи электронной микроскопии ультратонких срезов бактериальных клеток, усовершенствованных цитохимических методах, радиографических и генетических исследований доказано наличие у бактерий нуклеодида – эквивалента ядра в клетке эукариотов.

    Нуклеоид :

      Не имеет мембраны,

      Не содержит хромасом

      Не делиться митозом.

    Один нуклеоид представляет собой макромолекулу ДНК с молекулярным весом 2-3*10⁹, размером 25-30 Å.

    В развернутом состоянии это замкнутая кольцевая структура длинной примерно 1мнм.

    В молекуле ДНК нуклеоида закодирована вся генетическая информация клетки и т.о. она является своеобразной кольцевой хромасомой.

    Количество нуклеоидов в клетке – 1, реже от 1 до 8.

    Рибосомы – это нуклеоидные частицы размером в 200-300Å. Ответственны за синтез белка. Находятся в цитоплазме прокариотов в количестве 5-50 тысяч.

    Хроматофоры – это складки цитоплазматической мембраны в виде капель, которые содержат окислительно-восстановительные ферменты. У фотосинтетиков – ферменты осуществляют синтез веществ за счет энергии солнца, у хемосинтетиков- за счет разрушенных химических связей молекулы.

    Тилокоиды так же содержат набор окислительно-восстановительных ферментов. Они есть и у фотосинтеиков и у хемосинтетиков. Очевидно прообраз митохондрий.

      Пластинчатые

      Трубчатые

    Функции

      Окисление веществ.

    Аэросомы - структуры, которые содержат какой-либо газ.

    Внутрицитоплазмотические включения

    В процессе жизнедеятельности бактериологической клетки в её цитоплазме могут формироваться морфологические образования, выявляемые цитохимическими методами. Эти образования названные включениями по своей химической природе различны и не одинаковы у разных бактерий. В одних случаях включения являются продуктами обмена бактериальной клетки, а в других запасным питательным питательным веществом.

    Химический состав клеток прокариотов.

    В состав любой клетки прокариотов входят:

    Вода

    В количественном отношении самый значительный компонент клеток микроорганизмов, количество её составляет 75-85%. Количество воды зависит от вида микроорганизмов, условий роста, физиологического состояния клетки.

    Вода в клетках бывает в 3-х состояниях:

      Свободном

      Связанном

      Связанном с боиполимерами

    Роль воды. Универсальный растворитель- необходимый для растворения многих химических растворений и осуществления реакций промежуточного метаболизма (гидролиз).

    Минеральные вещества

      Биогены (углерод(50%), водород,кислород,азот(14%),фосфор(1%),сера)

      Макроэлементы (0,01-3% от сухой массы клетки) K, Na, Mg, Ca, Cl, Fe.

      Микроэлементы (0,001-0,01% от сухой массы клетки) Mg, Zn,Mo,B,Cr,Co,Cu, и др.

      Ультрамикроэлементы (<0,001%) вся остальная таблица Менделеева.

    Соотношение отдельных химических элементов может колебаться в значительных пределах, в зависимости от систематического положения микроорганизмов, условий роста и ряда других причин.

    Количество минеральных веществ составляет 2-14% от сухой массы клетки, после биогенов.

    Роль минеральных веществ :

      Являются активаторами и ингибиторами ферментативных систем.

    Биополимеры.

    Основные химические элементы входят в состав биополимеров присущих всем живым организмам:

      Нуклеиновых кислот

    • Углеводов (полисахаридов)

    Характерным только для клеток – прокариот являются биополимер составляющий основу их клеточной стенки (по химическому составу это гликопептид или пептидогликан).

    Нуклиновые кислоты .

    В клетках в среднем содержится 10% РНК и 3-4% ДНК.

    Белки.

    Важнейшее значение в структуре и функции клеток принадлежит белкам, на долю которых приходиться 50-75% от сухой массы клетки.

    Значит долю белков микроорганизмов составляют ферменты играющие существенную роль в проявлении жизнедеятельности прокариот. К биологически активным белкам принадлежат белки участвующие в транспорте питательных веществ а также многие токсины.

    Часть белков составляют белки выполняющие структурную функцию – белки ЦПМ, клеточной стенки и др. органелл клетки.

    Лепиды

    В состав лепитов прокариот входят жирные кислоты, нейтральные жиры, фосфолепиды, гликолепиды, воска, лепиды содержащие изопреновые единицы (каротеноиды, бактопренол).

    Микоплазмы в отличие от всех других прокариот содержат холестерин. Большая часть лепидов входит в состав мембраны клетки и клеточной стенки.

    Углеводы

    Из них состоят многие структурные компоненты клетки. Они используются в качестве доступных источников энергии и углерода. В клетках содержаться как моносахариды, так и полисахариды.

    Морфология бактерий.

    По внешнему виду бактерии делятся на 3 группы:

      Кокковидной формы

      Палочковидной формы

      Извитые (или спиралевидные)

    Шаровидные бактерии – (кокки).

    Могут быть самостоятельными клетками – монококки °₀° или связанными попарно – диплококки или связанными в цепочку – стрептококки или в пакете – сарцины

    или в виде виноградной кисти – стафилококки

    Бактерии шаровидной формы называемые кокками имеют правильную сферическую форму или форму неправильного шара.

    Средний диаметр кокков – 0,5-1,5 мкм, у пневмококков например –

    По признаку расположения клеток по отношению друг к другу кокки делят на:

      Монококки

      Диплококки

      Стрептококки

    • Стафилококки

    Палочковидные бактерии (цилиндрические)

    Различаются по форме величине в длину и в поперечнике, в форме концов клетки а так же взаимному расположению.

    Размеры в поперечнике 0,5-1 мкм, длинна 2-3мкм.

    Большинство палочковидных бактерий имеют форму прямого цилиндра. Некоторые бактерии могут иметь либо прямую либо слегка изогнутую форму.

    Изогнутая форма встречается у вибрионов к которым относится возбудитель холеры.

    У отдельных бактерий встречаются нитевидные и ветвящиеся формы.

    Палочковидные микроорганизмы могут образовывать споры.

    Спорообразующие формы называются бациллы.

    Неспорообразующие называються бактериями.

    Булавовидные.

    Клострициальные.

    В зависимости от взаимного расположения делят:

      Монобациллы

      Диплобациллы

      Стептобациллы

    Спиралевидные бактерии

    Бактерии имеющие изгибы, равные одному или нескольким оборотам спирали.

    В зависимости от количества витков делят на группы:

      Вибрионы

      Спироллы 4-6 витков

      Спирохеты 6-15 витков

    Чаще всего это болезнетворные микроорганизмы.

    Существуют еще редко встречающиеся бактерии.

    Шаровидная, палочковидная и спиралевидная форм бактерий самые распространенные, но встречатся и другие формы:

      Имеют вид кольца (замкнутого или разомкнутого в зависимости от стадии роста). Такие клетки предложено называть тороидами.

      У некоторых бактерий описано образование клеточных выростов, число которых может колебаться от 1 до 8и более.

      Существуют так же бактерии напоминающие по виду правильную шестиугольную звезду.

      Для некоторых групп прокариотов характерно ветвление.

      В 1980 году английский микробиолог Уолсби сообщил что микроорганизмы могут быть квадратными.

    Форма бактерий наследственно закреплена (за исключением мипопиазм и L- форм), и по этому является одним из критериев при определении микроорганизмов.

    Движение бактерий.

    Способность активно передвигаться присуща многим бактериям. Существуют 2 типа подвижных бактерий:

      Скользящие

      Плавающее

      Скольжение. Микроорганизмы передвигаются по твердому и полу твердому субстрату (почва, ил, камни). В результате волнообразных сокращений вызывающих периферическое изменение формы тела. Образуется некоторое подобие бегущей волны: выпуклости клеточной стенки, которая перемещаясь в одном направлении способствует движению в противоположную сторону.

      Плавание. Палочковидные бактерии относятся к плавающим формам, а так же большинство спирилл и некоторые кокки.

    Все эти бактерии передвигаются с помощью особых поверхностных нитевидных образований, называемых жгутиками. Различают несколько типов жгутикования в зависимости от того как они расположены на поверхности и сколько их:

      Монотрих

      Биполярный монотрих или амфитрих

      Лофотрих

      Амфитрих или биполярный лофотриф

      Перетрих

    Толщина жгутиков 0,01-0,03 мкм. Длинна меняется у одной и той же клетки в зависимости от условий окружающей среды от 3-12 мкм.

    Число жгутиков различно у разных видов бактерий, у некоторых перитрихов она достигает 100.

    Жгутики не являются жизненно важными органами.

    Жгутики как бы присутствуют на определенных стадиях развития клетки.

    Скорость передвижения бактерий при помощи жгутиков различается у разных видов. Большинство бактерий проходит за секунду расстояние равное длине своего тела. Некоторые бактерии при благоприятных условиях могут проходить расстояния превышающие 50 длин тела.

    В перемещениях бактерий есть определенный смысл, они стремятся в сторону наиболее благоприятных условий существования. Они называются таисисами.

    Таксисы могут быть хема, фото, аэро,

    Если в сторону благоприятных факторов то это положительно таксис , если от факторов, то отрицательно таксис.

    Споры и спорообразование.

    Многие бактерии способны образовывать структуры помогающие им переживать в течение длительного времени не благоприятные условия и переходить в активное состояние при попадание в подходящие для этого условия. Эти формы называются цистами эндоспорами.

    Микроцисты:

    При их образовании происходит утолщение стенки вегетативной клетки, в результате чего формируются оптически плотные, яркопреломляющие свет, окруженные слизью, укороченные палочки или сферические формы.

    Они функционально аналогичны бактериальным эндоспорам:

      Более устойчивы к изменению температур

      Высушиванию

      Различным физическим воздействиям, чем вегетативная клетка.

    Эндоспоры:

    Образуются эндоспоры у следующих бактерий:

    • Desulfotomaculum

    Формирование споры начинается с того что в зоне локализации нитей ДНК происходит уплотнение цитоплазмы, которая вместе с генетическим материалом обособляется от остального клеточного содержимого с помощью перегородки. Образуются плотные мембранные слои между которыми начинается формирование кортикального слоя (кортекс).

    Спора- это покоящаяся стадия спорообразующих видов бактерий.

    Бактерии образуют споры, когда создаются такие условия в окружающей среде которые индуцируют процесс спорообразования.

    Считается что споры не обязательная стадия цикла развития споро образующих бактерий.

    Можно создать условия в которых рост и размножение бактериальных клеток происходит без спорообразования в течении многих поколений.

    Факторы и индуцирующие споро образование:

      Недостаток питательных веществ в среде

      Изменение pH

      Изменение температуры

      Накопление выше определенного уровня продуктов клеточного метаболизма.

    Принципы систематики микроорганизмов.

    Понятие вид, штамм, клон.

    Основная таксономическая единица –вид который следует рассматривать как конкретную форму существования органического мира.

    В микробиологии понятие вид можно определить как совокупность микроорганизмов имеющих единое происхождение и генотип, сходных по своим биологическим признакам и обладающих наследственно закрепленной способностью вызывать в стандартных условиях качественно-определенные процессы.

    Сравнительно однородные виды бактерий определяют в роды → семейства → порядки → классы.

    Важным критерием определения понятия вид является однородность особей.

    Для микроорганизмов строгая однородность признаков не является характерными, поскольку их морфологические свойства могут изменяться в зависимости от условий окружающей с среды в течение короткого времени.

    Название микроорганизма состоит из двух слов: первое слово означает род (оно пишется с большой буквы и является производной от какого либо термина характеризующего признак, или от фамилии автора открывшего или изучившего этот микроорганизм), второе слово обозначает конкретный вид (пишется с маленькой буквы и является производным существительного определяющего источник происхождения микроба, либо название вызываемого им заболевания, либо фамилия автора). Bacillusanthracis.

    В микробиологии широко применяются термины штамм иклон.

    Штамм более узкое понятие чем вид.

    Штаммами называются различные микробные культуры одного вида, выделенные из различных источников или из одного источника, но в разное время.

    Штаммы одного вида могут быть совершенно идентичными или различаться по отдельным признакам (например по устойчивости к какому – либо антибиотику, ферментации какого-либо сахара и т.д.).

    Однако свойства различных штаммов не выходят за пределы вида.

    Термином клон обозначают культуру микроорганизмов полученную из одной клетки.

    Популяции микробов состоящие из особей одного вида называются чистой культурой.

    Понятие о статических и проточных микробных культурах.

    Хемостат

    Турбиностат – определение мертвых микроорганизмов по мутности.

    Таких емкостях выращивается проточная микробная культура.

    Для выращивания проточной микробной культуры, выращенной в условиях постоянной подпитки и удаления продуктов метаболизма и мертвых микробных клеток.

    Статичная микробная культура – это популяция бактерий находящихся в ограниченном жизненном пространстве, которое не обменивается ни веществом ни энергией с окружающей средой.

    Закономерности роста и развития микроорганизмов.

    Изменение и обновление организма в процессе его обмена с окружающей средой называется развитием. Развитие организма имеет 2 следствия:

      Размножение.

    Под ростом подразумевается увеличение размеров организма или его живого веса.

    Под размножением подразумевается увеличение количества организмов.

    Скорости роста микробной популяции:

    Абсолютная скорость.

    Относительная скорость по биомассе.

    Понятие генерации:

    Фазы развития стационарной микробной культуры.

      Фаза – лаг-фоза.

    Период от внесения бактерий до достижения ими максимальной относительной скорости роста. В этот период бактерии приспосабливаются к новой среде обитания и поэтому размножаются не значительно. К концу лаг-фазы клетки часто увеличивают свой оббьем и т.к. их количество в этот момент не велико, то относительная скорость роста биомассы становиться максимальной, по окончании этого периода, в то время как абсолютная скорость лишь незначительно увеличиваться. Длительность лаг-фазы зависит как от внешних условий так и от возраста бактерий и их видовой специфичности. Как правило чем полноценней среда, тем короче лаг-фаза. Изменение в химическом составе бактериальной клетки выражается в накоплении запасных питательных веществ и в резком повышении содержания РНК (в 8-12 раз), что свидетельствует об интенсивном синтезе ферментов, необходимых для дальнейшего роста и развития клетки.

      Фаза – ускорение роста.

    Характеризуется постоянной относительной скоростью деления клеток. В этот период число клеток возрастает по экспоненте. Удельная скорость остается постоянной и максимальной, а абсолютная скорость быстро возрастает. Скорость деления клеток в фазе ускоренного роста является максимальной для них, причем для различных видов бактерий и условий окружающей среды эта скорость различна, так например, кишечная палочка в этой фазе делится каждые 20 минут, для некоторых почвенных бактерий время генерации 60-150 минут, а у нитрифицирующих бактерий 5-10 часов. В течении этой фазы величина клеток и их химический состав остаются постоянными.

      Фаза – линейного роста.

    Эта фаза характеризуется резким снижением удельной скорости роста, т.е. увеличением времени генерации. Причиной этому служит начинающийся дефицит питательных веществ и избыточное содержание в среде продуктов обмена, которые в определенной концентрации негативно влияют на рост популяции. В этот период количество бактерий увеличивается линейно, а абсолютная скорость достигает максимума.

      Фаза – замедление роста.

    В этот период дефицит питательных веществ и концентрации продуктов обмена продолжают увеличиваться, что сказывается на падении абсолютной и относительной скоростей роста. Увеличение количества клеток постепенно замедляется и к концу фазы и к концу фазы приближается к максимуму. В этот период характеристика отмирания части наименее приспособленных клеток.

    II,IIIиIVфазы объединяются в одну фазуроста.

      Фаза- стационарная.

    В течение этой фазы количество живых клеток в культуре сохраняется примерно постоянным, т.к. число вновь образующихся клеток равно числу отмирающих. Абсолютная и относительная скорости роста приближаются к нулевой отметке. Отмирание или выживание бактерий в этой фазе не является случайными событиями. Выживают как правило те клетки, которые способны качественно перестроить свой обмен веществ. Для всех бактерий в этой фазе характерно использование запасенных веществ, распад части клеточных веществ, биомассы статической культуры в этой фазе достигает максимума и поэтому называется выходом или урожаем культуры. количество урожая зависит от видовой принадлежности микроорганизмов, от природы и количества питательных веществ, а так же от условий культивирования. В микробных производствах проточные микробные культуры поддерживают в стационарной фазе развития.

      Фаза – отмирание.

    Эта фаза наступает в тот момент когда концентрация какого либо из необходимых клеткам питательных веществ, падает до условного нуля, или когда какой-либо продукт обмена достигает такой концентрации в среде, при которой он токсичен для большинства клеток. Абсолютная и удельная скорости роста отрицательны, что говорит об отсутствии деления клеток.

    Перечень тестовых заданий. Правильные ответы обозначены " * "

    1) К микроорганизмам, не имеющим клеточного строения, относятся:

    1. бактерии

    *2. вирусы

    4. простейшие

    2) Впервые увидел бактерии:

    *1. А.-В. Левенгук

    2. Л. Пастер

    3. И. И. Мечников

    3) Бактерии, питающиеся за счет готовых органических соединений:

    1. аутотрофы

    *2. гетеротрофы

    4. фагоциты

    4) Бактерии, использующие для построения своих клеток диоксид углерода и другие органические соединения:

    1. гетеротрофы

    3. фагоциты

    *4. аутотрофы

    5) Нитрифицирующие бактерии являются:

    1. олиготрофами

    2. фагоцитами

    *3. аутотрофами

    4. гетеротрофами

    6) Основным регулятором поступления органических веществ в клетку является:

    *1. цитоплазматическая мембрана

    3. хлоропласты

    4. плазмиды

    7 - Тест) Микроорганизмы, которые приспособились в процессе эволюции к низким температурам:

    1. мезофилы

    *2. психрофилы

    3. термофилы

    8) Микроорганизмы одного вида или подвида, выращенные в лабораторных условиях на искусственных питательных средах:

    *1. чистая культура

    2. смешанная культура

    9) Микроорганизмы почвы, способные получать необходимую им энергию от окисления минеральных соединений:

    1. олиготрофы

    3. автохтоны

    *4. автотрофы

    10) Обрабатывание мазка хромовой кислотой, карболовым фуксином Пиля и окрашивание метиленовым синим характерно для:

    1. метода Шеффера-Фултона

    *2. метода Меллера

    3. метода Муромцева

    4. метода Романовского-Гимза

    11) Обрабатывание мазка раствором малахитовой зелени и дополнительное окрашивание водным раствором сафранина характерно для:

    1. метода Меллера

    2. метода Муромцева

    3. метода Романовского-Гимза

    *4. метода Шеффера-Фултона

    12) Бактерии, имеющие на одном или обоих концах тела пучок жгутиков, называются:

    1. монотрихами

    2. перитрихами

    *3. лофотрихами

    4. амфитрихами

    13) Скопления бактерий, напоминающие внешне грозди винограда, называются:

    *1. стафилококками

    2. сарцинами

    3. стрептококками

    4. диплококками

    14) В процентном соотношении вода в микробной клетке составляет:

    15) О свежем фекальном загрязнении почвы свидетельствует обнаружение:

    1. стафилококков

    2. сальмонелл

    3. яиц гельминтов

    *4. энтерококков

    16) При загрязнении органическими веществами в почве обнаруживают микроорганизмы:

    1. энтерококки

    *2. семейства кишечных бактерий

    3. паратифа А и В

    4. сальмонеллы

    17) Плесневый гриб, имеющий мицелий белого цвета с перегородками:

    1. шоколадная плесень

    2. гроздевидная плесень

    3. головчатая плесень

    *4. молочная плесень

    18) По окончании работы лицевые части противогазов и респираторов необходимо тщательно мыть:

    1. 0,1-%-м раствором перманганата калия

    2. 5-%-м раствором соды

    *3. 2-%-м раствором соды

    4. 0,5-%-м мыльным раствором

    20) К химическим средствам дезинфекции относятся:

    1. термофильные микробы

    *2. фенолы и креоны

    4. ультразвук

    21) Для чистой почвы коли-титр кишечной палочки должен составлять:

    2. не более 10 мг

    *3. не более 1 г

    22) Для определения количества живых бактерий в нитрагине делают глубинный посев:

    1. на маннитный агар-агар

    *2. на бобовый агаг-агар

    3. на дрожжевой агар-агар

    4. на мясопептонный агар-агар

    24) Для борьбы с плесенью используют:

    1. ксилонафт-5

    2. формалин

    *4. оксидифенолят натрия

    25) Перитрихи-это бактерии:

    1. с полярно расположенными пучками жгутиков

    *2. со жгутиками по всей поверхности клетки

    3. не имеющие жгутиков

    4. с двумя полярными жгутиками

    26) К осветительной системе биологического микроскопа не относится:

    1. конденсор

    2. диафрагма

    *3. окуляр

    4. зеркало

    27. Тест.) К прямым санитарно-биологическим показателям эпидемической опасности почвы относятся:

    1. обнаружение яиц гельминтов и их личинок

    2. обнаружение сальмонелл и бактерий паратифа А и В

    3. обнаружение стафилококков и стрептококков

    *4. обнаружение патогенных энтеробактерий и энтеровирусов

    28) Актиномицеты-это:

    2. палочковидные бактерии

    *3. ветвящиеся бактерии

    4. простейшие

    30) Для изучения морфологии плесневых грибов препараты готовят:

    1. методом Шеффера-Фултона

    2. методом Меллера

    3. методом висячей капли

    *4. методом раздавленной капли

    31) Хранение пестицидов должно происходить в специально оборудованных складах на расстоянии от населённого пункта:

    1. не менее 50 м

    2. не менее 100 м

    *3. не менее 200 м

    4. не менее 500 м

    32) Антибиотикограмма - это:

    *1. определение чувствительности микробов к антибиотикам

    2. определение чувствительности антибиотиков к микробам

    3. определение чувствительности животных к антибиотикам

    4. определение чувствительности растений к антибиотикам

    33) Дезинфицирующее средство имеет бактериостатическое действие, когда оно:

    *1. задерживает при определённых условиях рост микроорганизмов, но не приводит к их гибели

    2. способно убить микробную клетку

    3. вызывает в микробной клетке биохимические изменения

    4. вызывает в микробной клетке морфологические изменения

    34) К основным группам микроорганизмов не относятся:

    1. Бактерии

    2. Актиномицеты

    3. Микоплазмы

    *4. Бациллы

    35) Отдалённая корневая микрофлора растений располагается:

    1. в радиусе 6-10 см от корней

    2. в радиусе 2-3 м от корней

    *3. в радиусе 50 см от корней

    4. в радиусе 1 м от корней

    36) Конечными продуктами разложения органических веществ анаэробными микроорганизмами являются:

    1. углекислый газ и вода

    2. молочная кислота и спирт

    3. клетчатка и лигнин

    *4. кислоты и спирты

    37) При работе с инсектицидами необходимо использовать респираторы:

    1. «Лепесток-200», У-2К

    2. «Астра-2»

    *3. РСУ-22, РПГ-67

    4. РПЦ-22, Ф-57

    Тест № 38) Для дезинфекции почвы в парниковых хозяйствах используют:

    *1. Тиозон

    3. метафон

    4. бромид метила

    39) Термофилы-это бактерии, развивающиеся при температуре:

    1. 30-40 градусов

    2. 0-10 градусов

    *3. 50-70 градусов

    4. 70-80 градусов

    40) Микроорганизмы, занимающие промежуточное положение между плесневыми грибами и бактериями:

    2. плесени

    3. микоплазмы

    *4. актиномицеты

    41) Система мероприятий по уничтожению патогенных или условно-патогенных микроорганизмов во внешней среде или на теле животного:

    *1. дезинфекция

    2. дезинсекция

    3. дератизация

    4. кварцевание

    42) Бактерии, образующие цепочку при делении кокков:

    1. микрококки

    *2. стрептококки

    3. диплококки

    4. сарцины

    43) Олиготрофные микроорганизмы почвы - это:

    *1. микроорганизмы, способные ассимилировать органические соединения из растворов низкой концентрации

    2. микроорганизмы, способные получать необходимую им энергию от окисления минеральных соединений

    3. микроорганизмы, разлагающие органические соединения растительного и животного происхождения

    4. микроорганизмы, способные разлагать перегнойные соединения почвы

    44) Бактерии по типу дыхания подразделяются на:

    1. олиготрофы и сапрофиты

    2. анаэрофобы и анаэрофаги

    3. аэрофобы и анаэрофобы

    *4. аэробы и анаэробы

    45) О возможности загрязнения почвы патогенными энтеробактериями свидетельствует индекс санитарно-показательных микроорганизмов БГКП (колиформ) и энтерококков в колличестве:

    1. до 10 клеток на 1 г почвы

    *2. 10 и более клеток на 1 г почвы

    3. до 100 клеток на 1 г почвы

    4. 10 и более клеток на 10 г почвы

    46) К физическим средствам дезинфекции относятся:

    1. соли тяжелых металлов

    2. термофильные микробы

    *3. гамма лучи и ультразвук

    4. патогенные грибы

    47) Метод, позволяющий определить минимальную концентрацию антибиотика, подавляющего рост исследуемой культуры бактерий:

    1. метод диффузии в агар

    2. метод дисков

    *3. метод серийных разведений

    4. антибиотикограмма

    49) Извитые бактерии, имеющие тонкие многочисленные завитки:

    1. Вибрионы

    2. Спириллы

    *3. спирохеты

    4. стрептококки

    50) Один из первых микроскопов изобрел в 1610 году:

    1. А.-В. Левенгук

    2. Л. Пастер

    *4. Г. Галиллей

    51) Микроорганизмы, разлагающие органические соединения растительного и животного происхождения - это:

    2. олиготрофы

    4. Анаэробы

    53) При окрашивании препарата по методу Муромцева микробная клетка окрашивается:

    1. в голубой цвет

    2. в бледно-розовый цвет

    3. в фиолетовый цвет

    *4. в темно-синий цвет

    54) Микроорганизмы, развивающиеся на поверхности растений, называются:

    1. Бактериофагами

    2. Олиготрофами

    *3. Эпифитами

    4. актономицетами

    56) Микробы, поражающие и подавляющие растения, являются:

    1. Активаторами

    *2. Ингибиторами

    3. Фагоцитами

    57 Тест.) Для количественного учета почвенных микроорганизмов используют:

    1. аппликационный метод

    2. метод титров

    *3. метод питательных пластин в сочетании с методом последовательных разведений

    4. метод отмыва корней


    Предмет и задачи Микробиологии. Разделы микробиологии. Основные перспективные направления науки.

    После открытия микроорганизмов прошло три столетия, и наука занимающиеся их изучением - МИКРОБИОЛОГИЯ - заняла достойное место среди других биологических и медицинских наук. Микроорганизмы широко распространены в природе. Они находятся в воздухе, почве, пище, на окружающих нас предметах, на поверхности и внутри нашего организма. Такое широкое распространение микробов свидетельствует об их значительной роли в природе и жизни человека. Микроорганизмы обуславливают круговорот веществ в природе, осуществляют расщепление органических соединений и синтез белка. С помощью микроорганизмов происходят важные производственные процессы: хлебопечение, производство ферментов, гормонов антибиотиков и других в-вв.

    Наряду с полезными микроорганизмами существует группа патогенных микробов - возбудители различных заболеваний человека, животных, растений. Микроорганизмы были открыты в конце 18 века, но микробиология как наука сформировалась только в начале 19 века, после гениальных открытий французского ученого Луи Пастера.

    В связи с огромной ролью и задачами микробиологи не может справится со всеми вопросами в пределах одной дисциплины и в следствие этого происходит ее дифференцировка в различные дисциплины.

    Общая микробиология - изучает морфологию, физиологию, биохимию микроорганизмов, их роль в круговороте в-в и распространение в природе.

    Техническая микробиология - входит изучение микробов участвующих в производстве антибиотиков, спиртов, витаминов, также разработка методов защиты материалов от воздействия микроорганизмов.

    Сельскохозяйственная микробиология - изучает роль и значение микробов в формирование структуры почвы, ее плодородия, минерализация и питание растений.

    Ветеринарная микробиология - изучает возбудители заболеваний у животных, разрабатывает методы специфической профилактики и терапии инфекционных заболеваний.

    Медицинская микробиология - рассматривает свойства патогенных и условно - патогенных микробов, их роль в развитие инфекционного процесса и иммунного ответа, разрабатывает методы лабораторной диагностики и специфической профилактики и терапии инфекционных заболеваний.

    Важнейшими задачами медицинской микробиологии, вирусологии, иммунологии является дальнейшие изучение роли отдельных видов патогенных агентов в этиологии и патогенезе различных заболеваний людей, в том числе в возникновение опухолей, а также механизмов формирования наследственного и приобретенного иммунитета, разработка методов лечения и профилактики инфекционных заболеваний при помощи иммунологических и химиотерапевтических средств и методов специфической диагностики, в том числе экспресс-методов.

    Большое значение в народном хозяйстве приобретает использование мик-роорганизмов как продуцентов множества полезных веществ, как–то: кормового белка, ферментов, антибиотиков, витаминов. Активно разрабатываются способы рационального использования биохимической активности микроорганиз-мов для повышения плодородия почв, добычи полезных ископаемых, восполнения энергетических ресурсов и очистки окружающей среды от многих загрязняющих веществ.

    Вместе с тем остается необходимость изыскивать эффективные способы борьбы с некоторыми микроорганизмами, вызывающими заболевания человека, животных и растений, а также порчу промышленных изделий и нежелательные изменения окружающей среды.

    История развития микробиологии. Основные открытия. Достижения русских ученых в развитии микробиологии. Развитие современной науки.

    первым конструктором микроскопа считается Г. Галилей (1564 – 1642)

    первым исследователем, наблюдавшим при помощи сильной лупы простейшие организмы в испорченном мясе, молоке и других продуктах, был Афанасий Кирхер (1601 – 1680).

    Морфологический: Период наблюдений и описаний, период первых в микробиологии терминов, рисунков, статей. Антони ван Левенгук (Leeuwenhoek) (1632-1723) - нидерландский натуралист, один из основоположников научной микроскопии. Изготовив линзы с 150-300-кратным увеличением, впервые наблюдал и зарисовал простейших, сперматозоиды, бактерии, эритроциты и их движение в капиллярах.

    Физиологический: Период экспериментов, поиска новых методов изучения, изобретения новых микроскопов, период открытий в микромире. Работы Пастера по оптической асимметрии молекул легли в основу стереохимии. Открыл природу брожения. Опроверг теорию самозарождения микроорганизмов. Изучил этиологию многих инфекционных заболеваний. Разработал метод профилактической вакцинации против куриной холеры (1879), сибирской язвы (1881), бешенства (1885). Ввел методы асептики и антисептики.

    Во 2-й половине XIX в. в России и в мире микробиология разделилась на два направления:

    Общая: Основоположник Л.С. Ценковский (1822 – 1887)

    Медицинская: Основоположник Роберт Кох (1843 – 1910)

    Ивановский Д. И. (1864 – 1920) Основоположник вирусологии,

    Мечников И. И. (1845-1916) Основоположник иммунологии

    Виноградский С. Н. (1856-1953) Основоположник Почвенной микробиологии

    Гамалея Н. Ф. врач бактериолог Его труды касаются общей бактериологии, бешенства и многих патогенных микробов.

    Появление электронного микроскопа стало возможным после ряда физических открытий конца XIX - начала XX векая:

    1897 г. открытие электрона Дж. Томсон

    1926 г. экспериментальное обнаружение волновых свойств электрона К. Дэвиссон, Л. Гермер

    1926 г. X. Буш создание магнитной линзы, позволяющую фокусировать электронные лучи

    1931 г. Р. Руденберг собрал просвечивающий электронный микроскоп

    1932 г. М. Кнолль и Э. Руска построили первый прототип современного прибора.

    Использование электронного микроскопа для научных исследований было начато в конце 1930-ых годов и тогда же появился первый коммерческий прибор, построенный фирмой Siemens.

    В 1930-1940 годах появились первые растровые электронные микроскопы. Массовое применение этих приборов в научных исследованиях началось в 1960-ых годах, когда они достигли значительного технического совершенства.

    Распространение микроорганизмов в природе. Участие в производственных процессах.

    В природе микроорганизмы заселяют практически любую среду (почва, вода, воздух) и распространены гораздо шире, чем другие живые существа. Благодаря разнообразию механизмов утилизации источников питания и энергии, а также выраженной адаптации к внешним воздействиям, микроорганизмы могут обитать там, где другие формы жизни не выживают.

    Естественные среды обитания большей части организмов - вода, почва и воздух. Число микроорганизмов, обитающих на растениях и в организмах животных, значительно меньше. Широкое распространение микроорганизмов связано с лёгкостью их распространения по воздуху и воде; в частности, поверхность и дно пресноводных и солёных водоёмов, а также несколько сантиметров верхнего слоя почвы изобилуют микроорганизмами, разрушающими органические вещества. Меньшее количество микроорганизмов колонизирует поверхность и некоторые внутренние полости животных (например, ЖКТ, верхние отделы дыхательных путей) и растений.

    В природе большую часть бактерий поедают хищные простейшие, но часть клеток каждого вида выживает; при наступлении благоприятных условий они дают начало новым клонам микроорганизмов.

    Неклеточные формы жизни. Морфология и размножение вирусов. Отличительные черты прионов.

    Живые организмы делятся на клеточные (Прокариоты и эукариоты) и неклеточные (прионы и вирусы).

    Прионы – возбудители медленных неконвекционных инфекций. Состоят из набора специфичных белков и аномальных изоформных клеточных белков с молекулярной массой от 20000 до 37000 единиц. (Заболевания: Куру, Болезнь Кройтцфельда – Якоба, Амниотрофический лейкоспорангиоз)

    Морфология и размножение вирусов .

    По внешнему виду вирусы делят на сферические, или шарообразные, кубические, палочковидные, или нитевидные, и сперматоподобные.
    При некоторых вирусных инфекциях (бешенство, оспа и др.) в цитоплазме или ядре пораженной вирусом клетки образуются особые, специфические для каждой инфекции внутриклеточные включения, значительно превосходящие по величине вирус и видимые в световой микроскоп. Это колонии вирусов. Обнаружение их в клетке имеет большое значение при диагностике бешенства, оспы и других инфекций

    Отдельные виды вирусов, преимущественно вирусы растений, образуют в клетках кристаллические образования (кристаллы Ивановского). Их можно растворить, и из раствора выделяется вирус в аморфном, не кристаллическом состоянии, обладающий инфекционными свойствами. В каждом кристалле содержится до 1 млн. вирионов. Из зоопатогенных вирусов в кристаллическом виде пока получен чирус полиомиелита.
    Размеры вирусов колеблются в широких пределах. Мельчайшие из них (вирусы полиомиелита, ящура, энцефалитов) имеют в диаметре около 20-30 тр. (миллимикрон) и приближаются по величине к белковым молекулам, а крупные вирусы (вирусы оспы, герпеса, плевропневмонии) по рамерам близки к мельчайшим бактериям. Размер вирусов определяют ультрафильтрацией, ультрацентрифугированием и электроноскопйей. Каждым из этих методов получены более или менее сходные результаты, однако наиболее точным является электроноскопия высокоочищенного вируса.

    Размножение вирусов включает в себя три процесса: репликацию вирусной нуклеиновой кислоты, синтез вирусных белков и сборку вирионов.

    После проникновения вирусов в клетку и раздевания вирусный геном и связанные с ним вирусные белки оказываются в цитоплазме. Внутри зараженной клетки происходят репликация вирусного генома и синтез структурных белков, из которых собираются новые вирусы. Существует определенный порядок транскрипции вирусных мРНК, которые затем транслируются с образованием белка. Репликация генома и сборка нуклеокапсидов большинства РНК-содержащих вирусов происходят в цитоплазме, а большинства ДНК-содержащих вирусов - в ядре.

    Сборка вирионов высокоспецифический процесс взаимодействия белковых и нуклеиновых молекул, приводящий к образованию вирионов . У простых РНК-геномных вирусов с кубической или спиральной симметрией сборка вирионов состоит в ассоциации вирусного генома с капсидными белками с помощью репликативного комплекса. У сложных РНК-геномных вирусов нуклеокапсид образуется так же, как у простых вирусов. Формирование суперкапсида - сложный многоступенчатый процесс, к-рый протекает в цитоплазматической мембране или специальных мембранных структурах («фабриках» вируса). У сложных ДНК-геномных вирусов сначала раздельно образуются капсид и нуклеоид, затем нуклеоид вносится в пустой капсид. Дальнейшая достройка вириона происходит в цитоплазматической мембране или эндоплазматическом ретикулуме. У поксвирусов все этапы размножения, включая С., протекают в транскриптазо-рибосомальных комплексах цитоплазмы.