Биографии Характеристики Анализ

Основные понятия математического моделирования. §1

Лекция № 1

Введение. Понятие математических моделей и методов

Раздел 1. Введение

2. Методы построения математических моделей. Понятие о системном подходе. 1

3. Основные понятия математического моделирования экономических систем.. 4

4. Методы аналитического, имитационного и натурного моделирования. 5

Контрольные вопросы.. 6

1. Содержание, цели и задачи дисциплины «Методы моделирования»

Настоящая дисциплина посвящена изучению методов моделирования и практическому применению полученных знаний. Целью дисциплины является обучение студентов общим вопросам теории моделирования, методам построения математических моделей и формального описания процессов и объектов, применению математических моделей для проведения вычислительных экспериментов и решения оптимизационных задач, с использованием современных вычислительных средств.

В задачи дисциплины входит:

Ознакомить студентов с основными понятиями теории математического моделирования, теории систем, теории подобия, теории планирования эксперимента и обработки экспериментальных данных, используемых для построения математических моделей,

Дать студентам навыки в области постановки задачи моделирования, математического описания объектов /процессов/, численных методов реализации математических моделей на ЭВМ и решения оптимизационных задач.

В результате изучения дисциплины студент должен освоить методы математического моделирования процессов и объектов от постановки задачи до реализации математических моделей на ЭВМ и оформления результатов исследования моделей.

Курс дисциплины рассчитан на 12 лекций и 12 практических работ. В результате изучения дисциплины студент должен освоить методы математического моделирования от постановки задачи до реализации математических моделей на ЭВМ

2. Методы построения математических моделей. Понятие о системном подходе

5. Решение задачи.

Последовательное использование методов исследования операций и их реализация на современной информационно-вычислительной технике позволяет преодолеть субъективизм, исключить так называемые волевые решения, основанные не на строгом и точном учете объективных обстоятельств, а на случайных эмоциях и личной заинтересованности руководителей различных уровней, которые к тому же не могут согласовать эти свои волевые решения.

Системный анализ позволяет учесть и использовать в управлении всю имеющуюся информацию об управляемом объекте, согласовать принимаемые решения с точки зрения объективного, а не субъективного, критерия эффективности. Экономить на вычислениях при управлении то же самое, что экономить на прицеливании при выстрелах. Однако ЭВМ не только позволяет учесть всю информацию, но и избавляет управленца от ненужной ему информации, а всю нужную пускает в обход человека, представляя ему только самую обобщенную информацию, квинтэссенцию. Системный подход в экономике эффективен и сам по себе, без использования ЭВМ, как метод исследования, при этом он не изменяет ранее открытых экономических законов, а только учит, как их лучше использовать.

4. Методы аналитического, имитационного и натурного моделирования

Моделирование представляет собой мощный метод научного познания, при использовании которого исследуемый объект заменяется более простым объектом, называемым моделью. Основными разновидностями процесса моделирования можно считать два его вида - математическое и физическое моделирование. При физическом (натурном) моделировании исследуемая система заменяется соответствующей ей другой материальной системой, которая воспроизводит свойства изучаемой системы с сохранением их физической природы. Примером этого вида моделирования может служить пилотная сеть, с помощью которой изучается принципиальная возможность построения сети на основе тех или иных компьютеров, коммуникационных устройств, операционных систем и приложений.

Возможности физического моделирования довольно ограничены. Оно позволяет решать отдельные задачи при задании небольшого количества сочетаний исследуемых параметров системы. Действительно, при натурном моделировании вычислительной сети практически невозможно проверить ее работу для вариантов с использованием различных типов коммуникационных устройств - маршрутизаторов, коммутаторов и т. п. Проверка на практике около десятка разных типов маршрутизатров связана не только с большими усилиями и временными затратами, но и с немалыми материальными затратами.

Но даже и в тех случаях, когда при оптимизации сети изменяются не типы устройств и операционных систем, а только их параметры, проведение экспериментов в реальном масштабе времени для огромного количества всевозможных сочетаний этих параметров практичеки невозможно за обозримое время. Даже простое изменение максимального размера пакета в каком-либо протоколе требует переконфигурирования операционной системы в сотнях компьютеров сети, что требует от администратора сети проведения очень большой работы.

Поэтому, при оптимизации сетей во многих случаях предпочтительным оказывается использование математического моделирования. Математическая модель представляет собой совокупность соотношений (формул, уравнений, неравенств, логических условий), определяющих процесс изменения состояния системы в зависимости от ее параметров, входных сигналов, начальных условий и времени.

Особым классом математических моделей являются имитационные модели. Такие модели представляют собой компьютерную программу, которая шаг за шагом воспроизводит события, происходящие в реальной системе. Применительно к вычислительным сетям их имитационные модели воспроизводят процессы генерации сообщений приложениями, разбиение сообщений на пакеты и кадры определенных протоколов, задержки, связанные с обработкой сообщений, пакетов и кадров внутри операционной системы, процесс получения доступа компьютером к разделяемой сетевой среде, процесс обработки поступающих пакетов маршрутизатором и т. д. При имитационном моделировании сети не требуется приобретать дорогостоящее оборудование - его работы имитируется программами, достаточно точно воспроизводящими все основные особенности и параметры такого оборудования.

Преимуществом имитационных моделей является возможность подмены процесса смены событий в исследуемой системе в реальном масштабе времени на ускоренный процесс смены событий в темпе работы программы. В результате за несколько минут можно воспроизвести работу сети в течение нескольких дней, что дает возможность оценить работу сети в широком диапазоне варьируемых параметров.

Результатом работы имитационной модели являются собранные в ходе наблюдения за протекающими событиями статистические данные о наиболее важных характеристиках сети: временах реакции, коэффициентах использования каналов и узлов, вероятности потерь пакетов и т. п.

Существуют специальные языки имитационного моделирования, которые облегчают процесс создания программной модели по сравнению с использованием универсальных языков программирования. Примерами языков имитационного моделирования могут служить такие языки, как SIMULA, GPSS, SIMDIS.

Существуют также системы имитационного моделирования, которые ориентируются на узкий класс изучаемых систем и позволяют строить модели без программирования.

Контрольные вопросы

Сформулируйте определение процесса моделирования. Что такое модель? Свойства моделирования. Сформулируйте основные этапы построения модели классическим методом. Сформулируйте основные этапы построения модели при системном подходе. Назовите функции моделей. Каковы этапы процесса решения экономических задач? Основные разновидности процесса моделирования.

Математические модели

Математическая модель - приближенное опи сание объекта моделирования, выраженное с помо щью математической символики.

Математические модели появились вместе с математикой много веков назад. Огромный толчок развитию математического моделирования придало появление ЭВМ. Применение вычислительных машин позволило проанализировать и применить на практике многие математические модели, которые раньше не поддавались аналитическому исследованию. Реализованная на компьютере математиче ская модель называется компьютерной математической моделью , а проведение целенаправленных расчетов с помощью компьютерной модели называется вычислительным экспериментом .

Этапы компьютерного математического мо делирования изображены на рисунке. Первый этап - определение целей моделирования. Эти цели могут быть различными:

  1. модель нужна для того, чтобы понять, как устроен конкретный объект, какова его структура, основные свойства, законы развития и взаимодействия
    с окружающим миром (понимание);
  2. модель нужна для того, чтобы научиться управлять объектом (или процессом) и определить наилучшие способы управления при заданных целях и критериях (управление);
  3. модель нужна для того, чтобы прогнозировать прямые и косвенные последствия реализации заданных способов и форм воздействия на объект (прогнозирование).
Поясним на примерах. Пусть объект исследования - взаимодействие потока жидкости или газа с телом, являющимся для этого потока препятствием. Опыт показывает, что сила сопротивления потоку со стороны тела растет с ростом скорости потока, но при некоторой достаточно высокой скорости эта сила скачком уменьшается с тем, чтобы с дальнейшим увеличением скорости снова возрасти. Что же вызвало уменьшение силы сопротивления? Математическое моделирование позволяет получить четкий ответ: в момент скачкообразного уменьшения сопротивления вихри, образующиеся в потоке жидкости или газа позади обтекаемого тела, начинают отрываться от него и уноситься потоком.

Пример совсем из другой области: мирно сосуществовавшие со стабильными численностями популяции двух видов особей, имеющих общую кормовую базу, "вдруг" начинают резко менять численность. И здесь математическое моделирование позволяет (с известной долей достоверности) установить причину (или по крайней мере опровергнуть определенную гипотезу).

Выработка концепции управления объектом - другая возможная цель моделирования. Какой режим полета самолета выбрать для того, чтобы полет был безопасным и экономически наиболее выгодным? Как составить график выполнения сотен видов работ на строительстве большого объекта, чтобы оно закончилось в максимально короткий срок? Множество таких проблем систематически возникает перед экономистами, конструкторами, учеными.

Наконец, прогнозирование последствий тех или иных воздействий на объект может быть как относительно простым делом в несложных физических системах, так и чрезвычайно сложным - на грани выполнимости - в системах биолого-экономических, социальных. Если ответить на вопрос об изменении режима распространения тепла в тонком стержне при изменениях в составляющем его сплаве относительно легко, то проследить (предсказать) экологические и климатические последствия строительства крупной ГЭС или социальные последствия изменений налогового законодательства несравненно труднее. Возможно, и здесь методы математического моделирования будут оказывать в будущем более значительную помощь.

Второй этап: определение входных и выходных параметров модели; разделение входных параметров по степени важности влияния их изменений на выходные. Такой процесс называется ранжированием, или разделением по рангам (см. "Формализа ция и моделирование" ).

Третий этап: построение математической модели. На этом этапе происходит переход от абстрактной формулировки модели к формулировке, имеющей конкретное математическое представление. Математическая модель - это уравнения, системы уравнений, системы неравенств, дифференциальные уравнения или системы таких уравнений и пр.

Четвертый этап: выбор метода исследования математической модели. Чаще всего здесь используются численные методы, которые хорошо поддаются программированию. Как правило, для решения одной и той же задачи подходит несколько методов, различающихся точностью, устойчивостью и т.д. От верного выбора метода часто зависит успех всего процесса моделирования.

Пятый этап: разработка алгоритма, составление и отладка программы для ЭВМ - трудно формализуемый процесс. Из языков программирования многие профессионалы для математического моделирования предпочитают FORTRAN: как в силу традиций, так и в силу непревзойденной эффективности компиляторов (для расчетных работ) и наличия написанных на нем огромных, тщательно отлаженных и оптимизированных библиотек стандартных программ математических методов. В ходу и такие языки, как PASCAL, BASIC, С, - в зависимости от характера задачи и склонностей программиста.

Шестой этап: тестирование программы. Работа программы проверяется на тестовой задаче с заранее известным ответом. Это - лишь начало процедуры тестирования, которую трудно описать формально исчерпывающим образом. Обычно тестирование заканчивается тогда, когда пользователь по своим профессиональным признакам сочтет программу верной.

Седьмой этап: собственно вычислительный эксперимент, в процессе которого выясняется, соответствует ли модель реальному объекту (процессу). Модель достаточно адекватна реальному процессу, если некоторые характеристики процесса, полученные на ЭВМ, совпадают с экспериментально полученными характеристиками с заданной степенью точности. В случае несоответствия модели реальному процессу возвращаемся к одному из предыдущих этапов.

Классификация математических моделей

В основу классификации математических моделей можно положить различные принципы. Можно классифицировать модели по отраслям наук (математические модели в физике, биологии, социологии и т.д.). Можно классифицировать по применяемому математическому аппарату (модели, основанные на применении обыкновенных дифференциальных уравнений, дифференциальных уравнений в частных производных, стохастических методов, дискретных алгебраических преобразований и т.д.). Наконец, если исходить из общих задач моделирования в разных науках безотносительно к математическому аппарату, наиболее естественна такая классификация:

  • дескриптивные (описательные) модели;
  • оптимизационные модели;
  • многокритериальные модели;
  • игровые модели.

Поясним это на примерах.

Дескриптивные (описательные) модели . Например, моделирование движения кометы, вторгшейся в Солнечную систему, производится с целью предсказания траектории ее полета, расстояния, на котором она пройдет от Земли, и т.д. В этом случае цели моделирования носят описательный характер, поскольку нет никаких возможностей повлиять на движение кометы, что-то в нем изменить.

Оптимизационные модели используются для описания процессов, на которые можно воздействовать, пытаясь добиться достижения заданной цели. В этом случае в модель входит один или несколько параметров, доступных влиянию. Например, меняя тепловой режим в зернохранилище, можно задаться целью подобрать такой режим, чтобы достичь максимальной сохранности зерна, т.е. оптимизировать процесс хранения.

Многокритериальные модели . Нередко приходится оптимизировать процесс по нескольким параметрам одновременно, причем цели могут быть весьма противоречивыми. Например, зная цены на продукты и потребность человека в пище, нужно организовать питание больших групп людей (в армии, детском летнем лагере и др.) физиологически правильно и, одновременно с этим, как можно дешевле. Ясно, что эти цели совсем не совпадают, т.е. при моделировании будет использоваться несколько критериев, между которыми нужно искать баланс.

Игровые модели могут иметь отношение не только к компьютерным играм, но и к весьма серьезным вещам. Например, полководец перед сражением при наличии неполной информации о противостоящей армии должен разработать план: в каком порядке вводить в бой те или иные части и т.д., учитывая и возможную реакцию противника. Есть специальный раздел современной математики - теория игр, - изучающий методы принятия решений в условиях неполной информации.

В школьном курсе информатики начальное представление о компьютерном математическом моделировании ученики получают в рамках базового курса. В старших классах математическое моделирование может глубоко изучаться в общеобразовательном курсе для классов физико-математического профиля, а также в рамках специализированного элективного курса.

Основными формами обучения компьютерному математическому моделированию в старших классах являются лекционные, лабораторные и зачетные занятия. Обычно работа по созданию и подготовке к изучению каждой новой модели занимает 3-4 урока. В ходе изложения материала ставятся задачи, которые в дальнейшем должны быть решены учащимися самостоятельно, в общих чертах намечаются пути их решения. Формулируются вопросы, ответы на которые должны быть получены при выполнении заданий. Указывается дополнительная литература, позволяющая получить вспомогательные сведения для более успешного выполнения заданий.

Формой организации занятий при изучении нового материала обычно служит лекция. После завершения обсуждения очередной модели учащиеся имеют в своем распоряжении необходимые теоретические сведения и набор заданий для дальнейшей работы. В ходе подготовки к выполнению задания учащиеся выбирают подходящий метод решения, с помощью какого-либо известного частного решения тестируют разработанную программу. В случае вполне возможных затруднений при выполнении заданий дается консультация, делается предложение более детально проработать указанные разделы в литературных источниках.

Наиболее соответствующим практической части обучения компьютерному моделированию является метод проектов. Задание формулируется для ученика в виде учебного проекта и выполняется в течение нескольких уроков, причем основной организационной формой при этом являются компьютерные лабораторные работы. Обучение моделированию с помощью метода учебных проектов может быть реализовано на разных уровнях. Первый - проблемное изложение процесса выполнения проекта, которое ведет учитель. Второй - выполнение проекта учащимися под руководством учителя. Третий - самостоятельное выполнение учащимися учебного исследовательского проекта.

Результаты работы должны быть представлены в численном виде, в виде графиков, диаграмм. Если имеется возможность, процесс представляется на экране ЭВМ в динамике. По окончанию расчетов и получению результатов проводится их анализ, сравнение с известными фактами из теории, подтверждается достоверность и проводится содержательная интерпретация, что в дальнейшем отражается в письменном отчете.

Если результаты удовлетворяют ученика и учителя, то работа считается завершенной, и ее конечным этапом является составление отчета. Отчет включает в себя краткие теоретические сведения по изучаемой теме, математическую постановку задачи, алгоритм решения и его обоснование, программу для ЭВМ, результаты работы программы, анализ результатов и выводы, список использованной литературы.

Когда все отчеты составлены, на зачетном занятии учащиеся выступают с краткими сообщениями о проделанной работе, защищают свой проект. Это является эффективной формой отчета группы, выполняющей проект, перед классом, включая постановку задачи, построение формальной модели, выбор методов работы с моделью, реализацию модели на компьютере, работу с готовой моделью, интерпретацию полученных результатов, прогнозирование. В итоге учащиеся могут получить две оценки: первую - за проработанность проекта и успешность его защиты, вторую - за программу, оптимальность ее алгоритма, интерфейс и т.д. Учащиеся получают отметки и в ходе опросов по теории.

Существенный вопрос - каким инструментарием пользоваться в школьном курсе информатики для математического моделирования? Компьютерная реализация моделей может быть осуществлена:

  • с помощью табличного процессора (как правило, MS Excel);
  • путем создания программ на традиционных языках программирования (Паскаль, Бейсик и др.), а также на их современных версиях (Delphi, Visual
    Basic for Application и т.п.);
  • с помощью специальных пакетов прикладных программ для решения математических задач (MathCAD и т.п.).

На уровне основной школы первое средство представляется более предпочтительным. Однако в старшей школе, когда программирование является, наряду с моделированием, ключевой темой информатики, желательно привлекать его в качестве инструмента моделирования. В процессе программирования учащимся становятся доступными детали математических процедур; более того, они просто вынуждены их осваивать, а это способствует и математическому образованию. Что же касается использования специальных пакетов программ, то это уместно в профильном курсе информатики в качестве дополнения к другим инструментам.

Задание :

  • Составить схему ключевых понятий.

Математическая модель технического объекта - совокупность математических объектов и отношений между ними, которая адекватно отражает свойства исследуемого объекта, интересующие исследователя (инженера).

Модель может быть представлена различными способами.

Формы представления модели:

инвариантная - запись соотношений модели с помощью традиционного математического языка безотносительно к методу решения уравнений модели;

аналитическая - запись модели в виде результата аналитического решения исходных уравнений модели;

алгоритмическая - запись соотношений модели и выбранного численного метода решения в форме алгоритма.

схемная (графическая) - представление модели на некотором графическом языке (например, язык графов, эквивалентные схемы, диаграммы и т.п.);

физическая

аналоговая

Наиболее универсальным является математическое описание процессов - математическое моделирование.

В понятие математического моделирования включают и процесс решения задачи на ЭВМ.

Обобщенная математическая модель

Математическая модель описывает зависимость между исходными данными и искомыми величинами.

Элементами обобщенной математической модели являются (рис. 1): множество входных данных (переменные) X,Y;

X - совокупность варьируемых переменных; Y - независимые переменные (константы);

математический оператор L, определяющий операции над этими данными; под которым понимается полная система математических операций, описывающих численные или логические соотношения между множествами входных и выходных данных (переменные);

множество выходных данных (переменных) G(X,Y); представляет собой совокупность критериальных функций, включающую (при необходимости) целевую функцию.

Математическая модель является математическим аналогом проектируемого объекта. Степень адекватности ее объекту определяется постановкой и корректностью решений задачи проектирования.

Множество варьируемых параметров (переменных) X образует пространство варьируемых параметров Rx (пространство поиска), которое является метрическим с размерностью n, равной числу варьируемых параметров.

Множество независимых переменных Y образуют метрическое пространство входных данных Ry. В том случае, когда каждый компонент пространства Ry задается диапазоном возможных значений, множество независимых переменных отображается некоторым ограниченным подпространством пространства Ry.

Множество независимых переменных Y определяет среду функционирования объекта, т.е. внешние условия, в которых будет работать проектируемый объект

Это могут быть:

  • - технические параметры объекта, не подлежащие изменению в процессе проектирования;
  • - физические возмущения среды, с которой взаимодействует объект проектирования;
  • - тактические параметры, которые должен достигать объект проектирования.

Выходные данные рассматриваемой обобщенной модели образуют метрическое пространство критериальных показателей RG.

Схема использования математической модели в системе автоматизированного проектирования показана на рис.2.


Требования к математической модели

Основными требованиями, предъявляемыми к математическим моделям, являются требования адекватности, универсальности и экономичности.

Адекватность. Модель считается адекватной, если отражает заданные свойства с приемлемой точностью. Точность определяется как степень совпадения значений выходных параметров модели и объекта.

Точность модели различна в разных условиях функционирования объекта. Эти условия характеризуются внешними параметрами. В пространстве внешних параметров выделить область адекватности модели, где погрешность меньше заданной предельно допустимой погрешности. Определение области адекватности моделей - сложная процедура, требующая больших вычислительных затрат, которые быстро растут с увеличением размерности пространства внешних параметров. Эта задача по объему может значительно превосходить задачу параметрической оптимизации самой модели, поэтому для вновь проектируемых объектов может не решаться.

Универсальность - определяется в основном числом и составом учитываемых в модели внешних и выходных параметров.

Экономичность модели характеризуется затратами вычислительных ресурсов для ее реализации - затратами машинного времени и памяти.

Противоречивость требований к модели обладать широкой областью адекватности, высокой степени универсальности и высокой экономичности обусловливает использование ряда моделей для объектов одного и того же типа.

Методы получения моделей

Получение моделей в общем случае - процедура неформализованная. Основные решения, касающиеся выбора вида математических соотношений, характера используемых переменных и параметров, принимает проектировщик. В тоже время такие операции, как расчет численных значений параметров модели, определение областей адекватности и другие, алгоритмизированы и решаются на ЭВМ. Поэтому моделирование элементов проектируемой системы обычно выполняется специалистами конкретных технических областей с помощью традиционных экспериментальных исследований.

Методы получения функциональных моделей элементов делят на теоретические и экспериментальные.

Теоретические методы основаны на изучении физических закономерностей протекающих в объекте процессов, определении соответствующего этим закономерностям математического описания, обосновании и принятии упрощающих предположений, выполнении необходимых выкладок и приведении результата к принятой форме представления модели.

Экспериментальные методы основаны на использовании внешних проявлений свойств объекта, фиксируемых во время эксплуатации однотипных объектов или при проведении целенаправленных экспериментов.

Несмотря на эвристический характер многих операций моделирование имеет ряд положений и приемов, общих для получения моделей различных объектов. Достаточно общий характер имеют

методика макро моделирования,

математические методы планирования экспериментов,

алгоритмы формализуемых операций расчета численных значений параметров и определения областей адекватности.

Использование математических моделей

Вычислительная мощность современных компьютеров в сочетании с предоставлением пользователю всех ресурсов системы, возможностью диалогового режима при решении задачи и анализе результатов позволяют свести к минимуму время решения задачи.

При составлении математической модели от исследователя требуется:

изучить свойства исследуемого объекта;

умение отделить главные свойства объекта от второстепенных;

оценить принятые допущения.

Модель описывает зависимость между исходными данными и искомыми величинами. Последовательность действий, которые надо выполнить, чтобы от исходных данных перейти к искомым величинам, называют алгоритмом.

Алгоритм решения задачи на ЭВМ связан с выбором численного метода. В зависимости от формы представления математической модели (алгебраическая или дифференциальная форма) используются различные численные методы.

Суть экономико-математического моделирования заключается в описании социально-экономических систем и процессов в виде экономико-математических моделей.

Рассмотрим вопросы классификации экономико-математических методов. Эти методы, как отмечено выше, представляют собой комплекс экономико-математических дисциплин, являющихся сплавом экономики, математики и кибернетики.

Поэтому классификация экономико-математических методов сводится к классификации научных дисциплин, входящих в их состав. Хотя общепринятая классификация этих дисциплин пока не выработана, с известной степенью приближения в составе экономико-математических методов можно выделить следующие разделы:

  • * экономическая кибернетика: системный анализ экономики, теория экономической информации и теория управляющих систем;
  • * математическая статистика: экономические приложения данной дисциплины -- выборочный метод, дисперсионный анализ, корреляционный анализ, регрессионный анализ, многомерный статистический анализ, факторный анализ, теория индексов и др.;
  • * математическая экономия и изучающая те же вопросы с количественной стороны эконометрия: теория экономического роста, теория производственных функций, межотраслевые балансы, национальные счета, анализ спроса и потребления, региональный и пространственный анализ, глобальное моделирование и др.;
  • * методы принятия оптимальных решений, в том числе исследование операций в экономике. Это наиболее объемный раздел, включающий в себя следующие дисциплины и методы: оптимальное (математическое) программирование, в том числе методы ветвей и границ, сетевые методы планирования и управления, программно-целевые методы планирования и управления, теорию и методы управления запасами, теорию массового обслуживания, теорию игр, теорию и методы принятия решений, теорию расписаний. В оптимальное (математическое) программирование входят в свою очередь линейное программирование, нелинейное программирование, динамическое программирование, дискретное (целочисленное) программирование, дробно-линейное программирование, параметрическое программирование, сепарабельное программирование, стохастическое программирование, геометрическое программирование;
  • * методы и дисциплины, специфичные отдельно как для централизованно планируемой экономики, так и для рыночной (конкурентной) экономики. К первым можно отнести теорию оптимального функционирования экономики, оптимальное планирование, теорию оптимального ценообразования, модели материально-технического снабжения и др. Ко вторым -- методы, позволяющие разработать модели свободной конкуренции, модели капиталистического цикла, модели монополии, модели индикативного планирования, модели теории фирмы и т. д.

Многие из методов, разработанных для централизованно планируемой экономики, могут оказаться полезными и при экономико-математическом моделировании в условиях рыночной экономики;

* методы экспериментального изучения экономических явлений. К ним относят, как правило, математические методы анализа и планирования экономических экспериментов, методы машинной имитации (имитационное моделирование), деловые игры. Сюда можно отнести также и методы экспертных оценок, разработанные для оценки явлений, не поддающихся непосредственному измерению.

Перейдем теперь к вопросам классификации экономико-математических моделей, другими словами, математических моделей социально-экономических систем и процессов.

Единой системы классификации таких моделей в настоящее время также не существует, однако обычно выделяют более десяти основных признаков их классификации, или классификационных рубрик. Рассмотрим некоторые из этих рубрик.

По общему целевому назначению экономико-математические модели делятся на теоретико-аналитические, используемые при изучении общих свойств и закономерностей экономических процессов, и прикладные, применяемые в решении конкретных экономических задач анализа, прогнозирования и управления. Различные типы прикладных экономико-математических моделей как раз и рассматриваются в данном учебном пособии.

По степени агрегирования объектов моделирования модели разделяются на макроэкономические и микроэкономические. Хотя между ними и нет четкого разграничения, к первым из них относят модели, отражающие функционирование экономики как единого целого, в то время как микроэкономические модели связаны, как правило, с такими звеньями экономики, как предприятия и фирмы.

По конкретному предназначению, т. е. по цели создания и применения, выделяют балансовые модели, выражающие требование соответствия наличия ресурсов и их использования; трендовые модели, в которых развитие моделируемой экономической системы отражается через тренд (длительную тенденцию) ее основных показателей; оптимизационные модели, предназначенные для выбора наилучшего варианта из определенного числа вариантов производства, распределения или потребления; имитационные модели, предназначенные для использования в процессе машинной имитации изучаемых систем или процессов и др.

По типу информации, используемой в модели, экономике-математические модели делятся на аналитические, построенные на априорной информации, и идентифицируемые, построенные на апостериорной информации.

По учету фактора времени модели подразделяются на статические, в которых все зависимости отнесены к одному моменту времени, и динамические, описывающие экономические системы в развитии.

По учету фактора неопределенности модели распадаются на детерминированные, если в них результаты на выходе однозначно определяются управляющими воздействиями, и стохастические (вероятностные), если при задании на входе модели определенной совокупности значений на ее выходе могут получаться различные результаты в зависимости от действия случайного фактора.

Экономико-математические модели могут классифицироваться также по характеристике математических объектов, включенных в модель, другими словами, по типу математического аппарата, используемого в модели. По этому признаку могут быть выделены матричные модели, модели линейного и нелинейного программирования, корреляционно-регрессионные модели,

Основные понятия математического моделирования модели теории массового обслуживания, модели сетевого планирования и управления, модели теории игр и т.д.

Наконец, по типу подхода к изучаемым социально-экономическим системам выделяют дескриптивные и нормативные модели. При дескриптивном (описательном) подходе получаются модели, предназначенные для описания и объяснения фактически наблюдаемых явлений или для прогноза этих явлений; в качестве примера дескриптивных моделей можно привести названные ранее балансовые и трендовые модели. При нормативном подходе интересуются не тем, каким образом устроена и развивается экономическая система, а как она должна быть устроена и как должна действовать в смысле определенных критериев. В частности, все оптимизационные модели относятся к типу нормативных; другим примером могут служить нормативные модели уровня жизни.

Рассмотрим в качестве примера экономико-математическую модель межотраслевого баланса (ЭММ МОБ). С учетом приведенных выше классификационных рубрик это прикладная, макроэкономическая, аналитическая, дескриптивная, детерминированная, балансовая, матричная модель; при этом существуют как статические методы так и динамические

Линейное программирование -- это частный раздел оптимального программирования. В свою очередь оптимальное (математическое) программирование -- раздел прикладной математики, изучающий задачи условной оптимизации. В экономике такие задачи возникают при практической реализации принципа оптимальности в планировании и управлении.

Необходимым условием использования оптимального подхода к планированию и управлению (принципа оптимальности) является гибкость, альтернативность производственно- хозяйственных ситуаций, в условиях которых приходится принимать планово-управленческие решения. Именно такие ситуации, как правило, и составляют повседневную практику хозяйствующего субъекта (выбор производственной программы, прикрепление к поставщикам, маршрутизация, раскрой материалов, приготовление смесей и т.д.).

Суть принципа оптимальности состоит в стремлении выбрать такое планово-управленческое решение X = (xi, Х2 хп), где Ху, (у = 1. я) -- его компоненты, которое наилучшим образом учитывало бы внутренние возможности и внешние условия производственной деятельности хозяйствующего субъекта.

Слова «наилучшим образом» здесь означают выбор некоторого критерия оптимальности, т.е. некоторого экономического показателя, позволяющего сравнивать эффективность тех или иных планово-управленческих решений. Традиционные критерии оптимальности: «максимум прибыли», «минимум затрат», «максимум рентабельности» и др. Слова «учитывало бы внутренние возможности и внешние условия производственной деятельности» означают, что на выбор планово-управленческого решения (поведения) накладывается ряд условий, т.е. выбор X осуществляется из некоторой области возможных (допустимых) решений D; эту область называют также областью определения задачи. общая задача оптимального (математического) программирования, иначе -- математическая модель задачи оптимального программирования, в основе построения (разработки) которой лежат принципы оптимальности и системности.

Вектор X (набор управляющих переменных Xj, j = 1, п) называется допустимым решением, или планом задачи оптимального программирования, если он удовлетворяет системе ограничений. А тот план X (допустимое решение), который доставляет максимум или минимум целевой функции f(xi, *2, ..., хп), называется оптимальным планом (оптимальным поведением, или просто решением) задачи оптимального программирования.

Таким образом, выбор оптимального управленческого поведения в конкретной производственной ситуации связан с проведением с позиций системности и оптимальности экономико- математического моделирования и решением задачи оптимального программирования. Задачи оптимального программирования в наиболее общем виде классифицируют по следующим признакам.

  • 1. По характеру взаимосвязи между переменными --
  • а) линейные,
  • б) нелинейные.

В случае а) все функциональные связи в системе ограничений и функция цели -- линейные функции; наличие нелинейности хотя бы в одном из упомянутых элементов приводит к случаю б).

  • 2. По характеру изменения переменных --
  • а) непрерывные,
  • б) дискретные.

В случае а) значения каждой из управляющих переменных могут заполнять сплошь некоторую область действительных чисел; в случае б) все или хотя бы одна переменная могут принимать только целочисленные значения.

  • 3. По учету фактора времени --
  • а) статические,
  • б) динамические.

В задачах а) моделирование и принятие решений осуществляются в предположении о независимости от времени элементов модели в течение периода времени, на который принимается планово-управленческое решение. В случае б) такое предположение достаточно аргументированно принято не может быть и необходимо учитывать фактор времени.

  • 4. По наличию информации о переменных --
  • а) задачи в условиях полной определенности (детерминированные),
  • б) задачи в условиях неполной информации,
  • в) задачи в условиях неопределенности.

В задачах б) отдельные элементы являются вероятностными величинами, однако известны или дополнительными статистическими исследованиями могут быть установлены их законы распределения. В случае в) можно сделать предположение о возможных исходах случайных элементов, но нет возможности сделать вывод о вероятностях исходов.

  • 5. По числу критериев оценки альтернатив --
  • а) простые, однокритериальные задачи,
  • б) сложные, многокритериальные задачи.

В задачах а) экономически приемлемо использование одного критерия оптимальности или удается специальными процедурами (например, «взвешиванием приоритетов»)

ПРЕДИСЛОВИЕ

Целью курса моделирование подъемно-транспортных систем является обучение основам моделирования подъемно-транспортных машин (ПТМ), что включает в себя составление математических моделей ПТМ, программную реализацию моделей на ЭВМ, а также получение, обработку и анализ результатов моделирования.

Для самостоятельного ознакомления с перечисленными вопросами рекомендуется следующая литература: Брауде В. И., Тер-Мхитаров М. С. «Системные методы расчета грузоподъемных машин», Игнатьев Н. Б., Ильевский Б. З., Клауз Л. П. «Моделирование системы машин», Рачков Е. В., Силиков Ю. В. «Подъемно - транспортные машины и механизмы», а также справочники и учебные пособия по численным методам вычислительной математики и использованию математического редактора MathCad.

§1. ОСНОВНЫЕ ЦЕЛИ, ОПРЕДЕЛЕНИЯ И ПРИНЦИПЫ МАТЕМАТИЧЕСКОГО МОДЕЛИРОВАНИЯ, ВИДЫ МОДЕЛЕЙ

1.1 Основные определения

Моделирование - это теоретико-экспериментальный метод познавательной деятельности, это метод исследования и объяснения явлений, процессов и систем (объектов-оригиналов) на основе создания новых объектов - моделей.

Моделирование – это замещение исследуемого объекта (оригинала) его условным образом или другим объектом (моделью) и изучение свойств оригинала путем исследования свойств модели.

В зависимости от способа реализации все модели можно разделить на 4 группы: физические, математические, предметно-математические и комбинированные [, ].

Физическая модель – реальное воплощение тех свойств оригинала, которые интересует исследователя. Физические модели называют еще макетами, поэтому физическое моделирование называется макетированием.

Математическая модель – это формализованное описание системы (или процесса) с помощью некоторого абстрактного языка (математически), например, в виде графов, уравнений, алгоритмов, математических соответствий и пр.

Предметно-математические модели являются аналоговыми, т.е. при этом для моделирования используется принцип одинакового математического описания процессов, реального и протекающего в модели.

Комбинированные модели представляют собой сочетание математической или предметно-математической и физической модели. Они используются тогда, когда математическое описание одного из элементов исследуемой системы неизвестно или затруднительно, а также по условиям моделирования необходимо ввести в качестве элемента физическую модель (например, тренажер).

Математическое моделирование – это замещение оригинала математической моделью и исследование свойств оригинала на данной модели.

Системой называется объединение нескольких объектов (элементов), взаимосвязанных между собой, образующее определенную целостность.

Элемент - это относительно самостоятельная часть системы, рассматриваемая на данном уровне анализа как единое целое, предназначенная для реализацию некоторой функции.

Система обладает следующими, т.н. «системными» свойствами:

    структурой, т.е. строго определенным порядком объединения элементов в группы;

    целенаправленностью или функциональностью, т.е. наличием цели, для которой создана система;

    эффективностью, способностью достигать цели с наименьшими затратами ресурсов;

    устойчивостью, способностью сохранять характеристики своих свойств неизменными в определенных пределах при изменении внешних условий.

В настоящее время в технике для исследования работы машинных комплексов и машин используется понятие «человеко-машинной системы» (ЧМС), т.е. смешанной системы, составной частью которой наряду с техническими объектами является человек-оператор [, ]. Кроме того, ЧМС взаимодействует с окружающей средой. Таким образом, для моделирования ПТС необходимо рассматривать систему Человек-Машина-Среда, которая может быть отображена следующим графом (Рис. 1).

Р
ис. 1 Граф системы Человек-Машина-Среда.

Стрелками на графе изображены потоки энергии, вещества и информации, которыми обмениваются элементы системы.

Процессы, протекающие в технических системах, образованы совокупностью простейших операций. Операции – преобразования входных физических величин в выходные в низкоуровневом элементе системы (Рис. 2).

В каждом элементе системы (E i) происходит преобразование входных воздействий (X i) в выходные (Y i), причем выходные воздействия одного элемента могут являться входными следующего. Соединение элементов в структурную схему по характеру передачи воздействий происходит последовательно или параллельно.

Рис. 2 Структурная схема системы.

Подъемно-транспортными системами (ПТС), изучаемыми в рамках данного курса, будем называть системы, включающими в себя человека, окружающую среду и подъемно-транспортные машины (ПТМ).

ПТМ – это машины, предназначенные для перемещения груза на относительно небольшие расстояния без его переработки. ПТМ применяются для облегчения, ускорения, повышения эффективности перегрузочных работ.

1.2 Принципы и виды математического моделирования

Математические модели должны обладать следующими свойствами:

    адекватность, свойство соответствия модели и объекта исследований;

    достоверность, обеспечение заданной вероятности попадания результатов моделирования в доверительный интервал,

    точность, незначительное (в пределах допустимой погрешности) расхождение результатов моделирования с показателями реальных объектов (процессов);

    устойчивость, свойство соответствия малых изменений выходных параметров малым изменениям входных;

    эффективность, способность достижения цели с малыми затратами ресурсов;

    адаптабельность, способность легко перестраиваться для решения различных задач.

Для достижения этих свойств существуют некоторые принципы (правила) математического моделирования , ряд которых приведен ниже.

    Принцип целенаправленности заключается в том, что модель должна обеспечивать достижение строго определенных целей и, в первую очередь, отражать те свойства оригинала, которые необходимы для достижения цели.

    Принцип информационной достаточности заключается в ограничении количества информации об объекте при создании его модели и поиске оптимума между вводимой информацией и результатами моделирования. Он может быть проиллюстрирован следующей схемой.

Все возможные случаи моделирования располагаются в столбце 2.

    Принцип осуществимости состоит в том, что модель должна обеспечивать достижение поставленной цели с вероятностью близкой к 1 и за конечное время. Этот принцип можно выразить двумя условиями

и
,
(1)

где
- вероятность достижения цели, - время достижения цели,
и - допустимые значения вероятности и времени достижения цели.

    Принцип агрегатирования заключается в том, что модель должна состоять из подсистем 1-го уровня, которые, в свою очередь, состоят из подсистем 2-го уровня и т.д. Подсистемы должны оформляться в виде отдельных самостоятельных блоков. Подобное построение модели позволяет использовать стандартные процедуры расчетов, а также делает более легкой адаптацию модели к решению различных задач.

    Принцип параметризации состоит в замене при моделировании определенных параметров подсистем, описанных функциями, соответствующими числовыми характеристиками.

Процесс моделирования с использованием этих правил заключается в выполнении следующих 5 шагов (этапов).

    Определение целей моделирования.

    Разработка концептуальной модели (расчетной схемы).

    Формализация.

    Реализация модели.

    Анализ и интерпретация результатов моделирования.

Существенные различия в выполнении 3-5 этапов позволяют говорить о двух подходах к построению модели.

Аналитическое моделирование – это использование математической модели в виде дополненных системой ограничений уравнений, связывающих входные переменные с выходными параметрами. Аналитическое моделирование используется, если существует законченная постановка задачи на исследования и необходимо получить один конечный результат, соответствующий ей.

Имитационное моделирование – это использование математической модели для описания функционирования системы во времени при различных сочетаниях параметров системы и различных внешних воздействиях. Имитационное моделирование используется, если конечной постановки задачи не существует и необходимо исследовать протекающие в системе процессы. Имитационное моделирование предполагает соблюдение временного масштаба. Т.е. события на одели происходят через интервалы времени пропорциональные событиям на оригинале с постоянным коэффициентом пропорциональности.

По использованию средств для реализации модели можно выделить еще один вид моделирования, компьютерное моделирование. Компьютерное моделирование – это математическое моделирование с использованием средств вычислительной техники.

1.3 Классификация математических моделей

Все математические модели можно разделить на несколько групп по следующим классификационным признакам.

    По виду моделируемой системы модели бывают статические и динамические. Статические модели служат для исследования статических систем, динамические для исследования динамических. Динамические системы характеризуются тем, что обладают множеством состояний, которые изменяют во времени.

    По целям моделирования модели подразделяются на нагрузочные, управленческие и функциональные. Нагрузочные модели служат для определения нагрузок, действующих на элементы системы, управленческие – для определения кинематических параметров исследуемой системы, к которым относятся скорости и перемещения элементов системы, функциональные – для определения координат модели в пространстве возможных функциональных состояний системы.

    По степени дискретизации модели подразделяются на дискретные, смешанные и континуальные. Дискретные модели содержат элементы, связанные между собой, характеристики которых сосредоточены в точках. Это могут быть массы, объемы, силовые и прочие воздействия, сосредоточенные в точках. Континуальные модели содержат элементы, параметры которых распределены по длине, по площади или по объему всего элемента. Смешанные модели содержат элементы обоих типов.

Модель (от лат. modulus - мера) и моделирование являются общенаучными понятиями. Моделирование с общенаучной точки зрения выступает как способ познания с помощью построения особых объектов, систем – моделей исследуемых объектов, явлений или процессов. При этом тот или иной объект называют моделью тогда, когда он используется для получения информации относительно другого объекта – прототипа модели.

Метод моделирования используется фактически во всех без исключения науках и на всех этапах научного исследования. Эвристическая сила этого метода определяется тем, что с помощью метода моделирования удается свести изучение сложного к простому, невидимого и неощутимого и видимому и ощутимому и т.д.

При исследовании какого-то объекта (процесса или явления) с помощью метода моделирования, в качестве модели можно выбрать те свойства, которые нас в данный момент интересуют. Научное исследование любого объекта всегда относительно. В конкретном исследовании нельзя рассмотреть объект во всем его многообразии. Следовательно, один и тот же объект может иметь много различных моделей и ни про одну из них нельзя сказать, что она единственная, настоящая модель данного объекта.

Принято различать четыре основных свойства моделей:

· упрощенность по сравнению с изучаемым объектом;

· способность отражать или воспроизводить объект исследования;

· возможность замещать объект исследования на определенных этапах его познания;

· возможность получать новую информацию об изучаемом объекте.

Исследование различных явлений или процессов математическими методами осуществляется с помощью математической модели. Математическая модель представляет собой формализованное описание на языке математики исследуемого объекта. Таким формализованным описанием может быть система линейных, нелинейных или дифференциальных уравнений, система неравенств, определенный интеграл, многочлен с неизвестными коэффициентами и т. д. Математическая модель должна охватывать важнейшие характеристики исследуемого объекта и отражать связи между ними.

Прежде чем создать математическую модель объекта (процесса или явления) его длительно изучают различными методами: наблюдением, специально организованными экспериментами, теоретическим анализом и т.д., то есть достаточно хорошо изучают качественную сторону явления, выявляют отношения, в которых находятся элементы объекта. Затем объект упрощается, из всего многообразия присущих ему свойств выделяются наиболее существенные. При необходимости делаются предположения об имеющихся связях с окружающим миром.

Как указывалось ранее, любая модель не тождественна самому явлению, она только дает некоторое приближение к действительности. Но в модели перечислены все предположения, которые положены в ее основу. Эти предположения могут быть грубыми и тем не менее давать вполне удовлетворительное приближение к реальности. Для одного и того же явления может быть построено несколько моделей, в том числе и математических. Например, описать движение планет Солнечной системы можно с помощью:

8 модели Кеплера, которая состоит из трех законов, включая математические формулы (уравнение эллипса);

8 модели Ньютона, которая состоит из одной формулы, но тем не менее она более общая и точная.

В оптике рассматривалось несколько моделей света: корпускулярная, волновая и электромагнитная. Для них были выведены многочисленные закономерности количественного характера. Каждая из этих моделей требовала своего математического подхода и соответствующих математических средств. Корпускулярная оптика пользовалась средствами евклидовой геометрии и пришла к выводу законов отражения и преломления света. Волновая модель теории света потребовала новых математических идей и чисто вычислительным путем были открыты новые факты, относящиеся к явлениям дифракции и интерференции света, которые ранее не наблюдались. Геометрическая оптика, связанная с корпускулярной моделью, здесь оказалась бессильной.

Построенная модель должна быть такой, чтобы она могла замещать в исследованиях объект (процесс или явление), должна иметь с ним сходные черты. Сходство достигается либо за счет подобия структуры (изоморфизм), либо аналогии в поведении или функционировании (изофункциональность). Опираясь на сходство структуры или функции модели и оригинала в современной технике проверяют, рассчитывают и проектируют сложнейшие системы, машины и сооружения.

Как указывалось выше, для одного и того же объекта, процесса или явления может быть построено много различных моделей. Некоторые из них (не обязательно все) могут оказаться изоморфными. Например, в аналитической геометрии кривая на плоскости используется в качестве модели соответствующего уравнения с двумя переменными. В этом случае модель (кривая) и прототип (уравнение) являются изоморфнымти системами (точек, лежащих на кривой, и соответствующих пар чисел, удовлетворяющих уравнению),

В книге «Математика ставит эксперимент» академик Н.Н.Моисеев пишет, что любая математическая модель может возникнуть тремя путями:

· В результате прямого изучения и осмысления объекта (процесса или явления) (феноменологическая) (пример – уравнения, описывающие динамику атмосферы, океана),

· В результате некоторого процесса дедукции, когда новая модель получается как частный случай более общей модели (асимптоматическая) (пример – уравнения гидро-термодинамики атмосферы),

· В результате некоторого процесса индукции, когда новая модель является естественным обобщением «элементарных» моделей (модель ансамблей или обобщенная модель).

Процесс разработки математических моделей состоит из следующих этапов :

· формулирование проблемы;

· определение цели моделирования;

· организация и проведение исследования предметной области (исследование свойств объекта моделирования);

· разработка модели;

· проверка ее точности и соответствия реальности;

· практическое использование, т.е. перенос полученных с помощью модели знаний на исследуемый объект или процесс.

Особое значение моделирование как способ познания законов и явлений природы приобретает в изучении объектов, недоступных в полной мере прямому наблюдению или экспериментированию. К ним относятся и социальные системы, единственно возможным способом изучения которых, зачастую служит моделирование.

Общих способов построения математических моделей не существует. В каждом конкретном случае нужно исходить из имеющихся данных, целевой направленности, учитывать задачи исследования, а также соразмерять точность и подробность модели. Она должна отражать важнейшие черты явления, существенные факторы, от которых в основном зависит успех моделирования.

При разработке моделей необходимо придерживаться следующих основных методологических принципов моделирования социальных явлений:

· принципа проблемности, предполагающего движение не от готовых "универсальных" математических моделей к проблемам, а от реальных, актуальных проблем - к поиску, разработке специальных моделей;

· принципа системности, рассматривающего все взаимосвязи моделируемого явления в терминах элементов системы и ее среды;

· принципа вариативности при формализации процессов управления, связанного со специфическими различиями законов развития природы и общества. Для его объяснения необходимо раскрыть коренное отличие моделей общественных процессов от моделей, описывающих явления природы.