Биографии Характеристики Анализ

Закон движения. Законы движения

Центром масс (или центром инерции) системы материальных точек называется воображаемая точка С, положение которой характеризует распре­деление массы этой системы. Ее радиус-вектор равен

Где m i и r i - соответственно масса и радиус-вектор i-й материальной точки; n - число материальных точек в системе;

M- масса системы.

Скорость центра масс

Учитывая, что p i =m i v i , а есть импульс р системы, можно написать p = mv c , (9.2)

т. е. импульс системы равен произведе­нию массы системы на скорость ее цент­ра масс.

Подставив выражение (9.2) в уравне­ние (9.1), получим

mdv c /dt=F 1 + F 2 +...+ F n , (9.3)

т. е. центр масс системы движется как материальная точка, в которой сосредото­чена масса всей системы и на которую действует сила, равная геометрической сумме всех внешних сил, действующих на систему. Выражение (9.3) представляет собой закон движения центра масс.

В соответствии с (9.2) из закона со­хранения импульса вытекает, что центр масс замкнутой системы либо движется прямолинейно и равномерно, либо остает­ся неподвижным.

Тело переменной массы. Формула Циолковского.

Уравнение движения тела переменной массы

Выведем уравнение движения тела пе­ременной массы на примере движения ра­кеты. Если в момент времени t масса раке­ты т, а ее скорость v, то по истечении времени dt ее масса уменьшится на dm

и станет равной т- dm, а скорость станет равной v +dv . Изменение импульса систе­мы за отрезок времени dt

dp = [(m-dm) (v +dv )+dm (v + u )]- m v ,

где и - скорость истечения газов относи­тельно ракеты. Тогда

dp = mdv + u dm

(учли, что dm dv - малый высшего порядка малости по сравнению с осталь­ными).

Если на систему действуют внешние силы, то dp = F dt, поэтому

F dt = m dv + u dm,

mdv /dt=F -u dm/dt. (10.1)

Член -u dm/dt называют реактивной силой

F p . Если u противоположен v , то ракета ускоряется, а если совпадает с v, то тормо­зится.

Таким образом, мы получили уравне­ние движения тела переменной массы

ma =F + F p , (10.2)

Применим уравнение (10.1) к движе­нию ракеты, на которую не действуют ни­какие внешние силы. Полагая F = 0 и счи­тая, что скорость выбрасываемых газов относительно ракеты постоянна (ракета движется прямолинейно), получим

dv dm т dv/dt=-udm/dt. Откуда

Значение постоянной интегрирования С определим из начальных условий. Если в начальный момент времени скорость ра­кеты равна нулю, а ее стартовая масса то, то С = uln m 0 . Следовательно,

v = uln(m 0 /m). (10.3)

Это соотношение называется формулой Циолковского . Она показывает, что: 1) чем больше конечная масса ракеты т, тем больше должна быть стартовая масса ракеты то; 2) чем больше скорость истече­ния и газов, тем больше может быть ко­нечная масса при данной стартовой массе ракеты.

Работа силы. Мощность.

Чтобы количественно характеризовать процесс обмена энергией между взаимодействую­щими телами, в механике вводится по­нятие работы силы.

Если тело движется прямолинейно и на него действует постоянная сила F , которая составляет некоторый угол а с на­правлением перемещения, то работа этой силы равна произведению проекции силы F s на направление перемещения (F s = Fcosa), умноженной на перемещение точки приложения силы:

A = F s s = F s cosa. (11.1)

В общем случае сила может изменять­ся как по модулю, так и по направлению, поэтому формулой (11.1) пользоваться не­льзя. Если, однако, рассмотреть элемен­тарное перемещение dr, то силу F можно считать постоянной, а движение точки ее приложения - прямолинейным. Элемен­тарной работой силы F на перемещении dr называется скалярная величина

=F dr = F cosa ds=F s ds,

где а - угол между векторами F и dr ; ds = |dr | - элементарный путь; F s - про­екция вектора F на вектор dr (рис. 13).

Работа силы на участке траектории от точки 1 до точки 2 равна алгебраической сумме элементарных работ на отдельных бесконечно малых участках пути. Эта сум­ма приводится к интегралу

Для вычисления этого интеграла надо знать зависимость силы F s от пути s вдоль траектории 1 -2. Пусть эта зависимость представлена графически (рис. 14), тогда искомая работа А определяется на графи­ке площадью закрашенной фигуры. Если, например, тело движется прямолинейно, сила F=const и a=const, то получим

где s - пройденный телом путь (см. также формулу (11.1)).

Единица работы - джоуль (Дж): 1 Дж - работа, совершаемая силой в 1 Н на пути в 1 м (1 Дж = 1 Н м).

Чтобы охарактеризовать скорость со­вершения работы, вводят понятие мощ­ности: N=da/dt. (11.3)

За время dt сила F совершает работу F dr , и мощность, развиваемая этой силой, в данный момент времени N= F dr /dt= Fv

т. е. равна скалярному произведению век­тора силы на вектор скорости, с которой движется точка приложения этой силы; N - величина скалярная. Единица мощности - ватт (Вт): 1 Вт - мощность, при которой за время 1 с совершается работа в 1 Дж (1 Вт = 1 Дж/с).

10. Преобразования Галилея. Механический принцип относительности.

Преобразова́ния Галиле́я - в классической механике преобразования координат и времени при переходе от одной инерциальной системы отсчета к другой. Пусть система к инерциальная система отсчета и к’. к’ движется равномерно и прямолинейно со скоростью u . Тогда

Закон движения дается векторным уравнением

Л Е К Ц И Я № 1. К И Н Е М А Т И К А

Кинематика – это раздел механики, в котором изучается движение тел без рассмотрения причин, вызывающих движение.

Движением тела называют изменение его положения относительно другого тела в пространстве с течением времени.

Тела, относительно которых рассматривается изучаемое движение, называются телами отсчета (например, стены лаборатории, Земля...).

Обычно с этими телами связывают систему координат. Мы будем пользоваться правой прямоугольной системой координат X, Y, Z.

Системой отсчета называется система координат, снабженная часами и жестко связанная с абсолютно твердым телом.

Абсолютно твердым телом называется тело, расстояние между любыми двумя точками которого всегда остается неизменным.

Кинематика материальной точки. Путь, перемещение, скорость и ускорение

Рис. 1
Изучение законов движения естественно начать с изучениядвижения тела, размерами которого можно пренебречь. Такое тело называют материальной точкой. Движение материальной точки по отношению к системе отсчета может быть задано векторным или координатным способами.

При векторном способе положение точки А, рис. 1, в момент времени t определяется ее радиусом вектором , проведенным из начала координат до движущейся точки.

Закон движения дается векторным уравнением

При координатном способе положение точки А определяется координатами x, y, z , а закон движения задается тремя уравнениями:

при этом , (3)

где – единичные по модулю и взаимно перпендикулярные векторы-орты системы координат.

Путь – это длина траектории, пройденная точкой . За малый промежуток времени точка пройдет путь .

Перемещение точки за промежуток времени – вектор , соединяющий положении точки в моменты t и t + . Из рис. 2 видно, что вектор перемещения

Скорость

Мгновенная скорость материальной точки определяется соотношением

, (5)

т.е. мгновенная скорость есть производная радиуса-вектора по времени. Она направлена по касательной к траектории движущейся точки.

В физике принято производные по времени обозначать не штрихом, а (×) над буквой.

Из рис. 2 видно, что при , поэтому модуль скорости

Можно описать движение через параметры траектории. Для этого некоторую точку на траектории примем за начальную, тогда любая другая точка характеризуется расстоянием S(t) от нее. Радиус вектор становится сложной функцией вида , поэтому из (5) следует:

единичный вектор, касательный к траектории; – модуль скорости.

В СИ скорость измеряется в метрах в секунду (м/с).

С учетом формулы (3) из (5) получаем

– компоненты скорости, они равны производным соответствующих координат по времени.

На рис. 2, обозначает единичный касательный вектор, он совпадает с направлением скорости , поэтому

1.1.2. Ускорение

Для характеристики быстроты изменения скорости вводится векторная физическая величина, называемая ускорением . Она определяется аналогично скорости:

С учетом формул (7) и (8) из (10) находим

(11)

– компоненты ускорения, они равны вторым производным соответствующих координат по времени.

С учетом формулы (9) из (10) получаем

Можно показать, что

, (14)

где R – радиус кривизны в данной точке траектории, а – единичный вектор нормали к траектории в точке, в которой было тело в момент времени t . При этом и взаимноперпендикулярны (см. рис. 3).

Каждой точке кривой можно сопоставить окружность, которая сливается с траекторией на бесконечно малом ее участке. Радиус этой окружности R., (см. рис. 3), характеризует кривизну линии в рассматриваемой точке и называется радиусом кривизны.

Динамика это раздел механики, в котором изучают движение тел под действием приложенных к ним сил .

В биомеханике также рассматривают взаимодействие между телом человека и внешним окружением, между звеньями тела, между двумя людьми (например, в единоборствах). В результате возникают силы, которые и являются количественной мерой этих взаимодействий.

При изучении величин, которые характеризуются не только величиной, но и направлением (например, скорость, ускорение , сила и т. п.) применяют их векторное изображение.

Вектор направленный прямолинейный отрезок (стрелка) рис. 1.

Два вектора считаются равными лишь в том случае, если у них одинаковы и длины и направления (то есть они параллельны и ориентированы в одну сторону). С изменением ориентации меняется знак вектора (на рис.1 b = а; с = - а).

Правила векторной алгебры отражают физические свойства векторных величин. Так в соответствии с тем, что равнодействующая двух сил находится по правилу параллелограмма, суммой двух векторов (a и b), определяется новый вектор (с = а + b), изображаемый диагональю параллелограмма, стороны которого – векторы-слагаемые, рис. 2.

Вычитание определяется как действие, обратное сложению. Кроме вектора в биомеханике используется ещё и термин, носящий название «скаляр» (скалярные величины).

Скаляр величина, каждое значение которой (в отличие от вектора) может быть выражено одним числом, вследствие чего совокупность значений можно изобразить на линейной шкале (скале – отсюда и название). Скалярными величинами являются: длина, площадь, температура и т. д.

Скалярным произведением (а۰b) двух векторов (а и b) называется число (скаляр), равное произведению длин этих векторов, на косинус угла, образованных их направлениями, то есть |а| ۰ |b| ۰ cos φ, см. рис. 3.

Прямая, вдоль которой направлена сила, называется линия действия силы. Сила полностью определена, если заданы её величина, направление и точка приложения. Если на элементы биомеханической системы тела человека действует несколько сил (F1, F2, ...Fn), то их можно заменить одной силой, равной их векторной сумме: FR = Σ Fi. Такая сила называется равнодействующей.

Например, на прыгуна в длину действует сила тяжести (mg) и сила сопротивления воздуха (Fс), рис. 4. Ускорение (отрицательное) создаёт их равнодействующая сила (Fр).

Движения биомеханической системы тела человека подчиняются механике Ньютона. Следовательно, три основных закона этой механики определяют характер движения, так как несмотря на биологическую природу энергообеспечения движения, тело является механической системой и подчиняется всем закономерностям, которые связаны с движением материальных объектов на Земле.

Первый закон Ньютона (закон инерции). Любое материальное тело сохраняет состояние покоя или равномерного прямолинейного движения до тех пор, пока внешнее воздействие не изменит это состояние.

Прямолинейное равномерное движение материального тела называется инерциональным (или движением по инерции). Инерция это свойство материального тела оказывать сопротивление изменению скорости его движения (как по величине, так и по направлению). Инертность неотъемлемое свойство материи . Такое сопротивление возможно только потому, что тела обладают определённой массой, которую считают количественной мерой инертности.

Масса количественная мера инертности тела . Единица измерения массы в СИ называется килограмм (кг).

Первый закон Ньютона – достаточно идеализированное представление о движении, поскольку тело может двигаться прямолинейно и равномерно только в отсутствии любых сил. В реальности на двигающееся тело всегда оказывают влияние различные силы (силы сопротивления воздуха, силы трения и др.), чьё воздействие приводит к тому, что движущееся тело в конце концов останавливается. Это не означает, что первый закон Ньютона неверен: просто движение, если действие сил не исключить, приводит к изменению состояния тела и, в частности, к его переходу в состояние покоя.

Векторная величина, равная произведению массы тела на ускорение и направленная в сторону, противоположную ускорению по величине или направлению данного тела под воздействием внешних сил, называется силой инерции: Fи = - m aс.

Изменение скорости тела обусловлено воздействием на него других тел. Воздействие тем интенсивнее, чем больше созданное им ускорение. С другой стороны, у тела с большей массой ускорение меньше (то есть, его скорость изменить труднее). Поэтому измерять воздействие на тело со стороны всех других тел принято произведением массы тела на сообщённое ему ускорение. Эту меру воздействия называют силой.

Если формулу F = m a преобразовать:

то получим второй закон Ньютона.

Ускорение, с которым движется тело, прямо пропорционально действующей на него силе, обратно пропорционально массе тела и по направлению совпадает с направлением действия силы

Соотношение между равнодействующей всех внешних сил и ускорением, которое она сообщает ему, можно преобразовать к виду, который оказывается полезным при решении многих задач в биомеханике:

Третий закон Ньютона. Силы, с которыми материальные тела действуют друг на друга, равны по величине, противоположны по направлению и направлены по прямой, проходящей через эти тела.

Этот закон показывает, что взаимодействие – это действие одного тела на второе и равное ему действие второго тела на первое. Следовательно, источником силы для первого тела является второе, и поскольку силы действия и противодействия приложены к разным телам, их нельзя складывать, а действующие силы – заменять равнодействующей.

Человек, совершая двигательные действия, участвует в сложном движении, которое состоит из более простых – поступательного и вращательного. Для каждого из них существуют отличающиеся друг от друга характеристики.

Одной из самых ключевых категорий диалектики является категория "закон". В самом общем виде закон можно определить как связь (отношение) между явлениями, процессами, которая является:

а) объективной, так как присуща прежде всего реальному миру, чувственно-предметной деятельности людей, выражает реальные отношения вещей;

б) существенной, конкретно-всеобщей. Будучи отражением существенного в движении универсума, любой закон присущ всем без исключения процессам данного класса, определенного типа (вида) и действует всегда и везде, где развертываются соответствующие процессы и условия:

в) необходимой, ибо будучи тесно связан с сущностью, закон действует и осуществляется с "железной необходимостью" в соответствующих условиях;

г) внутренней, так как отражает самые глубинные связи и зависимости данной предметной области в единстве всех ее моментов и отношений в рамках некоторой целостной системы;

д) повторяющейся, устойчивой, так как закон есть прочное (остающееся) в явлении, закон - идентичное в явлении, закон - "спокойное отражение явлений. И потому всякий закон узок, неполон, приблизителен". Он есть выражение некоторого постоянства определенного процесса, регулярности его протекания, одинаковости его действия в сходных условиях.

Стабильность, инвариантность законов всегда соотносится с конкретными условиями их действия, изменение которых снимает данную инвариантность и порождает новую, что и означает изменение законов, их углубление, расширение или сужение сферы их действия, их модификации и т.п. Любой закон не есть нечто неизменное, а представляет собой конкретно-исторический феномен. С изменением соответствующих условий, с развитием практики и познания одни законы сходят со сцены, другие вновь появляются, меняются формы действия законов, способы их использования и т.д.

Важнейшая, ключевая задача научного исследования - "поднять опыт до всеобщего", найти законы данной предметной области, определенной сферы (фрагмента) реальной действительности, выразить их в соответствующих понятиях, абстракциях, теориях, идеях, принципах и т.п. Решение этой задачи может быть успешным лишь в том случае, если ученый будет исходить из двух основных посылок: реальности мира в его целостности и развитии и законосообразности этого мира, т.е. того, что он "пронизан" совокупностью объективных законов. Последние регулируют весь мировой процесс, обеспечивают в нем определенный порядок, необходимость, принцип самодвижения и вполне познаваемы.

Познание законов - сложный, трудный и глубоко противоречивый процесс отражения действительности. Но познающий субъект не может отобразить весь реальный мир, тем более сразу, полностью и целиком. Он может лишь вечно приближаться к этому, создавая различные понятия и другие абстракции, формулируя те или иные законы, применяя целый ряд приемов и методов в их совокупности (эксперимент, наблюдение, идеализация, моделирование и т.п.). Характеризуя особенности законов науки, американский физик Р. Фейнман писал, что, в частности, законы физики нередко не имеют очевидного прямого отношения к нашему опыту, а представляют собой его более или менее абстрактное выражение. Очень часто между элементарными законами и основными аспектами реальных явлений дистанция огромного размера.

Законы открываются сначала в форме предположений, гипотез. Дальнейший опытный материал, новые факты приводят к "очищению этих гипотез", устраняют одни из них, исправляют другие, пока, наконец, не будет установлен в чистом виде закон. Одно из важнейших требований, которому должна удовлетворять научная гипотеза, состоит в ее принципиальной проверяемости на практике (в опыте, эксперименте и т.п.), что отличает гипотезу от всякого рода умозрительных построений, беспочвенных вымыслов, необоснованных фантазий и т.д.

Поскольку законы относятся к сфере сущности, то самые глубокие знания о них достигаются не на уровне непосредственного восприятия, а на этапе теоретического исследования. Именно здесь и происходит в конечном счете сведение случайного, видимого лишь в явлениях, к действительному внутреннему движению. Результатом этого процесса является открытие закона, точнее совокупности законов, присущих данной сфере, которые в своей взаимосвязи образуют "ядро" определенной научной теории.

Раскрывая механизм открытия новых законов, Р. Фейнман отмечал, что "... поиск нового закона ведется следующим образом. Прежде всего о нем догадываются. Затем вычисляют следствия этой догадки и выясняют, что повлечет за собой этот закон, если окажется, что он справедлив. Затем результаты расчетов сравнивают с тем, что наблюдается в природе, с результатами специальных экспериментов или с нашим опытом, и по результатам таких наблюдений выясняют, так это или не так. Если расчеты расходятся с экспериментальными данными, то закон неправилен" . Следует подчеркнуть, что на всех этапах движения познания важную роль играют философские установки, которыми руководствуется исследователь. Уже в начале пути к закону, по словам Р. Фейнмана, "именно философия помогает строить догадки", здесь трудно сделать окончательный выбор.

1 Фейнман Р. Характер физических законов. М., 1987 С. 142

Открытие и формулирование закона - важнейшая, но не последняя задача науки, которая еще должна показать как открытый ею закон прокладывает себе путь. Для этого надо с помощью закона, опираясь на него, объяснить все явления данной предметной области (даже те, которые кажутся ему противоречащими), вывести их все из соответствующего закона через целый ряд посредствующих звеньев.

Следует иметь в виду, что каждый конкретный закон практически никогда не проявляется в "чистом виде", а всегда во взаимосвязи с другими законами разных уровней и порядков. Кроме того, нельзя забывать, что хотя объективные законы действуют с "железной необходимостью", сами по себе они отнюдь не "железные", а очень даже "мягкие", эластичные в том смысле, что в зависимости от конкретных условий получает перевес то тот, то другой закон.

Эластичность законов (особенно общественных) проявляется также в том, что они зачастую действуют как законы-тенденции, осуществляются весьма запутанным и приблизительным образом, как некоторая никогда твердо не устанавливающаяся средняя постоянных колебаний.

Условия, в которых осуществляется каждый данный закон, могут стимулировать и углублять, или наоборот - пресекать и снимать его действие. Тем самым любой закон в своей реализации всегда модифицируется конкретно-историческими обстоятельствами, которые либо позволяют закону набрать полную силу, либо замедляют, ослабляют его действие, выражая закон в виде пробивающейся тенденции. Кроме того, действие того или иного закона неизбежно видоизменяется сопутствующим действием других законов.

Каждый закон имеет границы своего действия, определенную сферу своего осуществления (например, рамки данной формы движения материи, конкретная ступень развития и т.д.). На основе законов осуществляется не только объяснение явлений данного класса (группы), но и предсказание, предвидение новых явлений, событий, процессов и т.п., возможных путей, форм и тенденций познавательной и практической деятельности людей.

Открытые законы, познанные закономерности могут - при их умелом и правильном применении - быть использованы людьми для того, чтобы они стали господами природы и своих собственных общественных отношений. Поскольку законы внешнего мира - основа целесообразной деятельности человека, то люди должны сознательно руководствоваться требованиями, вытекающими из объективных законов, как регулятивами своей деятельности. Иначе последняя не станет эффективной и результативной, а будет осуществляться в лучшем случае методом проб и ошибок. На основе познанных законов люди могут действительно научно управлять как природными, так и социальными процессами, оптимально их регулировать.

Опираясь в своей деятельности на "царство законов", человек вместе с тем может в определенной мере оказывать влияние на механизм реализации того или иного закона. Он может способствовать его действию в более чистом виде, создавать условия для развития закона до его качественной полноты, либо же, напротив, сдерживать это действие, локализовать его или даже трансформировать.

Многообразие видов отношений и взаимодействий в реальной действительности служит объективной основой существования многих форм (видов) законов, которые классифицируются по тому или иному критерию (основанию). По формам движения материи можно выделить законы: механические, физические, химические, биологические, социальные (общественные); По основным сферам действительности - законы природы, законы общества, законы мышления; по степени их общности, точнее - по широте сферы их действия всеобщие (диалектические), общие (особенные), частные (специфические); по механизму детерминации - динамические и статистические, причинные и непричинные; по их значимости и роли - основные и неосновные; по глубине фундаментальности - эмпирические и теоретические и т.д. и т.п.

Рассмотрим несколько подробнее две таких особых группы законов, как динамические и статистические, потому как они играют определенную роль в методологии научного исследования, особенно при изучении причинных явлений.

Динамические закономерности - объективные, необходимые, существенные связи и зависимости, характеризующие поведение относительно изолированных объектов (состоящих из небольшого числа элементов), при исследовании которых можно абстрагироваться от многих случайных факторов. Предсказания на основе динамических закономерностей (в отличие от статистических) имеют точно определенный, однозначный характер.

Так, например, в классической механике, если известен закон движения тела и заданы его координаты и скорость, то по ним можно точно определить положение и скорость движения тела в любой другой момент времени.

Динамическая закономерность обычно понимается как форма причинной связи, при которой данное состояние системы однозначно определяет все ее последующие состояния, в силу чего знание начальных условий дает возможность точно предсказать дальнейшее развитие системы. Динамическая закономерность действует во всех автономных, мало зависимых от внешних воздействий системах с относительно небольшим числом элементов. Она определяет, например, характер движения планет в Солнечной системе.

Динамические закономерности "пронизывают" ряд понятий современной науки. Так, существует понятие "динамическая система" - механическая система с конечным числом степеней свободы, например, система конечного числа материальных точек, движущихся по законам классической механики. Обычно закон движения таких систем описывается системами обыкновенных дифференциальных уравнений. Абсолютизация динамических законов тесно связана с концепцией механистического детерминизма (П. Лаплас и др.), о которой речь шла выше.

Статистические закономерности - форма проявления взаимосвязи явлений, при которой данное состояние системы определяет все ее последующие состояния не однозначно, а лишь с определенной вероятностью, являющейся объективной мерой возможности реализации заложенных в прошлом тенденций изменения. Подобный (вероятностный) характер предсказаний обусловлен действием множества случайных факторов. Необходимость, проявляющаяся в статистических законах, возникает вследствие взаимной компенсации и уравновешивания множества случайностей. Данные закономерности взаимосвязаны с динамическими, но не сводятся к ним.

Множество случайных факторов обычно имеет место в "статистических коллективах" или массовых событиях (например, большое число молекул в газе, людей в социальных коллективах и т.п.). Действия множества случайных факторов характеризуются устойчивой частотой. Это и позволяет вскрыть необходимость, которая "пробивается" через совокупное действие множества случайностей.

Статистическая закономерность возникает как результат взаимодействия большого числа элементов, составляющих коллектив, и поэтому характеризует не столько поведение отдельного элемента, сколько коллектива в целом. Необходимость, проявляющаяся в статистических законах, возникает вследствие взаимной компенсации и уравновешивания множества случайных факторов. "Хотя статистические закономерности и могут привести к утверждениям, степень вероятности которых столь высока, что она граничит с достоверностью, тем не менее принципиально всегда возможны исключения" .

1 Гейзенберг В. Шаги за горизонт. М., 1987. С. 125.

Статистические законы, хотя и не дают однозначных и достоверных предсказаний, тем не менее являются единственно возможными при исследовании массовых явлений случайного характера. За совокупным действием различных факторов случайного характера, которые практически невозможно охватить, статистические законы вскрывают нечто устойчивое, необходимое, повторяющееся.

Статистические законы служат подтверждением диалектики превращения случайного в необходимое. Динамические законы оказываются предельным случаем статистических, когда вероятность становится практической достоверностью.

Следует сказать и о том, что статистические закономерности принципиально несводимы к динамическим закономерностям (хотя они взаимосвязаны). Это обусловлено следующими основными обстоятельствами: 1. неисчерпаемостью материи и незамкнутостью систем; 2. невозможностью реализации многих тенденций развития, заложенных в прошлых состояниях систем; 3. возникновением в процессе развития возможностей и тенденций качественно новых состояний.

При характеристике статистических методов важное значение имеют такие понятия, как "статистика" и "вероятность". Вообще понятие "статистика" употребляется в двух основных аспектах: а) получение и обработка информации, характеризующей количественные закономерности жизни (технико-экономические, социальные, политические явления, культура) в неразрывной связи с их качественным содержанием - широкий смысл; б) совокупность данных о каком-либо явлении или процессе. В естественных науках понятие "статистика" означает анализ массовых явлений, основанных на применении методов теории вероятностей - узкий смысл.

Статистика разрабатывает специальные методы исследования и обработки материала: массовые статистические наблюдения, метод группировок, метод средних величин, метод индексов, балансовый метод, метод графических изображений и др. Важно обратить внимание на то, что статистическая вероятность характеризует непосредственно не отдельное событие, а определенный класс событий.

Вероятность - понятие, которое выражает степень, "меру возможности", дает количественную характеристику осуществимости возможности при данной совокупности конкретных условий. Если вероятность равна единице, то это уже действительность, если она равна нулю - невозможность. Обычно выделяют три концепции вероятности в научном познании - классическую, статистическую и логическую (индуктивную), которая широко используется в вероятностной и индуктивной логике. Понятие "вероятность" является исходным для разработки вероятностно-статистических методов. Последние основаны на учете действия множества случайных факторов (которые характеризуются устойчивой частотой), сквозь которые "пробивается" необходимость, закономерность. Одна из основных задач теории вероятностей, как науки о массовых случайных явлениях, состоит в выяснении закономерностей, возникающих при взаимодействии большого числа случайных факторов.

Вероятностные методы опираются на теорию вероятностей, которую зачастую называют наукой о случайном, а в представлении многих ученых вероятность и случайность практически нерасторжимы. Более того, именно на базе анализа статистических данных эта теория во многом и была разработана. Как и статистика, теория вероятностей есть наука о закономерностях, характеризующих массовые явления, но не вообще массовые явления, а определенный их класс, специфика которых выражается через представления о случайности. Есть даже представление о том, что ныне случайность предстает как "самостоятельное начало мира, его строения и эволюции".

Категории необходимости и случайности отнюдь не устарели, напротив - их роль в современной науке неизмеримо возросла. Как показала история познания, мы, как считает И. Пригожин, лишь теперь начинаем по достоинству оценивать значение всего круга проблем, связанных с необходимостью и случайностью.

Некоторые ученые (Н. Винер, М. Бунге, Ю. Сачков и др.) полагают, что основное понятие теории вероятностей - "вероятностное распределение". Так, Н. Винер вполне определенно утверждает, что "статистика - это наука о распределении". Понятие "вероятностное распределение" означает, что массовое случайное явление (система из независимых сущностей) разбивается (распадается) на подсистемы, относительный "вес" которых, относительное число элементов в каждой из подсистем весьма устойчиво. Наличие данной устойчивости и соотносится с понятием вероятности. Каждый из элементов характеризуется некоторым общим свойством, значения которого хаотично изменяются при переходе от одного элемента к другому, но относительное число элементов с некоторым заданным значением, - подчеркнем еще раз, - весьма устойчиво.

Следует отметить, что понятие "распределение" является центральным не только для теории вероятностей, но и для статистики. Таким оно является в математической статистике как базовой науке, изучающей массивы статистических данных. Применение статистических идей и методов в реальном познании основано на признании фундаментального характера понятия "распределение". Только на основе представлений о распределениях возможны постановка задач и формулировка основных зависимостей в соответствующих научных теориях. Статистические закономерности выражают зависимости между распределениями различных величин исследуемых систем, а также характер изменения этих распределений во времени.

Сегодня среди тех, кто признает принципиальную значимость теоретико-вероятностного стиля мышления и его более значительную общность по сравнению с подходом, основывающимся на принципе жесткой детерминации, распространено убеждение, что мышление, которое не включает в свою орбиту идею случайности, является примитивным (М. Бунге). По аналогии можно сказать, что те исследования (естественнонаучные и социально-гуманитарные), которые не вовлекают в свою орбиту анализ статистических данных, следует также ныне рассматривать как достаточно примитивные.

Вероятностно-статистические методы широко применяются при изучении массовых явлений - особенно в таких научных дисциплинах как математическая статистика, статистическая физика, квантовая механика, химия, биология, кибернетика, синергетика и т.д. В практическом отношении статистический метод обобщения играет наибольшую роль как в научных исследованиях, так и при принятии решений в других областях деятельности.

Последние исследования показали, что при статистическом обобщении не просто постулируют, что заключение правдоподобно, а определяют в количественной мере (в процентах) степень вероятности заключения на основе исследования выборки. Для научных и практических прогнозов такая количественная характеристика имеет особенно важное значение, когда приходится действовать в условиях неопределенности и нестабильности. Статистические законы - законы средних величин, действующие в области массовых явлений, в частности, в атомной физике, в социально-гуманитарных науках.

Вероятностные идеи и методы исследования имеют важное значение для наук об обществе. Вероятность входит прежде всего в статистику как науку о количественных соотношениях в массовых общественных явлениях. Вне обработки статистических данных развитие социальных наук просто невозможно.

Не будет преувеличением сказать, что вхождение вероятности в реальное познание знаменуют великую научную, а точнее говоря - методологическую революцию, благодаря которой стали говорить о вероятностном стиле мышления. Именно в рамках последнего только и возможно адекватное познание сложноорганизованных, самоорганизующихся развивающихся целостных систем.