Биографии Характеристики Анализ

Молекулярная диффузия внутренняя. Диффузия - это что такое

— явление проникновения молекул одного вещества в промежутки между молекулами другого вещества.

Мы ощущаем запах духов на некотором расстоянии от флакона. Это объясняется тем, что молекулы духов, так же как и молекулы воздуха, движутся. Между молекулами существуют промежутки. Молекулы духов проникают в промежутки между молекулами воздуха, а молекулы воздуха - в промежутки между молекулами духов.

Опыты показывают, что диффузии в газах - самый быстрый процесс, в жидкостях он протекает гораздо медленнее, но может наблюдаться даже в твердых телах . Соединив гладко отполированными поверхностями два бруска из разных металлов, например из меди и алюминия, и оставив их в таком положении на длительное время (на 4-5 лет), мы обнаружим их сращивание за счет проникновения атомов меди в алюминиевый образец и, наоборот, проникновения атомов алюминия в медный.

Диффузия в газах происходит быстрее, чем в жидкостях, потому, что газы имеют меньшую плотность, чем жидкости, т.е. молекулы газов расположены на больших расстояниях друг от друга. Ещё медленнее происходит диффузия в твёрдых телах, поскольку молекулы твёрдых тел находятся ещё ближе друг к другу, чем молекулы жидкостей.

Скорость диффузии зависит не только от агрегатного состояния вещества, но и от температуры . При более высокой температуре диффузия будет происходить быстрее. Это происходит потому, что при повышении температуры быстрее движутся молекулы. Скорость движения молекул и температура тела взаимосвязаны. Чем больше средняя скорость движения молекул тела, тем выше его температура.

Проявление диффузии: окрашивание, склеивание, проникновение питательных веществ из кишечника в кровь.

О таком понятии, как диффузия, слышали абсолютно все люди. Это было одной из тем на уроках физики в 7 классе. Несмотря на то что это явление окружает нас абсолютно везде, мало кто знает о нём. Что же оно всё-таки означает? В чём заключается его физический смысл , и как можно облегчить жизнь с её помощью? Сегодня мы с вами об этом и поговорим.

Диффузия в физике: определение

Это - процесс проникновения молекул одного вещества между молекулами другого вещества. Говоря простым языком, этот процесс можно назвать смешиванием. Во время этого смешивания происходит взаимное проникновение молекул вещества друг между другом . Например, при приготовлении кофе молекулы растворимого кофе проникают в молекулы воды и наоборот.

Скорость этого физического процесса зависит от следующих факторов:

  1. Температура.
  2. Агрегатное состояние вещества.
  3. Внешнее воздействие.

Чем выше температура вещества, тем быстрее движутся молекулы. Следовательно, процесс смешивания происходит быстрее при высоких температурах.

Агрегатное состояние вещества - важнейший фактор . В каждом агрегатном состоянии молекулы движутся с определённой скоростью.

Диффузия может протекать в следующих агрегатных состояниях:

  1. Жидкость.
  2. Твёрдое тело.

Скорее всего, у читателя сейчас возникнут следующие вопросы:

  1. Каковы причины возникновения диффузии?
  2. Где она протекает быстрее?
  3. Как она применяется в реальной жизни?

Ответы на них можно узнать ниже.

Причины возникновения

Абсолютно у всего в этом мире есть своя причина. И диффузия не является исключением . Физики прекрасно понимают причины её возникновения. А как донести их до обычного человека?

Наверняка каждый слышал о том, что молекулы находятся в постоянном движении. Причём это движение является беспорядочным и хаотичным, а его скорость очень большая. Благодаря этому движению и постоянному столкновению молекул происходит их взаимное проникновение.

Есть ли какие-то доказательства этого движения? Конечно! Вспомните, как быстро вы начинали чувствовать запах духов или дезодоранта? А запах еды, которую готовит ваша мама на кухне? Вспомните, как быстро готовится чай или кофе . Всего этого не могло быть, если бы не движение молекул. Делаем вывод - основная причина диффузии заключается в постоянном движении молекул.

Теперь остаётся только один вопрос - чем же обусловлено это движение? Оно обусловлено стремлением к равновесию. То есть, в веществе есть области с высокой и низкой концентрацией этих частиц. И благодаря этому стремлению они постоянно движутся из области с высокой концентрацией в низкоконцентрированную. Они постоянно сталкиваются друг с другом , и происходит взаимное проникновение.

Диффузия в газах

Процесс смешивания частиц в газах самый быстрый. Он может происходить как между однородными газами, так и между газами с разной концентрацией.

Яркие примеры из жизни:

  1. Вы чувствуете запах освежителя воздуха благодаря диффузии.
  2. Вы чувствуете запах приготовленной пищи. Заметьте, его вы начинаете чувствовать сразу, а запах освежителя через несколько секунд. Это объясняется тем, что при высокой температуре скорость движения молекул больше.
  3. Слезы, возникающие у вас при нарезании лука. Молекулы лука смешиваются с молекулами воздуха, и ваши глаза на это реагируют.

Как протекает диффузия в жидкостях

Диффузия в жидкостях протекает медленнее. Она может длиться от нескольких минут до нескольких часов.

Самый яркие примеры из жизни:

  1. Приготовление чая или кофе.
  2. Смешивание воды и марганцовки.
  3. Приготовление раствора соли или соды.

В этих случаях диффузия протекает очень быстро (до 10 минут). Однако если к процессу будет приложено внешнее воздействие, например, размешивание этих растворов ложкой, то процесс пойдёт гораздо быстрее и займёт не более одной минуты.

Диффузия при смешивании более густых жидкостей будет происходить гораздо дольше. Например, смешивание двух жидких металлов может занимать несколько часов. Конечно, можно сделать это за несколько минут, но в таком случае получится некачественный сплав .

Например, диффузия при смешивании майонеза и сметаны будет протекать очень долго. Однако, если прибегнуть к помощи внешнего воздействия, то этот процесс и минуты не займёт.

Диффузия в твёрдых телах: примеры

В твёрдых телах взаимное проникновение частиц протекает очень медленно. Этот процесс может занять несколько лет. Его длительность зависит от состава вещества и структуры его кристаллической решётки.

Опыты, доказывающие, что диффузия в твёрдых телах существует.

  1. Слипание двух пластин разных металлов. Если держать эти две пластины плотно друг к другу и под прессом, в течение пяти лети между ними будет слой, имеющий ширину 1 миллиметр. В этом небольшом слое будут находиться молекулы обоих металлов. Эти две пластины будут слиты воедино.
  2. На тонкий свинцовый цилиндр наносится очень тонкий слой золота. После чего эта конструкция помещается в печь на 10 дней. Температура воздуха в печи - 200 градусов Цельсия. После того как этот цилиндр разрезали на тонкие диски, было очень хорошо видно, что свинец проник в золото и наоборот.

Примеры диффузии в окружающем мире

Как вы уже поняли, чем тверже среда, тем меньше скорость смешивания молекул. Теперь давайте поговорим о том, где в реальной жизни можно получить практическую пользу от этого физического явления.

Процесс диффузии происходит в нашей жизни постоянно. Даже когда мы лежим на кровати, очень тонкий слой нашей кожи остаётся на поверхности простыни. А также в неё впитывается пот. Именно из-за этого постель становится грязной, и её необходимо менять.

Так, проявление этого процесса в быту может быть следующим:

  1. При намазывании масла на хлеб оно в него впитывается.
  2. При засолке огурцов соль сначала диффундирует с водой, после чего солёная вода начинает диффундировать с огурцами. В результате чего мы получаем вкуснейшую закуску. Банки необходимо закатывать. Это нужно для того, чтобы вода не испарялась. А точнее, молекулы воды не должны диффундировать с молекулами воздуха.
  3. При мытье посуды молекулы воды и чистящего средства проникают в молекулы оставшихся кусочков еды. Это помогает им отлипать от тарелки, и сделать её более чистой.

Проявление диффузии в природе:

  1. Процесс оплодотворения происходит именно благодаря этому физическому явлению. Молекулы яйцеклетки и сперматозоида диффундируют, после чего появляется зародыш.
  2. Удобрение почв. Благодаря использованию определённых химических средств или компоста почва становится более плодородной. Почему так происходит? Суть в том, что молекулы удобрения диффундируют с молекулами почвы. После чего процесс диффузии происходит между молекулами почвы и корня растения. Благодаря этому сезон будет более урожайным.
  3. Смешивание производственных отходов с воздухом сильно загрязняет его. Из-за этого в радиусе километра воздух становится очень грязным. Его молекулы диффундируют с молекулами чистого воздуха из соседних районов. Именно так ухудшается экологическая обстановка в городе.

Проявление этого процесса в промышленности:

  1. Силицирование - процесс диффузионного насыщения кремнием. Он проводится в газовой атмосфере. Насыщенный кремнием слой детали имеет не очень высокую твёрдость, но высокую коррозионную стойкость и повышенную износостойкость в морской воде, азотной, соляной в серной кислотах.
  2. Диффузия в металлах при изготовлении сплавов играет большую роль. Для получения качественного сплава необходимо производить сплавы при высоких температурах и с внешним воздействием. Это значительно ускорит процесс диффузии.

Эти процессы происходят в различных областях промышленности:

  1. Электронная.
  2. Полупроводниковая.
  3. Машиностроение.

Как вы поняли, процесс диффузии может оказывать на нашу жизнь как положительный, так и отрицательный эффект. Нужно уметь управлять своей жизнью и максимально использовать пользу от этого физического явления, а также минимизировать вред.

Теперь вы знаете, в чём сущность такого физического явления, как диффузия. Она заключается во взаимном проникновении частиц благодаря их движению. А в жизни движется абсолютно все. Если вы школьник, то после прочтения нашей статьи вы точно получите оценку 5. Успехов вам!

Рассмотренная нами молекулярная диффузия является свободной, т.е. необремененной перегородкой между твердой (Т) и жидкой (Ж) фазами, (либо между растворами разной концентрации). При наличии клеточных оболочек, стенок и др., что имеет место при экстрагировании организованного (клеточного) сырья, диффузия веществ определяется как внутренняя диффузия, т.к. молекулы экстрактивных веществ диффундируют в толще, внутри самой клеточной оболочки, перегородки.

Физиологическое состояние клеточной оболочки определяет возможности массообмена. В живой клетке оболочка изнутри выстлана протоплазмой, пропускающей воду только внутрь клетки и не выпускающей из клетки растворенные в плазме вещества. Процесс экстракции, массообмена, не имеет места, пока жива протоплазма, из клетки нельзя извлечь никаких веществ. Всем известен пример намачивания разрезанной свежей свеклы, моркови в холодной воде- экстракции, выделения веществ из неразрушенных клеток не происходит.

По-другому ведет себя высушенная, умерщвленная клетка. Погибшая протоплазма становится проницаемой, клеточная оболочка становится пористой перегородкой , пронизанной ультрамикропорами, через которые проходит диффузия, идет процесс диализа.

Механизм диффузии вещества через клеточную оболочку заключается в следующем: молекулы диффундируемого вещества “А” вначале сорбируются из первичного сока материалом мембраны стенок растительной клетки, затем диффундируют через нее и десорбируются с другой стороны перегородки, накапливаются в пограничном (диффузионном слое ) и только затем перемещаются в окружающую толщу растворителя.

Наличие в организованном сырье клеточной стенки, мембраны, перегородки, ее строение, а также инкрустация клеточной оболочки воском, кутином, суберином, наличие лигнина и др. компонентов, очень сказывается на массообмене, снижая его еще в большей степени - на несколько порядков в сравнении со свободной молекулярной диффузией.



Естественно, коэффициент диффузии для вещества, диффундирующего через клеточную стенку, оболочку, будет меньшим по сравнению со свободной диффузией. Поэтому, в случае определения величины диффузии веществ из растительного материала в коэффициент молекулярной (свободной) диффузии “D св. ” вводится поправочный коэффициент “В”, учитывающий перечисленные осложнения процесса. “D” приобретает индекс “Коэффициента внутренней диффузии” - D вн. , а уравнение внутренней диффузии имеет следующий вид:

После подставления значения D вн. в уравнение внутренней диффузии оно в развернутом виде имеет вид:

Конвективная диффузия

Молекулярная диффузия проходит в неподвижной системе и протекает относительно медленно. Поэтому большее практическое значение для практики экстракций имеет диффузия в движущейся среде, т.н. конвективная диффузия (от лат. convectio - привоз, принесение).

В этом случае молекулы вещества переходят из одной фазы в другую не только вследствие молекулярного движения, но и механически - путем перемещения отдельных небольших (элементарных) объемов жидкой фазы под влиянием циркуляции, сотрясений, разницы температур, давлений и т.п.

Конвективная диффузия подчиняется закономерностям, согласно которым величина (конвективной) диффузии возрастает с увеличением поверхности массообмена, разности концентраций, продолжительности процесса и коэффициента конвективной диффузии.

Размер молекул диффундируемого вещества, кинетическая их энергия здесь оказываются второразрядными факторами.

Уравнение конвективной диффузии имеет следующее выражение:

S конв. =  · F·  C част.· 

S конв. - количество вещества, перенесенное конвективной диффузией, кг

 - коэффициент конвективной диффузии, представляющий собой количество вещества, перенесенное движущейся жидкостью за 1 сек, с единицы поверхности 1 м 2:, при разности концентрации в 1 кг/куб. м;

F - площадь поверхности диффузионного процесса, кв. м;

 С частн. - разность концентрации вещества у поверхности раздела фаз и в центре движущегося (частного) объема жидкости, кг/м 3 ;

 - время, сек.

Скорость конвективного переноса вещества представляет величину, отражающую количество перенесенного вещества в единицу времени;

(кг/с)

Скорость конвективной диффузии W конв. в десятки раз больше скорости молекулярной диффузии (W своб.).

Суммарный процесс переноса веществ из растительного материала в экстрагент выражается основным уравнением массопередачи.

Процесс массопередачи , имеющий место при наличии двух видов диффузии (молекулярной и конвективной диффузии), может быть представлен уравнением:

S=K· F·  C·  (кг)

Количество вещества, переходящее из фазы в фазу (в нашем случае из клетки в извлекатель) зависит от коэффициента массопередачи (К), поверхности раздела фаз (F), разности концентрации ( С) и времени ().

К - коэффициент массопередачи суммирует значения всех видов диффузии, имеющих место при извлечении материала, и в обобщенном виде может быть записан так:

, где

r - радиус частиц растительного материала, м;

 - поправочный коэффициент на анатомические особенности растительных тканей;

D, d,  - те же значения, что и выше.

При этом два последних слагаемых знаменателя являются величинами переменными, зависящими от гидростатического состояния системы, т.е. от скорости перемещения жидкой фазы.

Как уже упоминалось, процесс массопередачи проходит через пограничный(ламинарный, диффузионный) слой, представляющий собой концентрированный раствор вещества у границы раздела твердой и жидкой фаз. Этот слой оказывает основное сопротивление молекулярной диффузии, его толщина очень влияет на интенсивность массообмена: с увеличением ламинарного (диффузионного) слоя количество вещества “А” в жидкой фазе “Ж” возрастает очень медленно, с уменьшением слоя - быстро, поскольку разность концентраций поддерживается на максимальном значении.

Толщина этого слоя зависит, в основном, от скорости перемещения экстрагента.

1. Если процесс массопередачи (извлечения действующих и сопутствующих веществ из растительного сырья) идет в полном макропокое, например, при методе мацерации , тогда коэффициент конвективной диффузии “ “ будет равен нулю и значимыми будут только два слагаемых знаменателя - внутренней и свободной диффузии, т.е. первый и второй слагаемые. Коэффициент массопередачи в таком случае будет равен:

Учитывая, что значения коэффициента конвективной диффузии на несколько порядков больше коэффициента свободной диффузии, и тем более внутренней, то и массопередача в целом проходит мало эффективно.

2. В случае слабого (умеренного, т.е. не более 0,5 м/сек.) перемещения жидкости (экстрагента) все коэффициенты диффузии будут значимыми, и они суммируются, т.е. коэффициент массопередачи имеет значение:

Действительно, при перколяционном, реперколяционном и противоточных методах экстракции процесс массообмена весьма эффективен.

3. Третий возможный случай экстракции, когда экстрагент перемещается с большой скоростью. В этом случае вещество, преодолев клеточную оболочку, попадает в общий объем извлечения, т.е. фазы “Ж”. При этом совершенно отсутствует диффузионный слой, толщина этого слоя “d” равна нулю и,т.о., второе слагаемое равно нулю.

Поскольку коэффициент конвективной диффузии возрастает при этом до бесконечности (  ), то и третье слагаемое будет равно “0”, т.к. I = 0, и коэффициент массопередачи определяется только первым слагаемым:

Такая картина имеет место при вихревом методе экстракции, когда пропеллерная мешалка вращается со скоростью 9.000-12.000 оборотов в минуту, а также при акустическом и электрогидродинамическом методах экстракции, при экстракции с применением роторно-пульсационного аппарата. В последнее время предложено экстрагирование с применением электрических разрядов, с использованием электроплазмолиза и электродиализа. В этих случаях появляется возможность влиять на коэффициент внутренней диффузии Dвн., что позволяет значительно ускорить процесс экстрагирования на самой его медленной стадии.

Другие основные факторы, влияющие на процесс массообмена:

Поверхность раздела фаз (F), “твердое лекарственное сырье-жидкость” зависит от степени измельчения сырья и будет тем больше, чем меньше его частички. Однако на практике известно, что при чрезмерно тонком измельчении сырье может слеживаться, а при содержании слизистых веществ - ослизняться, в результате чего через такие массы экстрагент будет проходить очень плохо. При слишком тонком измельчении резко увеличивается количество разорванных клеток, что приводит к вымыванию сопутствующих веществ, загрязняющих вытяжку (белки, слизи, пектины и другие высокомолекулярные соединения). Кроме того, в экстрагент переходит большое количество взвешенных частиц. В результате вытяжки получаются мутные, трудноосветляемые и фильтруемые. Отсюда следует, что крупное сырье следует измельчать до оптимальных размеров: листья, цветы, травы до 3-5 мм; стебли, корни, кору до 1-3 мм, плоды и семена до 0,3-0,5 мм. При этом в исходном материале будут сохраняться клеточная структура и преобладать диффузионные процессы, экстрагирование замедлится, но полученная вытяжка будет содержать меньше механических примесей и легче очищаться.

Разность концентраций в сырье С 1 и экстрагенте С 2 является движущей силой процесса экстракции. Во время экстракции необходимо стремиться к максимальному перепаду концентраций, что достигается более частой сменой экстрагента (ремацерация вместо мацерации), проведением противоточного процесса и др.

Время (продолжительность) экстрагирования. Из основного уравнениямассопередачи следует, что количество вещества, продиффундировавшего через некоторый слой, прямо пропорционально времени экстракции. Однако нужно стремиться к максимальной полноте извлечения в кратчайший срок, максимально использовав все прочие факторы, ведущие к интенсификации процесса.

Чрезмерная продолжительность извлечения приводит к загрязнению вытяжек сопутствующими высокомолекулярными соединениями, скорость диффузии которых значительно меньше, чем у биологически активных веществ. При длительном экстрагировании могут протекать нежелательные процессы под влиянием ферментов. Общая продолжительность экстракции зачастую определяется экономическими соображениями. При этом бывает целесообразно прекратить процесс в какой-то момент, учитывая, что дополнительно извлеченные количества веществ не окупят избыточных расходов и увеличивающихся при этом потерь ценных экстрагентов (спирт, эфир).

Вязкость экстрагента. По закону Фика количество растворенного вещества, продиффундировавшего через некоторый слой экстрагента, обратно пропорционально вязкости этого экстрагента при данной температуре. Следовательно, менее вязкие растворы обладают большей диффузионной способностью. Для уменьшения вязкости при экстрагировании растительными маслами используют подогрев.

Перспективными в этом отношении являются используемые в последнее время сжиженные газы - углерода диоксид (СО 2), пропан, бутан, жидкий аммиак и др. Наиболее часто используют сжиженный углерода диоксид, который химически индифферентен к большому числу действующих веществ. Его вязкость в 14 раз меньше вязкости воды и в 5 раз - меньше вязкости этанола. Сжиженный углерода диоксид хорошо извлекает эфирные масла и другие гидрофобные вещества. Гидрофильные вещества хорошо экстрагируются сжиженными газами с высокой диэлектрической проницаемостью (аммиак, метил хлористый, метиленоксид и др.)

Температура. Повышение температуры ускоряет процесс экстрагирования, но в условиях фитохимических производств подогрев используют только для водных извлечений. Спиртовая и тем более эфирная экстракция проводится при комнатной (или более низкой) температуре, поскольку с ее повышением увеличиваются потери экстрагентов, а следовательно, вредность и опасность работы с ними.

Как было указано выше, при экстрагировании маслами используется подогрев. Но для термолабильных веществ применение горячего экстрагента допустимо лишь в течение коротких отрезков времени. Повышение температуры экстрагента нежелательно для эфиромасличного сырья, поскольку при нагревании эфирные масла в значительной степени теряются. Необходимо учитывать, что при использовании горячей воды происходит кластеризация крахмала, пептизация веществ; вытяжки в этом случае становятся слизистыми, и дальнейшая работа с ними значительно затрудняется. Повышение температуры целесообразно при экстрагировании из корней, корневищ, коры и кожистых листьев. Горячая вода в этом случае способствует лучшему отделению тканей и разрыву клеточных стенок, ускоряя тем самым течение диффузионного процесса.

Добавка поверхностно-активных веществ (ПАВ). Экспериментально установлено, что добавление небольших количеств ПАВ (0,01-0,1%) улучшает процесс экстрагирования. При этом увеличивается количество экстрагируемых веществ-алкалоидов, гликозидов, эфирных масел и других, а в некоторых случаях полнота извлечения достигается при меньшем объеме экстрагента. Добавки ПАВ снижают поверхностное натяжение на границе раздела фаз, улучшая смачиваемость содержимого клетки и облегчая проникновение экстрагента. Кроме того, существенную роль играет солюбилизирующая способность ПАВ.

Выбор экстрагента. Для обеспечения полноты извлечения действующих веществ и максимальной скорости экстрагирования к экстрагенту предъявляют следующие требования: селективность (избирательная растворимость), химическая и фармацевтическая индифферентность, малая токсичность, доступность.

Выбор экстрагента определяется степенью гидрофильности извлекаемых веществ. Для экстрагирования полярных веществ с высоким значением диэлектрической постоянной используют полярные растворители: воду, метанол, глицерин; для неполярных - кислоту уксусную, хлороформ, эфир этиловый и другие органические растворители. Наиболее часто в качестве экстрагента применяют этанол - малополярный растворитель, который при смешивании с водой дает растворы с разной степенью полярности, что позволяет использовать его для избирательного экстрагирования различных биологически активных веществ. Кроме этанола, из малополярных растворителей применяют ацетон, пропанол, бутанол.

Пористость и порозность сырья. Пористость сырья – это величина пустот внутри растительной ткани. Чем она выше, тем больше образуется внутреннего сока при набухании. Порозность - это величина пустот между кусочками измельченного материала. От величины пористости и порозности зависит скорость смачивания и набухания материала. Скорость набухания возрастает при предварительном вакуумировании сырья, а также при повышении давления и температуры.

Пористость и порозность сырья обуславливают его поглощающую способность, которая характеризуется коэффициентом поглощения сырья Кп:

Р 1 и Р 2 - масса сырья, соответственно, до и после набухания. Поглощающая способность сырья находится в прямой зависимости от степени его измельчения.

Коэффициент вымывания. Он характеризует степень разрушенных клеток в измельченном сырье. Если он низкий, это значит, что в сырье мало разрушенных клеток, экстрагирование идет медленно и определяется в основном скоростью молекулярной диффузии. За величину коэффициента вымывания принимают количество веществ в вытяжке, полученное из определенной навески сырья, при определенном соотношении (сырье-экстрагент) при экстрагировании сырья в течение одного часа при определенной скорости перемешивания.

Воздействие вибраций, пульсаций, измельчения и деформации сырья в среде экстрагента. Использование методов экстрагирования, в которых имеют место вибрация, пульсация, измельчение и деформация в среде экстрагента, позволяет значительно увеличить скорость и полноту экстрагирования из сырья. Объясняется это тем, что:

1) При интенсивном воздействии на твердые частицы появляются сильные турбулентные течения, гидродинамические микропотоки, способствующие переносу масс, растворению веществ. Такое явление отмечается как снаружи твердых частиц, так и внутри них. В результате достигается интенсивное перемешивание даже внутри отдельных клеток.

2) При интенсивном колебании частиц сырья в местах трения происходит локальное повышение температуры, уменьшение вязкости экстрагента, а следовательно, увеличение коэффициента внутренней диффузии.

3) В результате увеличения турбулентности, нарушения структуры прилегающих слоев, пограничный диффузионный слой истощается или же будет иметь предельно малую толщину.

4) Следствием интенсивных колебаний является чередование зон сжатия и растяжения. При этом, в момент растяжения, в экстрагенте образуются полости разрыва жидкости (кавитационные зоны), которые захлопываются с силой в несколько сот атмосфер. Положительное качество этого процесса - диспергирование частиц, приводящее к увеличению межфазной поверхности.

В результате появления турбулентного перемешивания как внутри, так и снаружи клеток молекулярно-кинетическое движение заменяется конвективным, что позволяет поддерживать разность концентраций в зоне соприкосновения фаз на высоком уровне.

Воздействие электроимпульсных разрядов. При экстрагировании с помощью электрических разрядов ускоряется процесс извлечения БАВ потому, что из-за искрового разряда в сырье происходит микровзрыв, разрывающий клеточные структуры материала. Процесс извлечения протекает быстрее за счет вымывания экстрактивных веществ и пульсации, увеличивающей скорость движения экстрагента. Возникающие в жидкости колебания сокращают время экстрагирования и повышают выход биологически активных веществ.

Окончание массообмена совпадает с наступлением равновесного состояния концентрации вещества в обеих фазах (Т и Ж). Динамическое равновесие приводит к тому, что в растительном либо животном сырье остается часть извлечения с ценными компонентами (например, лекарственными веществами), которые затем выбрасываются в отвал. Такие материальные потери получили название “потери на диффузии”, их количество определяется уравнением:

(кг) , где

Px - количество экстрактивных веществ (либо конкретного вещества), оставшихся в истощенном растительном или животном сырье, т.е. материальные потери;

Xo - количество экстрактивных веществ (вещества “А”) в исходном сырье, кг;

v - количество экстрагента, оставшееся в материале после окончания процесса экстракции, литры;

V - количество экстрагента, использованного для экстракции, литры.

Из этого уравнения видно, что величину “Рх” можно уменьшить, изменяя переменные величины- “v” и “V”. Потери тем выше, чем больше v - количество экстрагента, оставшегося в шроте. Чтобы уменьшить количество вытяжки в шроте на производстве используют прессование или центрифугирование сырья.

Чем больше экстрагента берется в работу (V), тем потери на диффузии (Рх) меньше. Но беспредельно увеличивать “V“ нельзя, т.к. получается малоконцентрированная вытяжка, что не всегда приемлемо. Например, настойки готовятся в разведении 1:5 или 1:10, а жидкие экстракты 1:1 или 1:2. Получать разбавленные вытяжки и экономически невыгодно, поскольку, как правило, приходится упаривать большие объемы экстрагента при производстве густых, сухих и жидких экстрагентов.

Т.о., мы ознакомились с некоторыми сведениями о сущности и механизме процесса экстракции, факторах, влияющих на каждую из трех видов диффузии и на массоперенос в целом.

Следует сказать, что, несмотря на актуальность и практическую значимость, процесс экстракции еще очень мало изучен, работы в этом направлении проводятся.

Определение 1

Диффузия молекул характеризуется процессом переноса распределяемого вещества, при этом она обусловлена хаотичным перемещением самих молекул.

Диффузия молекул выполняется без визуального перемещения участков фазы, молекулярное движение при этом будет тепловым. Молекулярная диффузия представляет процесс транспортировки веществ в самопроизвольного характера под воздействием градиента их концентрации.

Концентрационной диффузия будет называться при условии, если ее спровоцировало неоднородное распределение концентрации компонентов смеси.

Суть молекулярной диффузии

Молекулярная диффузия хорошо описана в законе Фика (первом). Согласно указанному закону, количество вещества $dM$, которое продиффундировало за определенное время $dt$ сквозь элементарную поверхность $dF$, станет пропорциональным градиенту концентрации $\frac{dc}{dn}$ такого вещества:

$dM = -{DdFdx}\frac{dc}{dn}$ (1)

$M = -{DFx}\frac{dc}{dn}$ (2)

Из второй формулы следует, что удельный поток переносимого молекулярной диффузией вещества через единицу поверхности $F$ равнозначна единице, в единицу времени $t$ (скорость молекулярной диффузии) составит:

$q_m = \frac{M}{Fx} = -{D}\frac{dc}{dn}$ (3)

Согласно своей структуре закон Фика подобен закону Фурье, в чьи задачи входит описание передачи тепла за счет теплопроводности. При этом в качестве аналога градиента температур в данном случае выступит градиент концентраций, характеризующий изменение концентрации продиффундировавшего вещества на единицу длины нормали между поверхностями постоянных, однако неодинаковых концентраций.

Коэффициент диффузии молекул

Что касается коэффициента пропорциональности $D$, то в выражении закона Фика он будет называться коэффициентом диффузии молекул. Согласно первой формуле (1), коэффициент диффузии выражается таким образом:

$D = \left(\frac{Mdn}{dcFx}\right) = \frac{м^2}{с}$ (4)

Коэффициент диффузии показывает то количество вещества, которое будет диффундировать в единицу времени через поверхность при единичном градиенте концентрации. Коэффициент диффузии $D$ можно считать аналогом коэффициента температуропроводности $а$.

Коэффициент молекулярной диффузии считается физической постоянной, характеризующей свойство проникновения данного вещества посредством процесса диффузии в неподвижную среду. Таким образом, величина $D$ не будет зависимой от гидродинамических условий, в которых наблюдается протекание процесса.

Значения коэффициента диффузии $D$ начнут повышаться при увеличении таких показателей, как давление и температура. Значение $D$ в каждом отдельно рассмотренном случае будет определяться, согласно теоретическим или полуэмпирическим уравнениям, с обязательным учетом давления и температуры.

Замечание 1

Коэффициенты диффузии газа в иную газовую среду получат значения 0,1 – 1 $см^3/с$. В то же время, если газ будет диффундировать в жидкость, они составят приблизительно 1 $см^3/сутки$. Таким образом, диффузия молекул представляет довольно медленный процесс, особенно в жидкой среде.

Примеры диффузии молекул

Замечание 2

Диффузия считается в физике процессом, осуществляемым на молекулярном уровне и определяющимся случайным характером отдельно перемещающихся молекул. Скорость диффузии оказывается пропорциональной, таким образом, средней скорости молекул. Процесс диффузии определяет максимальная тепловая скорость молекул. Имеется в виду скорость молекул самой маленькой массы.

Диффузию характеризует процесс переноса энергии (или материи) из среды высокой концентрации в такую же, только с низкой. Наиболее распространенным примером диффузии считается процесс перемешивания газов (жидкостей) (можно привести пример с попаданием капли чернил в воду и ее последующим равномерным окрашиванием).

В качестве еще одного яркого примера диффузии молекул может выступать эксперимент с твердым телом. Так, при нагревании одного конца стержня или его электрической зарядки, начнет распространяться тепло (а также электрический ток) в направлении от горячей части, которая зарядилась, к холодной (не заряженной).

В ситуации с металлическим стержнем фиксируется быстрое развитие тепловой диффузии при практически мгновенном перемещении тока. В случае с синтетическим стержнем, мы наблюдаем медленное протекание тепловой диффузии и очень медленную диффузию электрически заряженных частиц.

Диффузия молекул как процесс будет происходить еще более медленными темпами. К примеру, кусок сахара (при условии его попадания в воду и без последующего перемешивания) станет однородной с водой массой только спустя несколько недель.

Более медленным будет процесс диффузии одного твердого вещества в иное. Так, медь, покрытая золотым слоем, пролежит еще несколько тысяч лет, прежде чем впитает в свою поверхность золотосодержащий слой. При этом глубина проникновения спустя это время составит только несколько микрометров.

Перейдем к другой задаче, для которой нам придется несколько изменить метод анализа, — к задаче о диффузии. Предположим, что мы взяли ящик, заполненный газом, находящимся в тепловом равновесии, а потом в любое место внутри ящика вспрыснули небольшое количество другого газа. Назовем первоначальный газ газом «фона», а новый газ — «особым» газом. Особый газ начинает распространяться по всему ящику, но распространение это замедляется наличием молекул фона. Явление такого замедленного распространения называется диффузией. Диффузия в основном определяется столкновениями молекул особого газа с молекулами фона. После многих столкновений особые молекулы более или менее равномерно распределятся по всему ящику. Важно не спутать диффузию газа с переносом больших количеств вещества в результате конвекционных токов. Обычно смешение двух газов происходит именно в результате комбинации конвекции и диффузии. Сейчас нас интересует только такое перемешивание, которое не сопровождается «порывами ветра». Газ распространяется только благодаря молекулярному движению, т. е. происходит диффузия. Давайте выясним, быстро ли происходит диффузия.

Итак, мы приступаем к вычислению общего потока молекул особого газа, порождаемого молекулярным движением. Общий поток не равен нулю только тогда, когда распределение молекул отличается от равновесного, иначе усреднение молекулярного движения сводит общий поток к нулю. Рассмотрим сначала поток в направлении оси х. Чтобы определить, чему этот поток равен, мы должны вообразить площадку, перпендикулярную к оси, и подсчитать число молекул, пересекающих эту площадку. Чтобы определить общий поток, мы должны считать положительными те молекулы, которые движутся в направлении положительных х, и вычесть из этого числа те молекулы, которые движутся в противоположном направлении. Как мы неоднократно убеждались, число молекул, пересекающих площадку в течение времени ΔT, равно числу молекул, находящихся к началу интервала ΔT внутри объема, заключенного между нашей площадкой и площадкой, расположенной от нее на расстоянии v ΔT. (Заметим, что здесь v — настоящая скорость молекулы, а отнюдь не скорость дрейфа.)

Мы упростим наши выкладки, если возьмем площадку единичной площади. Тогда число особых молекул, пересекающих площадку слева направо (справа от площадки лежат положительные x-направления), равно n_vΔT, где n_ — число особых молекул в единичном объеме слева от площадки (с точностью до множителя ˜ 1 / 6 , но мы такими множителями пренебрежем!). Аналогично, число особых молекул, движущихся справа налево, равно n + vΔT, где n + — плотность особых молекул справа от площадки. Если мы обозначим молекулярный поток буквой J, под которой мы будем понимать общий поток молекул через единичную площадку за единицу времени, то получим

А что понимать под n_ и n + ? Когда мы говорим «плотность слева от площадки», то как далеко налево? Мы должны измерить плотность в том месте, откуда молекула отправляется в свой «свободный полет», потому что число стартующих молекул определяется числом молекул, находящихся в этом месте. Таким образом, n_ — это плотность молекул на расстоянии длины свободного пробега l слева от нашей воображаемой площадки, а n + — плотность молекул на расстоянии длины свободного пробега справа от нее.

Распределение особых молекул в ящике удобно описывать с помощью непрерывной функции х, у и z, которую мы обозначим n а. Под n а (х, у, z) нужно понимать плотность особых молекул в маленьком объеме вокруг точки (х, у, z). Тогда разность (n + -n_) можно представить в виде

Подставляя этот результат в (43.22) и пренебрегая множителем 2, получаем

Мы выяснили, что поток особых молекул пропорционален производной плотности, или, как иногда говорят, «градиенту плотности».

Ясно, что мы сделали несколько грубых приближений. Не говоря уже о том, что мы постоянно забывали о множителях, мы использовали v, когда нужно было ставить v x , а разместив объемы, содержащие молекулы n + и n_, на концах перпендикуляров к площадке, взяли перпендикуляры длиной l . Между тем для тех молекул, которые движутся не перпендикулярно к поверхности, l соответствует длине наклонного пути. Можно исправить эти недоделки; более тщательный анализ показал бы, что правую часть уравнения (43.24) нужно умножить на 1 / 3 . Итак, более правильный ответ выглядит следующим образом:

Аналогичные уравнения можно написать для токов вдоль у-и z-направлений.

С помощью макроскопических наблюдений можно измерить ток J x и градиент плотности dn a /dx. Их отношение, найденное экспериментально, называется «коэффициентом диффузии» D. Это значит, что

Мы смогли показать, что ожидаемое значение коэффициента D для газа равно

Пока мы изучили в этой главе два разных процесса: подвижность (дрейф молекул под действием «внешней» силы) и диффузию (разбегание молекул, определяемое только внутренними силами, случайными столкновениями). Однако эти процессы связаны друг с другом, потому что в основе обоих явлений лежит тепловое движение, и оба раза в расчетах появлялась длина свободного пробега l .

Если в уравнение (43.25) подставить l =vτ и τ=µm, то получится

Ho mv 2 зависит только от температуры. Мы еще помним, что

Таким образом, D, коэффициент диффузии, равен произведению kТ на µ, коэффициент подвижности:

Оказывается, что (43.31) — это точное соотношение между коэффициентами. Хотя мы исходили из очень грубых предположений, не нужно к нему добавлять никаких дополнительных множителей. Можно показать, что (43.31) в самом деле всегда удовлетворяется точно. Это верно даже в очень сложных случаях (например, для случая взвешенных в жидкости мелких частиц), когда наши простые вычисления явно отказываются служить.

Чтобы показать, что (43.31) верно в самых общих случаях, мы выведем его иначе, используя только основные принципы статистической механики. Представьте себе, что почему-то существует градиент «особых» молекул и возник ток диффузии, пропорциональный, согласно (43.26), градиенту плотности. Тогда мы создадим в направлении оси х силовое поле так, что на каждую особую молекулу будет действовать сила F. По определению подвижности µ скорость дрейфа дается соотношением

Используя обычные аргументы, можно найти ток дрейфа (общее число молекул, пересекающих единичную площадку за единицу времени):

А теперь можно так распорядиться силой F, что ток дрейфа, вызываемый силой F, скомпенсирует диффузию, тогда полный ток особых молекул будет равен нулю. В этом случае мы имеем J x + J др = 0, или

В этом случае «компенсации» существует постоянный (во времени) градиент плотности, равный

Теперь уже легко соображать дальше! Ведь мы добились равновесия и можем теперь применять наши равновесные законы статистической механики. По этим законам вероятность найти молекулу около точки х пропорциональна ехр (—U/kT), где U — потенциальная энергия. Если говорить о плотности молекул n а, то это значит:

Дифференцируя (43.37) по х, получаем

В нашем случае сила F направлена вдоль оси х и потенциальная энергия U равна —Fx, a—dU/dx = F. Уравнение (43.39) принимает вид

[Это в точности уравнение (40.2), из которого мы и вывели exp(-U/kT); круг замкнулся.] Сравнивая (43.40) и (43.36), мы получаем уравнение (43.31). Мы показали, что в уравнении (43.31), которое выражает ток диффузии через подвижность, все коэффициенты правильны, а само уравнение правильно всегда. Подвижность и диффузия тесно связаны. Эту связь открыл Эйнштейн.