Биографии Характеристики Анализ

Значение проведение нервного импульса в большой советской энциклопедии, бсэ. Смотреть что такое "Проведение нервного импульса" в других словарях

1. Физиология нервов и нервных волокон. Типы нервных волокон

Физиологические свойства нервных волокон:

1) возбудимость – способность приходить в состояние возбуждения в ответ на раздражение;

2) проводимость – способность передавать нервные возбуждение в виде потенциала действия от места раздражения по всей длине;

3) рефрактерность (устойчивость) – свойство временно резко снижать возбудимость в процессе возбуждения.

Нервная ткань имеет самый короткий рефрактерный период. Значение рефрактерности – предохранять ткань от перевозбуждения, осуществляет ответную реакцию на биологически значимый раздражитель;

4) лабильность – способность реагировать на раздражение с определенной скоростью. Лабильность характеризуется максимальным числом импульсов возбуждения за определенный период времени (1 с) в точном соответствии с ритмом наносимых раздражений.

Нервные волокна не являются самостоятельными структурными элементами нервной ткани, они представляют собой комплексное образование, включающее следующие элементы:

1) отростки нервных клеток – осевые цилиндры;

2) глиальные клетки;

3) соединительнотканную (базальную) пластинку.

Главная функция нервных волокон – проведение нервных импульсов. Отростки нервных клеток проводят сами нервные импульсы, а глиальные клетки способствуют этому проведению. По особенностям строения и функциям нервные волокна подразделяются на два вида: безмиелиновые и миелиновые.

Безмиелиновые нервные волокна не имеют миелиновой оболочки. Их диаметр 5–7 мкм, скорость проведения импульса 1–2 м/с. Миелиновые волокна состоят из осевого цилиндра, покрытого миелиновой оболочкой, образованной шванновскими клетками. Осевой цилиндр имеет мембрану и оксоплазму. Миелиновая оболочка состоит на 80 % из липидов, обладающих высоким омическим сопротивлением, и на 20 % из белка. Миелиновая оболочка не покрывает сплошь осевой цилиндр, а прерывается и оставляет открытыми участки осевого цилиндра, которые называются узловыми перехватами (перехваты Ранвье). Длина участков между перехватами различна и зависит от толщины нервного волокна: чем оно толще, тем длиннее расстояние между перехватами. При диаметре 12–20 мкм скорость проведения возбуждения составляет 70-120 м/с.

В зависимости от скорости проведения возбуждения нервные волокна делятся на три типа: А, В, С.

Наибольшей скорость проведения возбуждения обладают волокна типа А, скорость проведения возбуждения которых достигает 120 м/с, В имеет скорость от 3 до 14 м/с, С – от 0,5 до 2 м/с.

Не следует смешивать понятия «нервное волокно» и «нерв». Нерв – комплексное образование, состоящее из нервного волокна (миелинового или безмиелинового), рыхлой волокнистой соединительной ткани, образующей оболочку нерва.

2. Механизмы проведения возбуждения по нервному волокну. Законы проведения возбуждения по нервному волокну

Механизм проведения возбуждения по нервным волокнам зависит от их типа. Существуют два типа нервных волокон: миелиновые и безмиелиновые.

Процессы метаболизма в безмиелиновых волокнах не обеспечивают быструю компенсацию расхода энергии. Распространение возбуждения будет идти с постепенным затуханием – с декрементом. Декрементное поведение возбуждения характерно для низкоорганизованной нервной системы. Возбуждение распространяется за счет малых круговых токов, которые возникают внутрь волокна или в окружающую его жидкость. Между возбужденными и невозбужденными участками возникает разность потенциалов, которая способствует возникновению круговых токов. Ток будет распространяться от «+» заряда к «-». В месте выхода кругового тока повышается проницаемость плазматической мембраны для ионов Na, в результате чего происходит деполяризация мембраны. Между вновь возбужденным участком и соседним невозбужденным вновь возникает разность потенциалов, что приводит к возникновению круговых токов. Возбуждение постепенно охватывает соседние участки осевого цилиндра и так распространяется до конца аксона.

В миелиновых волокнах благодаря совершенству метаболизма возбуждение проходит, не затухая, без декремента. За счет большого радиуса нервного волокна, обусловленного миелиновой оболочкой, электрический ток может входить и выходить из волокна только в области перехвата. При нанесения раздражения возникает деполяризация в области перехвата А, соседний перехват В в это время поляризован. Между перехватами возникает разность потенциалов, и появляются круговые токи. За счет круговых токов возбуждаются другие перехваты, при этом возбуждение распространяется сальтаторно, скачкообразно от одного перехвата к другому. Сальтаторный способ распространения возбуждения экономичен, и скорость распространения возбуждения гораздо выше (70-120 м/с), чем по безмиелиновым нервным волокнам (0,5–2 м/с).

Существует три закона проведения раздражения по нервному волокну.

Закон анатомо-физиологической целостности.

Проведение импульсов по нервному волокну возможно лишь в том случае, если не нарушена его целостность. При нарушении физиологических свойств нервного волокна путем охлаждения, применения различных наркотических средств, сдавливания, а также порезами и повреждениями анатомической целостности проведение нервного импульса по нему будет невозможно.

Закон изолированного проведения возбуждения.

Существует ряд особенностей распространения возбуждения в периферических, мякотных и безмякотных нервных волокнах.

В периферических нервных волокнах возбуждение передается только вдоль нервного волокна, но не передается на соседние, которые находятся в одном и том же нервном стволе.

В мякотных нервных волокнах роль изолятора выполняет миелиновая оболочка. За счет миелина увеличивается удельное сопротивление и происходит уменьшение электрической емкости оболочки.

В безмякотных нервных волокнах возбуждение передается изолированно. Это объясняется тем, что сопротивление жидкости, которая заполняет межклеточные щели, значительно ниже сопротивления мембраны нервных волокон. Поэтому ток, возникающий между деполяризованным участком и неполяризованным, проходит по межклеточным щелям и не заходит при этом в соседние нервные волокна.

Закон двустороннего проведения возбуждения.

Нервное волокно проводит нервные импульсы в двух направлениях – центростремительно и центробежно.

В живом организме возбуждение проводится только в одном направлении. Двусторонняя проводимость нервного волокна ограничена в организме местом возникновения импульса и клапанным свойством синапсов, которое заключается в возможности проведения возбуждения только в одном направлении.

Кроме возбудимости, основным свойством нерва является способность проводить возбуждение - проводимость. Ток действия в 5-10 раз больше порога раздражения, что создает «фактор надежности» проведения возбуждения по нерву. Импульсы возбуждения передаются по поверхности мембраны осевого цилиндра нервного волокна, а нейрофибриллы, из которых он состоит, переносят физиологически активные вещества.

Когда возбуждение распространяется но одному из нервных волокон, входящих в состав смешанного нерва, оно не передается на соседние волокна. Следовательно, существует изолированное проведение в афферентных и моторных волокнах (необходимое для получения координированных движений), а также в сосудистых, секреторных и других нервных волокнах, входящих в состав общего нервного ствола.

Весьма вероятно, что шванновские и миелиновые оболочки нервных волокон выполняют функцию изолятора, препятствующую проведению возбуждения на соседние нервные волокна. Миелиновая оболочка выполняет также функцию конденсатора тока. Она обладает очень высоким сопротивлением для электрического тока, так как миелин, состоящий из липидов, не пропускает ионы. Поэтому по оболочке между перехватами Ранвье импульсы не проводятся, потенциалы действия в мякотных волокнах возникают только между перехватами и перескакивают через них. Это проведение импульсов с перескоком через перехваты называется сальтаторным . В отличие от мякотных в безмякотных волокнах возбуждение распространяется вдоль мембраны на всем ее протяжении.

В перехватах Ранвье повышается напряжение потенциалов действия, передающих импульсы возбуждения по нерву. Это повышение предупреждает значительную потерю вольтажа на протяжении нерва вследствие его сопротивления как проводника. Потеря напряжения потенциалов привела бы к большому снижению возбуждения и замедлению его проведения по нерву.

На протяжении моторного нервного волокна человека от спинного мозга до мышц пальцев руки имеется около 800 перехватов Ранвье или «станций» повышения напряжения потенциалов действия.

Благодаря «фактору надежности» потенциал действия может перескакивать через один перехват Ранвье, а возможно и через несколько перехватов, так как расстояние между ними 1-2,5 мм. Факт перескока возбуждения отрицается некоторыми авторами. Оболочка нервного волокна участвует в его обмене веществ, в росте осевого цилиндра и в образовании медиатора (трофическая функция). Основной способ изучения проведения возбуждения в нервах - запись потенциалов, которая позволяет судить о физиологических процессах, протекающих в нерве, отделенном от органа, — мышцы или железы. В естественных условиях показатель проведения возбуждения по моторному нерву - сокращение мышцы. В секреторных нервах показателем проведения возбуждения является секреция железы.

Возбуждение проводится по нерву только при условии его анатомической непрерывности, но этого еще недостаточно для передачи возбуждения. Перевязка и передавливание, не нарушающие анатомической непрерывности, прекращают проведение возбуждения по нерву, так как нарушают его физиологические свойства. Некоторые яды и наркотики, сильное охлаждение или действие и другие влияния также нарушают или прекращают проведение возбуждения по нерву. Нервы проводят возбуждение в обе стороны от раздражаемого участка, что доказывается возникновением потенциалов на обоих концах нерва; таким образом, возбуждение в пределах нейрона может распространяться как центростремительно, так и центробежно.

Правило двусторонней проводимости не противоречит правилу изолированного проведения, так как возбуждение проводится в обе стороны в разветвлениях одного и того же изолированного нервного волокна.

Проведение нервного импульса по волокну происходит за счет распространения по оболочке отростка волны деполяризации. Большинство периферических нервов по своим двигательным и чувствительным волокнам обеспечивают проведение импульса со скоростью до 50-60 м/сек. Собственно деполяризация процесс достаточно пассивный, тогда как восстановление мембранного потенциала покоя и способности к проведению осуществляется путем функционирования NA/K и Са насосов. Для их работы необходима АТФ, обязательным условием образования которой является наличие сегментарного кровотока. Прекращение кровоснабжения нерва сразу блокирует проведение нервного импульса.

По особенностям строения и функциям нервные волокна подразделяются на два вида: безмиелиновые и миелиновые. Безмиелиновые нервные волокна не имеют миелиновой оболочки. Их диаметр 5-7 мкм, скорость проведения импульса 1-2 м/с. Миелиновые волокна состоят из осевого цилиндра, покрытого миелиновой оболочкой, образованной шванновскими клетками. Осевой цилиндр имеет мембрану и оксоплазму. Миелиновая оболочка состоит на 80 % из липидов и на 20 % из белка. Миелиновая оболочка не покрывает сплошь осевой цилиндр, а прерывается и оставляет открытыми участки осевого цилиндра, которые называются узловыми перехватами (перехваты Ранвье). Длина участков между перехватами различна и зависит от толщины нервного волокна: чем оно толще, тем длиннее расстояние между перехватами.

В зависимости от скорости проведения возбуждения нервные волокна делятся на три типа: А, В, С. Наибольшей скорость проведения возбуждения обладают волокна типа А, скорость проведения возбуждения которых достигает 120 м/с, В имеет скорость от 3 до 14 м/с, С - от 0,5 до 2 м/с.

Выделяют 5 законов проведения возбуждения:

  • 1. Нерв должен сохранять физиологическую и функциональную непрерывность.
  • 2. В естественных условиях распространение импульса от клетки к периферии. Имеется 2-х стороннее проведение импульса.
  • 3. Проведение импульса изолированно, т.е. волокна покрытые миелином не передают возбуждение на соседние нервные волокна, а только вдоль нерва.
  • 4. Относительная неутомимость нерва в отличие от мышц.
  • 5. Скорость проведения возбуждения зависит от наличия или отсутствия миелина и длины волокна.
  • 3. Классификация повреждений периферических нервов

Повреждения бывают:

  • А) огнестрельные: -прямые (пулевые, осколочные)
  • -опосредованные
  • -пневмоповреждения
  • Б) неогнестрельные: резаные, колотые, укушенные, компрессионные, компрессионно-ишемические

Так же в литературе встречается разделение повреждений на открытые(резаные, колотые, рваные, рубленные, ушибленные, размозженные раны) и закрытые(сотрясение, ушиб, сдавленно, растяжение, раз рыв и вывих) травмы периферической нервной системы.

Электрические явления в живых тканях связаны с разностью концентраций ионов, несущих электрические заряды.

Согласно общепринятой мембранной теории происхождения биопотенциалов , разность потенциалов в живой клетке возникает потому, что ионы, несущие электрические заряды, распределяются по обе стороны полупроницаемой клеточной мембраны в зависимости от ее избирательной проницаемости к разным ионам. Активный перенос ионов против концентрационного градиента осуществляется с помощью так называемых ионных насосов , представляющих собой систему ферментов-переносчиков. Для этого используется энергия АТФ.

В результате работы ионных насосов концентрация ионов K + внутри клетки оказывается в 40-50 раз больше, а ионов Na + - в 9 раз меньше, чем в межклеточной жидкости. Ионы выходят на поверхность клетки, анионы остаются внутри нее, сообщая мембране отрицательный заряд. Таким образом создается потенциал покоя , при котором мембрана внутри клетки заряжена отрицательно по отношению к внеклеточной среде (ее заряд условно принимается за нуль). У различных клеток мембранный потенциал варьирует от -50 до -90 мВ.

Потенциал действия возникает в результате кратковременного колебания мембранного потенциала. Он включает две фазы:

  • Фаза деполяризации соответствует быстрому изменению мембранного потенциала примерно на 110 мВ. Это объясняется тем, что в месте возбуждения резко возрастает проницаемость мембраны для ионов Na + , так как открываются натриевые каналы. Поток ионов Na + устремляется в клетку, создавая разность потенциалов с положительным зарядом на внутренней и отрицательным на наружной поверхности мембраны. Мембранный потенциал в момент достижения пика составляет +40 мВ. Во время фазы реполяризации мембранный потенциал вновь достигает уровня покоя (мембрана реполяризуется), после чего наступает гиперполяризация до значения примерно -80 мВ.
  • Фаза реполяризации потенциала связана с закрытием натриевых и открытием калиевых каналов. Так как по мере выпада K + удаляются положительные заряды, мембрана реполяризуется. Гиперполяризация мембраны до уровня большего (более отрицательного), чем потенциал покоя, обусловлена высокой калиевой проницаемостью в фазу реполяризации. Закрытие калиевых каналов приводит к восстановлению исходного уровня мембранного потенциала; значения проницаемости для K + и Na + при этом также возвращаются к прежним.

Проведение нервного импульса

Разность потенциала, возникающая между возбужденным (деполяризованным) и покоящимися (нормально поляризованными) участками волокна, распространяются по всей его длине. В немиелинизированных нервных волокнах возбуждение передается со скоростью до 3 м/с. По аксонам, покрытым миелиновой оболочкой, скорость проведения возбуждения достигает 30-120 м/с. Такая высокая скорость объясняется тем, что деполяризующий ток не протекает через участки, покрытые изолирующей миелиновой оболочкой (участки между перехватами). Потенциал действия здесь распространяется скачкообразно.

Скорость проведения потенциала действия по аксону пропорциональна его диаметру. В волокнах смешанного нерва она варьирует от 120 м/с (толстые, диаметром до 20 мкм, миелинизированные волокна) до 0,5 м/с (самые тонкие, диаметром 0,1 мкм, безмякотные волокна).

Итак, нейроны воспринимают, проводят и передают электрические сигналы. Этот вопрос подробно рассматривается в руководствах по физиологии. Однако для понимания цитофизиологии нейрона укажем, что в основе передачи им электрических сигналов лежит изменение мембранного потенциала, вызванного перемещением через мембрану ионов Na+и K+благодаря функциони-рованию Na+K+-насоса (Na+, K+-зависимой АТФ-фазы).

Нейроны, передающие возбуждение от точки восприятия раздражения в центральную нервную систему и далее к рабочему органу, связаны между собой с помощью множества межклеточных контактов – синапсов(от греч. synapsis – связь), передающих нервный импульс от одного нейрона к другому. Синапс – место контакта двух нейронов или нейрона и мышцы.
В синапсах происходит преобразование электрических сигналов в химические и обратно. Нервный импульс вызывает, например, в парасимпатическом окончании высвобождение посредника – нейромедиатора, который связывается с рецепторами постсинаптического полюса, что приводит к изменению его потенциала.

В зависимости от того, какие части нейрона соединены между собой, различают синапсы – аксосоматические: окончания аксона одного нейрона образуют контакты с телом другого; аксодендритические: аксоны вступают в контакт с дендритами, а также аксоаксонные: контактируют одноименные отростки. Такое устройство цепочек нейронов создает возможность для проведения возбуждения по одной из множества цепочек нейронов благодаря наличию физиологических контактов в определенных синапсах и физиологическому разъединению в других, в которых передача осуществляется с помощью биологически активных веществ
(они называются химическими), а само вещество, осуществляющее передачу, – нейромедиатором (от лат. mediator – посредник) – биологически активное вещество, обеспечивающее передачу возбуждения в синапсах.

Роль медиаторов выполняют две группы веществ:

1) норадреналин, ацетилхолин, некоторые моноамины (адреналин, серотонин, дофамин) и аминокислоты (глицин, глутаминовая кислота ГАМА);

2) нейропептиды (энкефалины, нейротензин, ангиотензин II, вазоактивный кишечный пептид, соматостатин, вещество Р и др).

В каждом межнейронном синапсе различают пресинаптическую и постсинаптическую части, разделенные синаптической щелью (рис. 6). Участок нейрона, по которому импульсы поступают в синапс, называется пресинаптическим окончанием,а участок, воспринимающий импульсы, – постсинаптическим окончанием. В цитоплазме пресинаптического окончания содержится много митохондрий и синаптических пузырьков, содержащих нейромедиатор. Аксолемма участка аксона, которая вплотную приближается к постсинаптическому нейрону, в синапсе образует так называемую пресинаптическую мембрану – участок плазматической мембраны пресинапти-ческого нейрона.Постсинаптическая мембрана – участок плазматической мембраны постсинап-тического нейрона. Межклеточное пространство между пре- и постсинаптическими мембранами называется синаптической щелью . В цитоплазме пресинаптической части находится большое количество округлых мембранных синаптических пузырьковдиаметром от 4 до 20 нм, содержа-щих медиатор.

Рис. 6. Схема строения синапса:

А – пресинаптическая часть; Б – постсинаптическая часть; 1 – гладкий эндоплазматический ретикулум; 2 – нейротрубочка; 3 – синаптические пузырьки; 4 – пресинаптическая мембрана
с гексагональной сетью; 5 – синаптическая щель; 6 – постсинаптическая мембрана;
7 – зернистый эндоплазматический ретикулум; 8 – нейро­филаменты; 9 – митохондрия

Когда нервный импульс достигает пресинаптической части, открываются кальциевые каналы и Са+проникает в цитоплазму пресинаптической части, в результате чего его концентрация ненадолго возрастает. Только при повышении содержания Са+синаптические пузырьки внедряются в описанные ячейки, сливаются с пресинаптической мембраной и выделяют нейромедиатор через узкие диффузионные канальцы в синаптическую щельшириной 20 - 30 нм, заполненную аморфным веществом умеренной электронной плотности. Чем выше содержание ионов кальция, тем больше синаптических пузырьков выделяют нейромедиаторы.

Поверхность постсинаптической мембраныимеет постсинаптическое уплотнение. Нейромедиатор связывается с рецептором постсинаптической мембраны, что ведет кизменению ее потенциала: возникает постсинаптический потенциал. Таким образом, постсинаптическая мембрана преобразует химический стимул в электрический сигнал. Когда нейромедиатор связывается со специфическим белком, встроенным в постсинаптическую мембрану, – рецептором (ионным каналом или ферментом) происходит изменение его пространственной конфигурации, в результате чего каналы открываются. Это ведет кизменению мембранного потенциала и возникновению электрического сигнала, величина которого прямо пропорциональна количеству нейромедиатора. Как только прекращается выделение медиатора, остатки его удаляются из синаптической щели, после чего рецепторы постсинаптической мембраны возвращаются в исходное состояние.

Однако не все медиаторы действуют подобным образом. Так, дофамин, норадреналин, глицин являются тормозными медиаторами. Они, связываясь с рецептором, вызывают образование вторичного мессенджера из АТФ. Следовательно, в зависимости от осуществляемой функции различают возбуждающие и тормозные синапсы.

Каждый нейрон образует огромное количество синапсов: десятки, сотни тысяч. Исходя из этого становится ясным, что из всех постсинаптических потенциалов складывается суммарный потенциал нейрона, именно он и передается по аксону.

В центральной нервной системе обычно различают три основных типа синапсов: аксо-дендритные, аксо-соматические и аксо-аксонные. Четвертый тип межнейронных контактов –дендро-дендритное соединение. Сравнительно недавно было описано так называемое «плотное соединение».

Аксо-дендритный синапс: терминальные ветви аксона одного нейрона вступают в синаптическую связь с дендритом другого. Этот тип синаптического контакта легко различать на электронных микрофотографиях, так как ему присущи все типичные признаки синапса, описанные выше.

Аксо-соматический синапс : терминальные ветви нейрона оканчиваются на теле другого нейрона. В этом случае также не возникает трудностей в распознавании синаптического контакта. Тело клетки отличается присутствием телец Ниссля, гранул РНК-Б и эндоплазматической сети.

Аксо-аксонный синапс : контакты в спинном мозге, в которых аксон оканчивается на другом аксоне в том месте, где последний образует контакты с несколькими дендритами. Это аксо-аксонный синапс, подобный тем, которые были описаны также в коре мозжечка. Открытие подобного рода синапсов, накладывающихся на пресинаптическое окончание, в значительной степени способствовало объяснению явления пресинаптического торможения. В коре мозжечка аксоны корзинчатых клеток образуют синаптические контакты на аксонах или аксонных холмиках клеток Пуркинье и обеспечивают пресинаптическое торможение аксона в месте его начала.

Дендро-дендритное соединение : при распознавании этого типа межнейронного контакта возникают значительные трудности. Возле области контакта отсутствуют синаптические пузырьки, и количество митохондрий не превышает нормального их числа в данном участке дендрита. Иногда можно видеть межмембранные элементы, диаметр и периодичность которых такие же, как и в аксо-дендритном синапсе. Измерения показали, что площадь дендро-дендритного контакта может варьировать от 5 до 10 мкм. Функциональное значение дендро-дендритных соединений остается неясным.

Плотные соединения ” бывают аксо-дендритными и аксо-соматическими и представляют собой “безмедиаторный” тип синапса, в котором нет синаптических пузырьков. Смыкающиеся мембраны по существу сливаются друг с другом, образуя довольно толстую мембранную структуру, лишенную синаптической щели. Предполагают, что этот тип синапса обеспечивает прямое электрическое раздражение одного нейрона другим и “распространение” возбуждения.

Аксо-дендритные и аксо-соматические синапсы бывают 1-го и 2-го типов. Синапс 1-гo типа отличается от синапса 2-го типа следующим: синаптическая щель его шире (300 А против 200 A); постсинаптическая мембрана плотнее и толще, в межсинаптической щели вблизи субсинаптической мембраны находится зона, содержащая внеклеточное вещество. Синапсы на небольших дендритных шипиках пирамидных клеток коры большого мозга всегда принадлежат к 1-му типу, тогда как синапсы на телах пирамидных клеток – всегда ко 2-му. Было сделано предположение, что синапсы 2-гo типа служат гистологическим субстратом торможения. Многие из описанных выше типов синаптических контактов могут находиться на одном и том же нейроне, как это можно видеть на пирамидных клетках гиппокампа. Отношение отростков клеток глии к синапсам остается неясным. Было установлено, что между двумя отделами синаптической мембраны глиальных отростков нет.

Расстояния между концевым расширением аксона и краем миелиновой оболочки, окружающей аксон, бывают различными. Эти расстояния очень невелики, и, как показали электронно-микроскопические исследования, от края миелиновой оболочки до синаптической мембраны может быть 2 мкм.

Нейроглия

Кроме нейронов, в нервной системе имеются клетки нейроглии – окружающие нервную клетку многочисленные клеточные элементы, выполняющие в нервной ткани опорную, разграничительную, трофическую, секреторную и защитную функции (рис. 7). Среди них различают две группы: макроглию (эпендимоциты, олигодендроциты и астроциты) и микроглию. Представляет интерес классификация, согласно которой нейроглия подразделяется на глию центральной нервной системы (эпендимоциты, астроциты, олигодендроциты, микроглия и эпителиальные клетки, покрывающие сосудистые сплетения) и глию периферической нервной системы (нейролеммоциты, амфициты).

Рис. 7. Нейроглия (по В.Г. Елисееву и др., 1970):

I – эпендимоциты; II – протоплазматические астроциты;
III – волокнистые астроциты; IV – олигодендроглиоциты; V – микрология

Одинслой эпендимоцитовкубической или призматической формы выстилает изнутри желудочки мозга и спинномозговой канал. В эмбриональный период от базальной поверхности эпендимоцита отходит разветвляющийся отросток, который, за редким исключением, у взрослого человека подвергается обратному развитию. Задняя срединная перегородка спинного мозга образована указанными отростками. Апикальная поверхность клеток в эмбриональный период покрыта множеством ресничек, у взрослого человека – микроворсинками, количество ресничек варьирует в разных отделах ЦНС. В некоторых участках ЦНС реснички эпендимоцитов многочисленны (водопровод среднего мозга).

Эпендимоциты соединены между собой запирающими зонами и лентовидными десмосомами. От базальной поверхности некоторых эпендимных клеток – таницитов – отходит отросток, который проходит между подлежащими клетками, разветвляется и контактирует с базальным слоем капилляров. Эпендимоциты участвуют в транспортных процессах, выполняют опорную и разграничительную функции, принимают участие в метаболизме мозга. В эмбриональный период отростки эмбриональных таницитов выполняют роль проводников для мигрирующих нейронов. Между эпендимоцитами залегают особые клетки, снабженные длинным апикальным отростком, от поверхности которого отходит несколько ресничек, так называемые ликворные контактные нейроны. Их функция пока неизвестна. Под слоем эпендимоцитов лежит слой недифференци-рованных глиоцитов.

Среди астроцитов, являющихся основными глиальными элементами ЦНС, различают протоплазматические и волокнистые. Первые имеют звездчатую форму, на их телах образуется множество коротких выпячиваний, служащих как бы опорой для отростков нейронов, отделенных от плазмолеммы астроцита щелью шириной около 20 нм. Многочисленные отростки плазмати-ческих астроцитов заканчиваются на нейронах и на капиллярах. Они образуют сеть, в ячейках которой залегают нейроны. Указанные отростки расширяются на концах, переходя в широкие ножки, которые, контактируя между собой, со всех сторон окружают капилляры, покрывая около 80% их поверхности (вокругсосудистая глиальная пограничная мембрана), и нейроны; не покрыты этой мембраной лишь участки синапсов. Отростки, достигающие своими расширенными окончаниями поверхности мозга, соединяясь между собой нексусами, образуют на ней сплошную поверхностную глиальную пограничную мембрану. Кней прилежит базальная мембрана, отграничивающая ее от мягкой мозговой оболочки. Глиальная мембрана, образованная расширенными концами отростков астроцитов, изолирует нейроны, создавая для них специфическое микроокружение.

Волокнистые астроциты преобладают в белом веществе ЦНС. Это многоотростчатые (20–40 от-ростков) клетки, тела которых имеют размеры около 10 мкм. Отростки располагаются между нервными волокнами, некоторые достигают кровеносных капилляров.

В мозжечке присутствует еще одна разновидность астроцитов – крыловидные астроциты зернистого слоя коры мозжечка. Это клетки звездчатой формы с небольшим количеством крыловидных отростков, напоминающих капустные листья, которые окружают базальный слой капилляров, нервные клетки и клубки, образованные синапсами между моховидными волокнами и дендритами мелких клеток-зерен. Отростки нейронов прободают крыловидные отростки.

Основная функция астроцитов – опорная и изоляция нейронов от внешних влияний, что необходимо для осуществления специфической деятельности нейронов.

Олигодендроциты – мелкие клетки овоидной формы (6–8 мкм) с крупным, богатым хроматином ядром, окруженным тонким ободком цитоплазмы, в которой находятся умеренно развитые органеллы. Располагаются олигодендроциты вблизи нейронов и их отростков. От тел олигодендроцитов отходит небольшое количество коротких конусовидных и широких плоских трапециевидных миелинобразующих отростков. Последние формируют миелиновый слой нервных волокон в ЦНС. Миелинобразующие отростки каким-то образом спирально накручиваются на аксоны. Возможно, аксон вертится, наворачивая на себя миелин. Внутренняя миелиновая пластинка самая короткая, наружная – самая длинная, причем один олигодендроцит образует оболочку нескольких аксонов. По ходу аксона миелиновая оболочка сформирована отростками многих олигодендроцитов, каждый из которых образует один межузловой сегмент. Между сегментами находится узловой перехват нервного волокна (перехват Ранвье) , лишенный миелина. В области перехвата расположены синапсы. Олигодендроциты, образующие оболочки нервных волокон периферической нервной системы, называются леммоцитами или шванновскими клетками. Есть сведения, что олигодендроциты и во взрослом организме способны кмитотическому делению.

Микроглия, составляющая около 5% клеток глин в белом веществе мозга и около 18% в сером, состоит из мелких удлиненных клеток угловатой или неправильной формы, рассеянных в белом и сером веществе ЦНС (клетки Ортега). От тела клетки отходят многочисленные отростки различной формы, напоминающие кустики. Основание некоторых клеток микроглии как бы распластано на капилляре. Вопрос о происхождении микроглии в настоящее время дискутируется. Согласно одной из гипотез, клетки микроглии являются глиальными макрофагами и происходят от промоноцитов костного мозга.

В прошлом считали, что нейроны независимы от окружающих и поддерживающих их клеток глии. В то же время полагали, что в ЦНС существует обширное межклеточное пространство, заполненное водой, электролитами и другими веществами. Следовательно, предполагалось, что питательные вещества способны выходить из капилляров в это “пространство” и затем поступать в нейроны. Электронно-микроскопические исследования, проведенные многими авторами, показали, что такого “обширного межклеточного пространства” не существует. Единственное “свободное” пространство в ткани мозгa – это щели между плазматическими мембранами шириной 100–200 А. Таким образом, на долю межклеточного пространства приходится около 21% объема мозга. Все участки паренхимы мозга заполнены нервными клетками, их отростками, клетками глии и элементами сосудистой системы. Наблюдения свидетельствуют, что астроциты лежат между капиллярами и нейронами, а также между капиллярами и клетками эпендимы. Возможно, что астроциты могут служить коллекторами воды, которая, как думали, находится в межклеточном пространстве. Очевидно, что если эта жидкость содержится внутри клеток, то астроциты играют роль некоего вненейронного пространства, способного накапливать воду и растворенные в ней вещества, которые обычно рассматривались как внеклеточные компоненты.

Электронно-микроскопические исследования выявили тесные структурные взаимоотношения между нейронами и глией, показав, что нейроны редко контактируют с кровеносными сосудами и что между этими структурами находятся клетки глии, которые могут служить связующим звеном между нейроном и капиллярами, обеспечивающими поступление питательных веществ и удаление конечных продуктов обмена, что дополняет обмен, идущий через внеклеточное пространство. Однако использование таких пространств ограничивается, по-видимому, многочисленными “плотными соединениями” между клетками. Кроме того, клетки глии, соединяющие нейроны и капилляры, возможно, способны выполнять несколько более сложные функции, чем пассивный перенос различных веществ.

Известны другие формы нейроно-глиальных взаимоотношений. Так, была показана реакция клеток глии на повреждение мозга (нейронов). Клетки глии, окружающие нейрон, реагируют на повышение функциональной активности этого нейрона, а также на его раздражение. Эти и некоторые другие наблюдения можно рассматривать как свидетельство того, что клетки глии участвуют, по крайней мере, в поддержании активности нервной клетки.

Микрохимические методы выявили еще несколько сторон взаимоотношений нейронов и клеток глии. Вот некоторые из этих наблюдений:

а) на долю глии приходится всего 10% того количества РНК, которое содержится в нейронах (при расчете на сухой вес). Это объясняется, очевидно, менее интенсивным синтезом и диффузным распределением РНК в крупных астроцитах с их многочисленными длинными отростками или возможной передачей РНК соседним нейронам;

б) раздражение нейронов в течение короткого времени ведет к увеличению содержания в них РНК, белка и повышению активности дыхательных ферментов, а также к снижению содержания этих компонентов в окружающих клетках глии. Это свидетельствует о возможности обмена между нейронами и клетками глин. Длительное раздражение ведет к уменьшению содержания РНК как в нейронах, так и в клетках глии;

в) при раздражении нейронов активность дыхательных ферментов в них возрастает, а анаэробный гликолиз подавляется; в окружающих же клетках глии отмечается значительное повышение интенсивности анаэробного гликолиза.

Дальнейшие исследования показали, что общую массу клеток глии можно разделить на клетки, преимущественно локализованные вокруг капилляров (где обычно больше астроцитов), и клетки, расположенные, главным образом, вокруг нейронов. Хотя астроциты, по-видимому, имеют связь и с нейронами, и с капиллярами, олигодендроциты как клетки-сателлиты в большей степени связаны с нейронами. Так, среди клеток глии, окружающих нейроны, обнаружено около
90% олигодендроцитов и 10% астроцитов. Капиллярная глия содержит 70% олигодендроцитов и 30% астроцитов. Эти данные были получены с помощью светового микроскопа. Исследования структурных взаимоотношений глии и нейронов с помощью электронного микроскопа продемонстрировали, что в областях, где преобладают тела олигодендроцитов, находится множество отростков астроцитов, которые в большинстве случаев “вклиниваются” между олигодендроглией и нейронами с механизмами синтеза.

Эти данные и предположения нельзя считать окончательными доказательствами наличия своеобразных метаболических взаимоотношений между нейронами и глией. Вместе с тем вполне возможно, что существуют какие-то важные связи между нейронами и глией, которые освобождают нейрон от необходимости быть полностью самостоятельной метаболической единицей, целиком обеспечивающей поддержание своей структуры. Полученные к настоящему времени данные о метаболических взаимоотношениях нейронов и глии наиболее убедительны в отношении синтеза белка и нуклеиновых кислот.

Нервные волокна

Нервные волокна – отростки нервных клеток, окруженные оболочками, образованными олигодендроцитами периферической нервной системы (нейролеммоциты, или шванновские клетки). Различают безмиелиновые и миелиновые волокна.

У безмиелиновых волокон отростки нейронов прогибают плазматическую мембрану олигодендроцита (нейролеммоцита), смыкающуюся над ним (рис. 8, А ), образуя складки, на дне которых и располагаются отдельные осевые цилиндры. Сближение в области складки участков оболочки олигодендроцита способствует образованию сдвоенной мембраны – мезаксона , на которой как бы подвешен осевой цилиндр. Между плазматическими мембранами нервного волокна и олигодендроцита имеется узкий промежуток. В одну шванновскую клетку погружено множество нервных волокон, большинство из них полностью, так что каждое волокно имеет мезаксон. Однако некоторые волокна не покрыты со всех сторон шванновской клеткой и лишены мезаксона. Группа безмиелиновых нервных волокон, связанных с одним нейролеммоцитом, покрыта эндоневрием, образованным базальной мембраной последнего и тонкой сеточкой, состоящей из переплетающихся коллагеновых и ретикулярных микрофибрилл. Безмиелиновые нервные волокна не сегментированы.

Рис. 8. Схема строения нервных волокон на светооптическом (А , Б )
и ультрамикроскопическом (а , б ) уровнях:

А , а – миелиновое волокно; Б , б – безмиелиновое волокно; 1 – осевой цилиндр;
2 – миелиновый слой; 3 соединительная ткань; 4 – насечка миелина;
5 – ядро нейролеммоцита; 6 – узловой перехват; 7 – микротрубочки;
8 – нейрофиламенты; 9 – митохондрии; 10 – мезаксон; 11 – базальная мембрана

Миелиновые нервные волокна (рис. 8, Б ) образуются благодаря тому, что нейролеммоцит спирально накручивается на аксон нервной клетки. При этом цитоплазма нейролеммоцита выдавливается из него подобно тому, как это происходит при закручивании периферического конца тюбика с зубной пастой (рис. 9). Каждый нейролеммоцит окутывает только часть осевого цилиндра длиной около 1 мм, формируя межузловой сегмент миелинового волокна. Миелинэто многократно закрученный двойной слой плазматической мембраны нейролеммоцита (олигодендроцита), который образует внутреннюю оболочку осевогo цилиндра. Толстая и плотная миелиновая оболочка, богатая липидами, изолирует нервное волокно и предотвращает утечку тока (нервного импульса) из аксолеммы – мембраны осевого цилиндра.

Рис. 9. Схема развития миелинового волокна:

А – поперечные срезы последовательных стадий развития (по Робертсону);
Б – трехмерное изображение сформированного волокна;
1 – дубликация оболочки нейролеммоцита (мезаксон); 2 – аксон;
3 – насечки миелина; 4 – пальцевидные контакты нейролеммоцита в области перехвата;
5 – цитоплазма нейролеммоцита; 6 – спирально закрученный мезаксон (миелин);
7 – ядро нейролеммоцита

Наружная оболочка осевого цилиндра образована цитоплазмой нейролеммоцита, которая окружена его базальной мембраной и тонкой сеточкой из ретикулярных и коллагеновых фибрилл. На границе между двумя соседними нейролеммоцитами создается сужение нервного волокна – узловой перехват нервного волокна (перехват Ранвье) шириной около 0,5 мкм, где миелиновая оболочка отсутствует. Здесь аксолемма контактирует с переплетающимися между собой отростками нейролеммоцитов и, возможно, с базальной мембраной шванновских клеток.

Уплощенные отростки нейролеммоцита имеют на плоскости форму трапеции, поэтому внутренние пластинки миелина самые короткие, а наружные – самые длинные. Каждая пластинка миелина на концах переходит в конечную пластинчатую манжетку, прикрепляющуюся посредством плотного вещества к аксолемме. Манжетки отделены одна от другой мезаксонами.
В некоторых участках миелиновой оболочки пластинки миелина отделены друг от друга прослойками цитоплазмы шванновской клетки. Это так называемые насечки нейролеммы (Шмидта – Лантермана). Они повышают пластичность нервного волокна. Это тем более вероятно, что насечки отсутствуют в ЦНС, где волокна не подвергаются каким-либо механическим воздействиям. Таким образом, между двумя шванновскими клетками сохраняются узкие участки обнаженной аксолеммы. Именно здесь сконцентрировано большинство натриевых каналов
(3–5 тыс. на 1 мкм), в то время как плазмолемма, покрытая миелином, практически лишена их.

Межузловые сегменты, покрытые миелином, обладают кабельными свойствами, и время проведения по ним импульса, т.е. его потенциал, приближается кнулю. В аксолемме на уровне перехвата Ранвье генерируется нервный импульс, который стремительно проводится кблизлежащему перехвату, в его мембране возбуждается следующий потенциал действия. Такой способ проведения импульса называется сальтаторным (перескакивающим). По существу, в миелиновых нервных волокнах возбуждение происходит лишь в перехватах Ранвье. Миелиновая оболочка обеспечивает изолированное, бездекрементное (без падения амплитуды потенциала) и более быстрое проведение возбуждения вдоль нервного волокна. Имеется прямая зависимость между толщиной этой оболочки и скоростью проведения импульсов. Волокна с толстым слоем миелина проводят импульсы со скоростью 70–140 м/с, в то время как проводники с тонкой миелиновой оболочкой со скоростью около 1 м/с и еще медленнее – «безмякотные» волокна
(0,3–0,5 м/с).

Цитолемма нейронов отделена от цитолеммы глиоцитов заполненными жидкостью межкле-точными щелями, ширина которых колеблется в пределах 15–20 нм. Все межклеточные щели сооб-щаются между собой и образуют межклеточное пространство. Интерстициальное (внеклеточное) пространство занимает около 17–20% общего объема мозга. Оно заполнено основным веществом мукополисахаридной природы, обеспечивающим диффузию кислорода и питательных веществ.

Между кровью и тканью мозга существует гематоэнцефалический барьер (ГЭБ), препят-ствующий прохождению многих макромолекул, токсинов, лекарств из крови в головной мозг. Учение о гематоэнцефалическом барьере разработала академик Л.С. Штерн. Барьер состоит из эндотелия капилляров. В мозге имеются участки, лишенные гематоэнцефалического барьера, в которых фенестрированные капилляры окружены широкими перикапиллярными пространствами (сосудистые сплетения, эпифиз, задняя доля гипофиза, срединное возвышение, воронка среднего мозга).