Биографии Характеристики Анализ

Сумата от първите 11 числа от аритметична прогресия. Аритметична прогресия

Мотото на нашия урок ще бъдат думите на руския математик В.П. Ермакова: „В математиката човек трябва да помни не формули, а процеси на мислене.“

По време на часовете

Формулиране на проблема

На дъската има портрет на Гаус. Учител или ученик, на когото е дадена задача да подготви съобщение предварително, казва, че когато Гаус бил на училище, учителят помолил учениците да съберат всички естествени числа от 1 до 100. Малкият Гаус решил тази задача за минута.

Въпрос . Как Гаус получи отговора?

Търсене на решения

Учениците изразяват своите предположения, след което обобщават: разбирайки, че сборовете 1 + 100, 2 + 99 и т.н. са равни, Гаус умножи 101 по 50, тоест по броя на тези суми. С други думи, той забеляза модел, който е присъщ на аритметичната прогресия.

Извеждане на формулата за сумата нпървите членове на аритметичната прогресия

Напишете темата на урока на дъската и в тетрадките си. Учениците заедно с учителя записват извода на формулата:

Позволявам а 1 ; а 2 ; а 3 ; а 4 ; ...; a n – 2 ; a n – 1 ; a n- аритметична прогресия.

Първично закрепване

1. Нека решим, използвайки формула (1), проблема на Гаус:

2. Използвайки формула (1), решете задачите устно (условията им са написани на дъската или кодирайте положително), ( a n) - аритметична прогресия:

а) а 1 = 2, а 10 = 20. С 10 - ?

б) а 1 = –5, а 7 = 1. С 7 - ? [–14]

в) а 1 = –2, а 6 = –17. С 6 - ? [–57]

G) а 1 = –5, а 11 = 5. С 11 - ?

3. Изпълнете задачата.

дадено :( a n) - аритметична прогресия;

а 1 = 3, а 60 = 57.

намирам: С 60 .

Решение. Нека използваме формулата за сумата нпървите членове на аритметичната прогресия

Отговор: 1800.

Допълнителен въпрос.Колко вида различни задачи могат да бъдат решени с тази формула?

Отговор. Четири вида задачи:

Намерете сумата S n;

Намерете първия член на аритметична прогресия а 1 ;

намирам н-ти член на аритметична прогресия a n;

Намерете броя на членовете на аритметична прогресия.

4. Изпълнете задача: № 369(б).

Намерете сумата от шестдесет и първите членове на аритметична прогресия ( a n), ако а 1 = –10,5, а 60 = 51,5.

Решение.

Отговор: 1230.

Допълнителен въпрос. Запишете формулата нчлен на аритметична прогресия.

Отговор: a n = а 1 + д(н – 1).

5. Изчислете формулата за първите девет члена на аритметичната прогресия ( b n),
ако b 1 = –17, д = 6.

Възможно ли е да се изчисли веднага по формула?

Не, защото деветият мандат е неизвестен.

Как да го намерите?

Според формулата нчлен на аритметична прогресия.

Решение. b 9 = b 1 + 8д = –17 + 8∙6 = 31;

Отговор: 63.

Въпрос. Възможно ли е да се намери сумата, без да се изчисли деветият член на прогресията?

Формулиране на проблема

Проблем: формула за получаване на сума нпървите членове на аритметична прогресия, знаейки нейния първи член и разликата д.

(Извеждане на формулата на дъската от ученика.)

Решаваме номер 371(a), като използваме новата формула (2):

Устно консолидиране на формули (2) ( условията на задачата са написани на дъската).

(a n

1. а 1 = 3, д = 4. С 4 - ?

2. а 1 = 2, д = –5. С 3 - ? [–9]

Попитайте учениците какви въпроси не разбират.

Самостоятелна работа

Опция 1

дадени: (a n) е аритметична прогресия.

1. а 1 = –3, а 6 = 21. С 6 - ?

2. а 1 = 6, д = –3. С 4 - ?

Вариант 2

дадени: (a n) е аритметична прогресия.

1.а 1 = 2, а 8 = –23. С 8 - ? [–84]

2.а 1 = –7, д = 4. С 5 - ?

Учениците си сменят тетрадките и си проверяват решенията.

Обобщете усвояването на материала въз основа на резултатите от самостоятелната работа.


Например последователността \(2\); \(5\); \(осем\); \(единадесет\); \(14\)… е аритметична прогресия, тъй като всеки следващ елемент се различава от предходния с три (може да се получи от предишния чрез добавяне на три):

В тази прогресия разликата \(d\) е положителна (равна на \(3\)) и следователно всеки следващ член е по-голям от предишния. Такива прогресии се наричат повишаване на.

Въпреки това, \(d\) също може да бъде отрицателно число. Например, в аритметична прогресия \(16\); \(десет\); \(четири\); \(-2\); \(-8\)… разликата в прогресията \(d\) е равна на минус шест.

И в този случай всеки следващ елемент ще бъде по-малък от предишния. Тези прогресии се наричат намаляващи.

Нотиране на аритметична прогресия

Прогресията се обозначава с малка латинска буква.

Числата, които образуват прогресия, се наричат членове(или елементи).

Те се обозначават със същата буква като аритметичната прогресия, но с цифров индекс, равен на номера на елемента по ред.

Например, аритметичната прогресия \(a_n = \left\( 2; 5; 8; 11; 14…\right\)\) се състои от елементите \(a_1=2\); \(a_2=5\); \(a_3=8\) и така нататък.

С други думи, за прогресията \(a_n = \left\(2; 5; 8; 11; 14…\right\)\)

Решаване на задачи в аритметична прогресия

По принцип горната информация вече е достатъчна за решаване на почти всеки проблем с аритметична прогресия (включително предлаганите в OGE).

Пример (OGE). Аритметична прогресиядадено от условията \(b_1=7; d=4\). Намерете \(b_5\).
Решение:

Отговор: \(b_5=23\)

Пример (OGE). Дадени са първите три члена на аритметична прогресия: \(62; 49; 36…\) Намерете стойността на първия отрицателен член на тази прогресия..
Решение:

Дадени са ни първите елементи на редицата и знаем, че тя е аритметична прогресия. Тоест всеки елемент се различава от съседния с едно и също число. Разберете кой, като извадите предишния от следващия елемент: \(d=49-62=-13\).

Сега можем да възстановим нашата прогресия до желания (първи отрицателен) елемент.

Готов. Можете да напишете отговор.

Отговор: \(-3\)

Пример (OGE). Дадени са няколко последователни елемента от аритметична прогресия: \(...5; x; 10; 12,5...\) Намерете стойността на елемента, означен с буквата \(x\).
Решение:


За да намерим \(x\), трябва да знаем колко се различава следващият елемент от предишния, с други думи, разликата в прогресията. Нека го намерим от два познати съседни елемента: \(d=12,5-10=2,5\).

И сега намираме това, което търсим без никакви проблеми: \(x=5+2.5=7.5\).


Готов. Можете да напишете отговор.

Отговор: \(7,5\).

Пример (OGE). Дадена е аритметична прогресия следните условия: \(a_1=-11\); \(a_(n+1)=a_n+5\) Намерете сумата от първите шест члена на тази прогресия.
Решение:

Трябва да намерим сумата от първите шест члена на прогресията. Но ние не знаем техните значения, даден ни е само първият елемент. Затова първо изчисляваме стойностите на свой ред, като използваме дадените ни:

\(n=1\); \(a_(1+1)=a_1+5=-11+5=-6\)
\(n=2\); \(a_(2+1)=a_2+5=-6+5=-1\)
\(n=3\); \(a_(3+1)=a_3+5=-1+5=4\)
И след като изчислим шестте елемента, от които се нуждаем, намираме тяхната сума.

\(S_6=a_1+a_2+a_3+a_4+a_5+a_6=\)
\(=(-11)+(-6)+(-1)+4+9+14=9\)

Исканата сума е намерена.

Отговор: \(S_6=9\).

Пример (OGE). В аритметична прогресия \(a_(12)=23\); \(a_(16)=51\). Намерете разликата на тази прогресия.
Решение:

Отговор: \(d=7\).

Важни формули за аритметична прогресия

Както можете да видите, много проблеми с аритметичната прогресия могат да бъдат решени просто чрез разбиране на основното - че аритметичната прогресия е верига от числа и всеки следващ елемент в тази верига се получава чрез добавяне на същото число към предишното (разликата на прогресията).

Въпреки това, понякога има ситуации, когато е много неудобно да се реши "на челото". Например, представете си, че в първия пример трябва да намерим не петия елемент \(b_5\), а триста осемдесет и шестия \(b_(386)\). Какво е това, ние \ (385 \) пъти да добавим четири? Или си представете, че в предпоследния пример трябва да намерите сумата от първите седемдесет и три елемента. Броенето е объркващо...

Следователно в такива случаи те не решават „на чело“, а използват специални формули, получени за аритметична прогресия. И основните от тях са формулата за n-тия член на прогресията и формулата за сумата \(n\) на първите членове.

Формула за \(n\)-тия член: \(a_n=a_1+(n-1)d\), където \(a_1\) е първият член на прогресията;
\(n\) – номер на търсения елемент;
\(a_n\) е член на прогресията с номер \(n\).


Тази формула ни позволява бързо да намерим поне тристотния, дори милионния елемент, знаейки само първия и разликата в прогресията.

Пример. Аритметичната прогресия се дава от условията: \(b_1=-159\); \(d=8,2\). Намерете \(b_(246)\).
Решение:

Отговор: \(b_(246)=1850\).

Формулата за сбора на първите n члена е: \(S_n=\frac(a_1+a_n)(2) \cdot n\), където



\(a_n\) е последният сумиран член;


Пример (OGE). Аритметичната прогресия се дава от условията \(a_n=3.4n-0.6\). Намерете сумата от първите \(25\) членове на тази прогресия.
Решение:

\(S_(25)=\)\(\frac(a_1+a_(25))(2 )\) \(\cdot 25\)

За да изчислим сумата на първите двадесет и пет елемента, трябва да знаем стойността на първия и двадесет и петия член.
Нашата прогресия се дава по формулата на n-тия член в зависимост от неговия номер (виж подробности). Нека изчислим първия елемент, като заменим \(n\) с единица.

\(n=1;\) \(a_1=3,4 1-0,6=2,8\)

Сега нека намерим двадесет и петия член, като заместим двадесет и пет вместо \(n\).

\(n=25;\) \(a_(25)=3,4 25-0,6=84,4\)

Е, сега изчисляваме необходимата сума без никакви проблеми.

\(S_(25)=\)\(\frac(a_1+a_(25))(2)\) \(\cdot 25=\)
\(=\) \(\frac(2,8+84,4)(2)\) \(\cdot 25 =\)\(1090\)

Отговорът е готов.

Отговор: \(S_(25)=1090\).

За сумата \(n\) от първите членове можете да получите друга формула: просто трябва да \(S_(25)=\)\(\frac(a_1+a_(25))(2)\) \ (\cdot 25\ ) вместо \(a_n\) заменете формулата за него \(a_n=a_1+(n-1)d\). Получаваме:

Формулата за сбора на първите n члена е: \(S_n=\)\(\frac(2a_1+(n-1)d)(2)\) \(\cdot n\), където

\(S_n\) – исканата сума \(n\) на първите елементи;
\(a_1\) е първият член, който трябва да се сумира;
\(d\) – разлика в прогресията;
\(n\) - броят на елементите в сумата.

Пример. Намерете сумата от първите \(33\)-ex членове на аритметичната прогресия: \(17\); \(15,5\); \(четиринадесет\)…
Решение:

Отговор: \(S_(33)=-231\).

По-сложни задачи с аритметична прогресия

Сега имате всичко необходимата информацияза решаване на почти всяка задача в аритметична прогресия. Нека завършим темата, като разгледаме задачи, в които трябва не само да прилагате формули, но и да мислите малко (в математиката това може да бъде полезно ☺)

Пример (OGE). Намерете сумата от всички отрицателни членове на прогресията: \(-19.3\); \(-19\); \(-18,7\)…
Решение:

\(S_n=\)\(\frac(2a_1+(n-1)d)(2)\) \(\cdot n\)

Задачата е много подобна на предишната. Започваме да решаваме по същия начин: първо намираме \(d\).

\(d=a_2-a_1=-19-(-19.3)=0.3\)

Сега бихме заместили \(d\) във формулата за сумата ... и тук изскача малък нюанс - не знаем \(n\). С други думи, не знаем колко термина ще трябва да се добавят. Как да разберем? Нека да помислим. Ще спрем да добавяме елементи, когато стигнем до първия положителен елемент. Тоест, трябва да разберете броя на този елемент. как? Нека запишем формулата за изчисляване на всеки елемент от аритметична прогресия: \(a_n=a_1+(n-1)d\) за нашия случай.

\(a_n=a_1+(n-1)d\)

\(a_n=-19,3+(n-1) 0,3\)

Трябва да станем \(a_n\). Над нулата. Нека да разберем за какво \(n\) ще се случи това.

\(-19,3+(n-1) 0,3>0\)

\((n-1) 0,3>19,3\) \(|:0,3\)

Разделяме двете страни на неравенството на \(0,3\).

\(n-1>\)\(\frac(19,3)(0,3)\)

Прехвърляме минус едно, като не забравяме да сменим знаците

\(n>\)\(\frac(19,3)(0,3)\) \(+1\)

Изчисляване...

\(n>65 333…\)

… и се оказва, че първият положителен елемент ще има числото \(66\). Съответно последният отрицателен има \(n=65\). За всеки случай нека да го проверим.

\(n=65;\) \(a_(65)=-19,3+(65-1) 0,3=-0,1\)
\(n=66;\) \(a_(66)=-19,3+(66-1) 0,3=0,2\)

Следователно трябва да добавим първите \(65\) елемента.

\(S_(65)=\) \(\frac(2 \cdot (-19,3)+(65-1)0,3)(2)\)\(\cdot 65\)
\(S_(65)=\)\((-38,6+19,2)(2)\)\(\cdot 65=-630,5\)

Отговорът е готов.

Отговор: \(S_(65)=-630,5\).

Пример (OGE). Аритметичната прогресия се дава от условията: \(a_1=-33\); \(a_(n+1)=a_n+4\). Намерете сумата от \(26\)-ия до \(42\) елемент включително.
Решение:

\(a_1=-33;\) \(a_(n+1)=a_n+4\)

В тази задача също трябва да намерите сумата от елементи, но започвайки не от първия, а от \(26\)-ия. Нямаме формула за това. Как да решим?
Лесно - за да получите сбора от \(26\)-та до \(42\)-та, първо трябва да намерите сумата от \(1\)-та до \(42\)-та и след това да извадите от нея сумата от първият до \ (25 \) ти (вижте снимката).


За нашата прогресия \(a_1=-33\) и разликата \(d=4\) (все пак добавяме четири към предишния елемент, за да намерим следващия). Знаейки това, намираме сумата от първите \(42\)-uh елементи.

\(S_(42)=\) \(\frac(2 \cdot (-33)+(42-1)4)(2)\)\(\cdot 42=\)
\(=\)\(\frac(-66+164)(2)\) \(\cdot 42=2058\)

Сега сумата от първите \(25\)-ти елементи.

\(S_(25)=\) \(\frac(2 \cdot (-33)+(25-1)4)(2)\)\(\cdot 25=\)
\(=\)\(\frac(-66+96)(2)\) \(\cdot 25=375\)

И накрая изчисляваме отговора.

\(S=S_(42)-S_(25)=2058-375=1683\)

Отговор: \(S=1683\).

За аритметична прогресия има още няколко формули, които не сме разгледали в тази статия поради тяхната ниска практическа полезност. Можете обаче лесно да ги намерите.

Първо ниво

Аритметична прогресия. Подробна теорияс примери (2019)

Числова последователност

И така, нека седнем и започнем да записваме някои числа. Например:
Можете да пишете произволни числа и може да са колкото искате (в нашия случай те). Колкото и числа да пишем, винаги можем да кажем кое от тях е първото, кое второто и така до последното, тоест можем да ги номерираме. Това е пример за числова последователност:

Числова последователност
Например за нашата последователност:

Присвоеният номер е специфичен само за един пореден номер. С други думи, в редицата няма три втори числа. Второто число (като -тото число) винаги е едно и също.
Числото с числото се нарича -тият член на редицата.

Обикновено наричаме цялата последователност някаква буква (например,), а всеки член на тази последователност - една и съща буква с индекс, равен на номера на този член: .

В нашия случай:

Да кажем, че имаме числова последователност, при което разликата между съседни числа е еднаква и равна.
Например:

и т.н.
Такава числова последователност се нарича аритметична прогресия.
Терминът "прогресия" е въведен от римския автор Боеций още през 6-ти век и се разбира в по- широк смисъл, като безкрайна редица от числа. Името "аритметика" е прехвърлено от теорията за непрекъснатите пропорции, с която са се занимавали древните гърци.

Това е числова редица, всеки член на която е равен на предходния, добавен със същото число. Това число се нарича разлика на аритметична прогресия и се обозначава.

Опитайте се да определите кои числови последователности са аритметична прогресия и кои не са:

а)
б)
° С)
д)

Схванах го? Сравнете нашите отговори:
Еаритметична прогресия - b, c.
Не еаритметична прогресия - a, d.

Обратно към дадена прогресия() и се опитайте да намерите стойността на неговия th член. Съществува двеначин да го намерите.

1. Метод

Можем да добавяме към предишната стойност на числото на прогресията, докато стигнем до члена на прогресията. Добре е, че няма много за обобщаване - само три стойности:

И така, -тият член на описаната аритметична прогресия е равен на.

2. Метод

Какво ще стане, ако трябва да намерим стойността на тия член на прогресията? Сумирането щеше да ни отнеме повече от час и не е факт, че нямаше да допуснем грешки при събирането на числата.
Разбира се, математиците са измислили начин, по който не е необходимо да добавяте разликата на аритметична прогресия към предишната стойност. Погледнете внимателно нарисуваната картина ... Със сигурност вече сте забелязали определен модел, а именно:

Например, нека да видим какво съставлява стойността на -тия член на тази аритметична прогресия:


С други думи:

Опитайте се самостоятелно да намерите по този начин стойността на член на тази аритметична прогресия.

Изчислено? Сравнете вашите записи с отговора:

Обърнете внимание, че сте получили точно същото число като в предишния метод, когато последователно добавихме членовете на аритметична прогресия към предишната стойност.
Нека се опитаме да "обезличим" тази формула- доведе я до обща формаи получи:

Уравнение на аритметична прогресия.

Аритметичните прогресии се увеличават или намаляват.

Повишаване на- прогресии, при които всяка следваща стойност на членовете е по-голяма от предходната.
Например:

Спускане- прогресии, при които всяка следваща стойност на членовете е по-малка от предходната.
Например:

Изведената формула се използва при изчисляването на членове както в нарастващи, така и в намаляващи членове на аритметична прогресия.
Нека да го проверим на практика.
Дадена ни е аритметична прогресия, състояща се от следните числа: Нека да проверим какво ще се получи -тото число от тази аритметична прогресия, ако използваме нашата формула, когато я изчисляваме:


От тогава:

Така се убедихме, че формулата работи както в намаляваща, така и в нарастваща аритметична прогресия.
Опитайте се сами да намерите -тия и -тия членове на тази аритметична прогресия.

Нека сравним резултатите:

Свойство на аритметична прогресия

Нека усложним задачата - извеждаме свойството на аритметична прогресия.
Да предположим, че ни е дадено следното условие:
- аритметична прогресия, намерете стойността.
Лесно е, казвате вие ​​и започвате да броите по формулата, която вече знаете:

Нека, а, тогава:

Абсолютно прав. Оказва се, че първо намираме, след това го добавяме към първото число и получаваме това, което търсим. Ако прогресията е представена с малки стойности, тогава няма нищо сложно в това, но какво ще стане, ако в условието ни бъдат дадени числа? Съгласете се, има вероятност да направите грешки в изчисленията.
Сега помислете, възможно ли е да се реши този проблем в една стъпка, като се използва някаква формула? Разбира се, да, и ние ще се опитаме да го изведем сега.

Нека означим желания член от аритметичната прогресия като, знаем формулата за намирането му - това е същата формула, която изведехме в началото:
, тогава:

  • предишният член на прогресията е:
  • следващият член на прогресията е:

Нека сумираме предишните и следващите членове на прогресията:

Оказва се, че сумата от предишния и следващите членове на прогресията е два пъти по-голяма от стойността на члена на прогресията, разположен между тях. С други думи, да се намери стойността на члена на прогресията с известно предишно и последователни стойности, трябва да ги съберете и разделите на.

Точно така, имаме едно и също число. Да оправим материала. Изчислете сами стойността за прогресията, защото не е никак трудно.

Много добре! Знаете почти всичко за прогресията! Остава да открием само една формула, която според легендата един от най-великите математици на всички времена, "кралят на математиците" - Карл Гаус, лесно извежда за себе си ...

Когато Карл Гаус беше на 9 години, учителят, зает да проверява работата на учениците в други класове, зададе следната задача в урока: „Изчислете сумата от всички естествени числаот до (според други източници до) включително. Каква беше изненадата на учителя, когато един от неговите ученици (това беше Карл Гаус) след минута даде правилния отговор на задачата, докато повечето от съучениците на смелчага след дълги изчисления получиха грешен резултат ...

Младият Карл Гаус забеляза модел, който можете лесно да забележите.
Да кажем, че имаме аритметична прогресия, състояща се от -ti членове: Трябва да намерим сумата от дадените членове на аритметичната прогресия. Разбира се, можем ръчно да сумираме всички стойности, но какво ще стане, ако трябва да намерим сбора на неговите членове в задачата, както търсеше Гаус?

Нека изобразим прогресията, която ни е дадена. Погледнете внимателно маркираните числа и се опитайте да извършите различни математически операции с тях.


Опитах? Какво забелязахте? Правилно! Сумите им са равни


Сега отговорете колко такива двойки ще има в дадената ни прогресия? Разбира се, точно половината от всички числа, т.е.
Въз основа на факта, че сумата от два члена на една аритметична прогресия е равна и подобни равни двойки, получаваме, че обща сумае равно на:
.
По този начин формулата за сумата от първите членове на всяка аритметична прогресия ще бъде:

В някои задачи не знаем тия член, но знаем разликата в прогресията. Опитайте се да замените във формулата на сумата формулата на th член.
Какво получи?

Много добре! Сега да се върнем към задачата, дадена на Карл Гаус: изчислете сами колко е сумата от числата, започващи от -тото, и сумата от числата, започващи от -тото.

Колко получихте?
Гаус се оказа, че сумата от членовете е равна и сумата от членовете. Така ли реши?

Всъщност формулата за сбора на членовете на аритметична прогресия е доказана от древногръцкия учен Диофант още през 3 век и през цялото това време остроумни хораизползваха свойствата на аритметичната прогресия със сила и главна сила.
Например, представете си Древен Египети най-голямата строителна площадка от онова време - изграждането на пирамида ... Фигурата показва едната й страна.

Къде е прогресията тук, казвате? Погледнете внимателно и намерете модел в броя на пясъчните блокове във всеки ред на стената на пирамидата.


Защо не аритметична прогресия? Пребройте колко блока са необходими за изграждането на една стена, ако в основата са поставени блокови тухли. Надявам се, че няма да броите, като движите пръста си по монитора, помните ли последната формула и всичко, което казахме за аритметичната прогресия?

AT този случайпрогресията изглежда така:
Разлика в аритметична прогресия.
Броят на членовете на аритметична прогресия.
Нека заместим нашите данни в последните формули (ние броим броя на блоковете по 2 начина).

Метод 1.

Метод 2.

И сега можете да изчислите и на монитора: сравнете получените стойности с броя на блоковете, които са в нашата пирамида. Съгласно ли е? Браво, усвоихте сумата от th-ия член на аритметичната прогресия.
Разбира се, не можете да построите пирамида от блоковете в основата, но от? Опитайте се да изчислите колко пясъчни тухли са необходими за изграждане на стена с това условие.
успяхте ли
Правилният отговор е блокове:

Тренировка

Задачи:

  1. Маша влиза във форма за лятото. Всеки ден тя увеличава броя на кляканията с. Колко пъти ще кляка Маша за седмици, ако направи клякания на първата тренировка.
  2. Какъв е сборът на всички нечетни числа, съдържащи се в.
  3. Когато съхраняват трупи, дървосекачите ги подреждат по такъв начин, че всеки горен слой да съдържа един труп по-малко от предишния. Колко трупи има в една зидария, ако основата на зидарията е трупи.

Отговори:

  1. Нека дефинираме параметрите на аритметичната прогресия. В такъв случай
    (седмици = дни).

    Отговор:След две седмици Маша трябва да кляка веднъж на ден.

  2. Първо нечетно число, последно число.
    Разлика в аритметична прогресия.
    Броят на нечетните числа в - половината обаче проверете този факт, като използвате формулата за намиране на -тия член на аритметична прогресия:

    Числата съдържат нечетни числа.
    Заменяме наличните данни във формулата:

    Отговор:Сборът от всички нечетни числа, съдържащи се в е равен на.

  3. Припомнете си задачата за пирамидите. За нашия случай, тъй като всеки горен слой е намален с един дневник, има само куп слоеве, т.е.
    Заместете данните във формулата:

    Отговор:В зидарията има трупи.

Обобщаване

  1. - числова редица, в която разликата между съседни числа е еднаква и равна. Увеличава се и намалява.
  2. Намиране на формулачлен на аритметичната прогресия се записва по формулата - , където е броят на числата в прогресията.
  3. Свойство на членове на аритметична прогресия- - където - броят на числата в прогресията.
  4. Сумата от членовете на аритметична прогресияможе да се намери по два начина:

    , където е броят на стойностите.

АРИТМЕТИЧНА ПРОГРЕСИЯ. СРЕДНО НИВО

Числова последователност

Нека седнем и започнем да пишем някои числа. Например:

Можете да пишете произволни числа и могат да бъдат колкото искате. Но винаги можете да кажете кой от тях е първият, кой вторият и т.н., тоест можем да ги номерираме. Това е пример за числова последователност.

Числова последователносте набор от числа, на всяко от които може да бъде присвоен уникален номер.

С други думи, всяко число може да бъде свързано с определено естествено число и само с едно. И ние няма да присвоим този номер на друг номер от този набор.

Числото с числото се нарича -тият член на редицата.

Обикновено наричаме цялата последователност някаква буква (например,), а всеки член на тази последователност - една и съща буква с индекс, равен на номера на този член: .

Много е удобно, ако -тият член на редицата може да бъде даден с някаква формула. Например формулата

задава последователността:

А формулата е следната последователност:

Например аритметичната прогресия е последователност (първият член тук е равен, а разликата). Или (, разлика).

формула за n-ти член

Наричаме повтаряща се формула, в която, за да разберете -тия член, трябва да знаете предишния или няколко предишни:

За да намерим, например, члена на прогресията, използвайки такава формула, трябва да изчислим предходните девет. Например, нека. Тогава:

Е, сега е ясно каква е формулата?

Във всеки ред добавяме към, умножено по някакво число. За какво? Много просто: това е номерът на текущия член минус:

Много по-удобно сега, нали? Ние проверяваме:

Решете сами:

В аритметична прогресия намерете формулата за n-тия член и намерете стотния член.

Решение:

Първият член е равен. И каква е разликата? И ето какво:

(в крайна сметка се нарича разлика, защото е равна на разликата на последователните членове на прогресията).

Така че формулата е:

Тогава стотният член е:

Какъв е сборът на всички естествени числа от до?

Според легендата, страхотен математикКарл Гаус, като 9-годишно момче, изчислява тази сума за няколко минути. Той забеляза, че сборът на първото и последното число е равен, сборът на второто и предпоследното е еднакъв, сборът на третото и 3-то от края е еднакъв и т.н. Колко такива двойки има? Точно така, точно половината от броя на всички числа, т.е. Така,

Общата формула за сумата от първите членове на всяка аритметична прогресия ще бъде:

Пример:
Намерете сбора на всички двуцифрени числа, кратни.

Решение:

Първото такова число е това. Всяко от следните се получава чрез добавяне към предишен номер. По този начин числата, които ни интересуват, образуват аритметична прогресия с първия член и разликата.

Формулата за тия член за тази прогресия е:

Колко члена има в прогресията, ако всички те трябва да са двуцифрени?

Много лесно: .

Последният член на прогресията ще бъде равен. След това сумата:

Отговор: .

Сега решете сами:

  1. Всеки ден атлетът бяга с 1 м повече от предишния ден. Колко километра ще пробяга след седмици, ако пробяга km m през първия ден?
  2. Велосипедист изминава повече мили всеки ден от предишния. Първия ден измина км. Колко дни трябва да кара, за да измине един километър? Колко километра ще измине в последния ден от пътуването?
  3. Всяка година цената на хладилника в магазина се намалява с една и съща сума. Определете колко намалява цената на хладилника всяка година, ако, пуснат за продажба за рубли, шест години по-късно е продаден за рубли.

Отговори:

  1. Най-важното тук е да разпознаете аритметичната прогресия и да определите нейните параметри. В този случай (седмици = дни). Трябва да определите сумата от първите членове на тази прогресия:
    .
    Отговор:
  2. Тук е дадено:, необходимо е да се намери.
    Очевидно е, че трябва да използвате същата формула за сумиране, както в предишния проблем:
    .
    Заменете стойностите:

    Коренът очевидно не пасва, така че отговорът.
    Нека изчислим изминатото разстояние през последния ден, като използваме формулата на -тия член:
    (км).
    Отговор:

  3. Дадено: . Намирам: .
    Не става по-лесно:
    (търкайте).
    Отговор:

АРИТМЕТИЧНА ПРОГРЕСИЯ. НАКРАТКО ЗА ГЛАВНОТО

Това е числова редица, в която разликата между съседни числа е еднаква и равна.

Аритметичната прогресия е нарастваща () и намаляваща ().

Например:

Формулата за намиране на n-тия член на аритметична прогресия

се записва като формула, където е броят на числата в прогресията.

Свойство на членове на аритметична прогресия

Това улеснява намирането на член на прогресията, ако съседните му членове са известни - къде е броят на числата в прогресията.

Сумата от членовете на аритметична прогресия

Има два начина да намерите сумата:

Къде е броят на стойностите.

Къде е броят на стойностите.