Биографии Характеристики Анализ

Качественный химический анализ. Химические методы качественного анализа

. Цель, возможные методы. Качественный химический анализ неорганических и органических веществ

Качественный анализ имеет своей целью обнаружение определенных веществ или их компонентов в анализируемом объекте. Обнаружение проводится путем идентификации веществ, то есть установления тождественности (одинаковости) АС анализируемого объекта и известных АС определяемых веществ в условиях применяемого метода анализа. Для этого данным методом предварительно исследуют эталонные вещества (гл. 2.1), в которых наличие определяемых веществ заведомо известно. Например, установлено, что присутствие спектральной линии с длиной волны 350,11 нм в эмиссионном спектре сплава, при возбуждении спектра электрической дугой, свидетельствует о наличии в сплаве бария; посинение водного раствора при добавлении к нему крахмала является АС на присутствие в нем I 2 и наоборот.

Качественный анализ всегда предшествует количественному.

В настоящее время качественный анализ выполняют инструментальными методами: спектральными, хроматографическими, электрохимическими и др. Химические методы используют на отдельных стадиях инструментальных (вскрытие пробы, разделение и концентрирование и др.), но иногда с помощью химического анализа можно получить результаты более просто и быстро, например, установить наличие двойных и тройных связей в непредельных углеводородах при пропускании их через бромную воду или водный раствор KMnO 4 . При этом растворы теряют окраску.

Детально разработанный качественный химический анализ позволяет определять элементный (атомный), ионный, молекулярный (вещественный), функциональный, структурный и фазовый составы неорганических и органических веществ.

При анализе неорганических веществ основное значение имеют элементный и ионный анализы, так как знание элементного и ионного состава достаточно для установления вещественного состава неорганических веществ. Свойства органических веществ определяются их элементным составом, но также и структурой, наличием разнообразных функциональных групп. Поэтому анализ органических веществ имеет свою специфику.

Качественный химический анализ базируется на системе химических реакций, характерных для данного вещества - разделения, отделения и обнаружения.

К химическим реакциям в качественном анализе предъявляют следующие требования.

1. Реакция должна протекать практически мгновенно.

2. Реакция должна быть необратимой.

3. Реакция должна сопровождаться внешним эффектом (АС):

а) изменением окраски раствора;

б) образованием или растворением осадка;

в) выделением газообразных веществ;

г) окрашиванием пламени и др.

4. Реакция должна быть чувствительной и по возможности специфичной.

Реакции, позволяющие получить внешний эффект с определяемым веществом, называют аналитическими , а добавляемое для этого вещество - реагентом . Аналитические реакции, проводимые между твердыми веществами, относят к реакциям «сухим путем », а в растворах - «мокрым путем ».

К реакциям «сухим путем» относятся реакции, выполняемые путем растирания твердого исследуемого вещества с твердым реагентом, а также путем получения окрашенных стекол (перлов) при сплавлении некоторых элементов с бурой.

Значительно чаще анализ проводят «мокрым путем», для чего анализируемое вещество переводят в раствор. Реакции с растворами могут выполняться пробирочным, капельным и микрокристалли-ческим методами. При пробирочном полумикроанализе его выполняют в пробирках вместимостью 2-5см 3 . Для отделения осадков используют центрифугирование, а выпаривание ведут в фарфоровых чашечках или тиглях. Капельный анализ (Н.А. Тананаев, 1920 г.) осуществляют на фарфоровых пластинках или полосках фильтрованной бумаги, получая цветные реакции при добавлении к одной капле раствора вещества одной капли раствора реактива. Микрокристаллический анализ основан на обнаружении компонентов с помощью реакций, в результате которых образуются соединения с характерным цветом и формой кристаллов, наблюдаемых в микроскоп.

Для качественного химического анализа используют все известные типы реакций: кислотно-основные, окислительно-восстановительные, осаждения, комплексообразования и другие.

Качественный анализ растворов неорганических веществ сводится к обнаружению катионов и анионов. Для этого используют общие и частные реакции. Общие реакции дают сходный внешний эффект (АС) со многими ионами (например, образование катионами осадков сульфатов, карбонатов, фосфатов и т.д.), а частные - с 2-5 ионами. Чем меньше число ионов дают сходный АС, тем селективнее (избирательнее) считается реакция. Реакция называется специфической , когда позволяет обнаружить один ион в присутствии всех остальных. Специфической, например, на ион аммония является реакция:

NH 4 Cl + KOH  NH 3  + KCl + H 2 O

Аммиак обнаруживают по запаху или по посинению красной лакмусовой бумажки, смоченной в воде и помещенной над пробиркой.

Селективность реакций можно повысить, изменяя их условия (рН) или применяя маскирование. Маскирование заключается в уменьшении концентрации мешающих ионов в растворе меньше предела их обнаружения, например путем их связывания в бесцветные комплексы.

Если состав анализируемого раствора несложен, то его после маскировки анализируют дробным способом. Он заключается в обнаружении в любой последовательности одного иона в присутствии всех остальных с помощью специфических реакций, которые проводят в отдельных порциях анализируемого раствора. Поскольку специфических реакций немного, то при анализе сложной ионной смеси используют систематический способ. Этот способ основан на разделении смеси на группы ионов со сходными химическими свойствами путем перевода их в осадки с помощью групповых реактивов, причем групповыми реактивами воздействуют на одну и ту же порцию анализируемого раствора по определенной системе, в строго определенной последовательности. Осадки отделяют друг от друга (например, центрифугированием), затем растворяют определенным образом и получают серию растворов, позволяющих в каждом обнаружить отдельный ион специфической реакцией на него.

Существует несколько систематических способов анализа, называемых по применяемым групповым реактивам: сероводородный, кислотно-основный, аммиачно-фосфатный и другие. Классический сероводородный способ основан на разделении катионов на 5 групп путем получения их сульфидов или сернистых соединений при воздействии H 2 S, (NH 4) 2 S, NaS в различных условиях.

Более широко применяемым, доступным и безопасным является кислотно-основный метод, при котором катионы разделяют на 6 групп (табл. 1.3.1.). Номер группы указывает на последовательность воздействия реактивом.


Таблица 1.3.1

Классификация катионов по кислотно-основному способу

Номер группы Катионы Групповой реактив Растворимость соединений
I Ag + , Pb 2+ , Hg 2 2+ 2MHCl Хлориды нерастворимы в воде
II Ca 2+ , Sr 2+ , Ba 2+ 1MH 2 SO 4 Сульфаты нерастворимы в воде
III Zn 2+ , Al 3+ , Cr 3+ , Sn 2+ , Si 4+ , As 4MNaOH Гидроксиды амфотерны, растворимы в избытке щелочи
IV Mg 2+ , Mn 2+ , Fe 2+ , Fe 3+ , Bi 3+ , Sb 3+ , Sb 5+ 25 %-й NH 3 Гидроксиды нерастворимы в избытке NaOH или NH 3
Номер группы Катионы Групповой реактив Растворимость соединений
V Co 2+ , Ni 2+ , Cu 2+ , Cd 2+ , Hg 2+ 25 %-й NH 3 Гидроксиды растворяются в избытке NH 3 с образованием комплексных соединений
VI Na + , K + , NH 4 + Нет Хлориды, сульфаты, гидроксиды растворимы в воде

Анионы при анализе в основном не мешают друг другу, поэтому групповые реактивы применяют не для разделения, а для проверки наличия или отсутствия той или иной группы анионов. Стройной классификации анионов на группы не существует.

Наиболее простым образом их можно разделить на две группы по отношению к иону Ba 2+ :

а) дающие хорошо растворимые соединения в воде: Cl - , Br - , I - , CN - , SCN - , S 2- , NO 2 2- , NO 3 3- , MnO 4- , CH 3 COO - , ClO 4 - , ClO 3 - , ClO - ;

б) дающие плохорастворимые соединения в воде: F - , CO 3 2- , CsO 4 2- , SO 3 2- , S 2 O 3 2- , SO 4 2- , S 2 O 8 2- , SiO 3 2- , CrO 4 2- , PO 4 3- , AsO 4 3- , AsO 3 3- .

Качественный химический анализ органических веществ подразделяют на элементный , функциональный , структурный и молекулярный .

Анализ начинают с предварительных испытаний органического вещества. Для твердых измеряют t плав. , для жидких - t кип или , показатель преломления. Молярную массу определяют по понижению t замерз или повышению t кип, то есть криоскопическим или эбулиоскопическим методами. Важной характеристикой является растворимость, на основе которой существуют классификационные схемы органических веществ. Например, если вещество не растворяется в Н 2 О, но растворяется в 5%-ном растворе NaOH или NaHCO 3 , то оно относится к группе веществ, в которую входят сильные органические кислоты, карбоновые кислоты с более чем шестью атомами углерода, фенолы с заместителями в орто- и параположениях, -дикетоны.

Таблица 1.3.2

Реакции для идентификации органических соединений

Тип соединения Функциональная груп-па, участвующая в реакции Реагент
Альдегид С = О а) 2,4 - динитрофенилгидрозид б) гидрохлорид гидроксиламина в) гидросульфат натрия
Амин - NH 2 а) азотистая кислота б) бензолесульфохлорид
Ароматический углеводород Азоксибензол и хлорид алюминия
Кетон С = О См. альдегид
Ненасыщенный углеводород - С = С - - С ≡ С - а) раствор KMnO 4 б) раствор Вr 2 в СCL 4
Нитросоединение - NO 2 а) Fe(OH) 2 (соль Мора + КОН) б) цинковая пыль + NH 4 Clв) 20% раствор NaOH
Спирт (R) - OH а) (NH 4) 2 б) раствор ZnCl 2 в HCl в) йодная кислота
Фенол (Ar) - OH a) FeCl 3 в пиридине б) бромная вода
Эфир простой (R΄)- OR а) йодоводородная кислота б) бромная вода
Эфир сложный (R΄) - COOR а) раствор NaOH (или КОН) б) гдрохлорид гидроксиламина

Элементным анализом обнаруживают элементы, входящие в молекулы органических веществ (C, H, O, N, S, P, Cl, и др.). В большинстве случаев органическое вещество разлагают, продукты разложения растворяют и в полученном растворе определяют элементы как в неорганических веществах. Например, при обнаружении азота пробу сплавляют с металлическим калием, получая KCN, который обрабатывают FeSO 4 , переводят в K 4 . Добавляя к последнему раствор ионов Fe 3+ , получают берлинскую лазурь Fe 4 3 - (AC на присутствие N).

Качественный анализ может использоваться для идентификации в исследуемом объекте атомов (элементный анализ), молекул (молекулярный анализ), простых или сложных веществ (вещественный анализ), фаз гетерогенной системы (фазовый анализ). Задача качественного неорганического анализа обычно сводится к обнаружению катионов или анионов, присутствующих в анализируемой пробе. Качественный анализ необходим для обоснования выбора метода количественного анализа того или иного материала или способа разделения смеси веществ. Качественный химический анализ используют в сельском хозяйстве и при решении проблем защиты окружающей среды. В агрохимической службе он необходим для распознавания минеральных удобрений, а в контроле загрязненности среды - для обнаружения пестицидных остатков и др.

Типы химических реакций.

Пирохимические реакции. Ряд методов качественного анализа основан на проведении химических реакций, проводимых сплавлением, нагреванием на древесном угле, в пламени газовой горелки или паяльной лампы. При этом вещества окисляются кислородом воздуха, восстанавливаются оксидом углерода, атомарным углеродом пламени или древесного угля. Окисление или восстановление может привести к образованию окрашенных продуктов. Одной из наиболее употребительных пирохимических реакций является проба окрашивания пламени. Пламя окрашивается в характерный для катиона цвет. Окрашивание пламени соединениями некоторых элементов представлено в таблице.

Цвет пламени

Цвет пламени

Карминово-красный

Сине-фиолетовый

Изумрудно-зеленый

Фиолетовый

Бледно-синий

Розово-фиолетовый

Бледно-синий

Розово-фиолетовый

Бледно-синий

Кирпично-красный

Бледно-синий

Стронций

Карминово-красный

Изумрудно-зеленый

Желто-зеленый

Зеленый, голубой

Молибден

Желто-зеленый

Микрокристаллоскопические реакции - это реакции при проведении которых образуются осадки, состоящие из кристаллов характерной формы и цвета. Определяют внешнюю форму кристаллов, которые обладают определенной симметрией. Газовыделительные реакции - реакции в которых выделяются газообразные соединения. Для обнаружения отдельных газов применяют специфичные реактивы (сероводород обнаруживают ацетатом свинца – почернение, аммиак–фенолфталеином - покраснение в щелочной среде). Цветные реакции - основной тип реакций обнаружения веществ. Цвет сохраняется у всех соединений цветных катионов и анионов (манганаты, хроматы, дихроматы). Цвет может появиться и измениться в зависимости от условий под действием иона противоположного знака– например б/ц ионы йода и серебра образуют иодид серебра желто–коричневого цвета.

Открытие ионов, специфическим реакциями в отдельной пробе всего исследуемого раствора в любой последовательности называется дробным анализом . Систематический ход анализа в отличие от дробного анализа заключается в том, что смесь ионов с помощью особых реактивов предварительно разделяют на отдельные группы. Из этих групп каждый ион выделяют в определенной последовательности, а потом уже открывают характерной реакцией. Реактивы, позволяющие в определенной последовательности разделять ионы на аналитические группы, называются групповыми .

И анализ вещества

Химическая идентификация

В практической деятельности специалистов часто возникает необходимость идентификации (обнаружения) того или иного вещества, а также количественной оценки (измерения) его содержания, что является предметом изучения аналитической химии.

Аналитическая химия – это наука о методах определения химического состава вещества и его структуры.

В современной аналитической химии можно выделить качественный анализ , который решает вопрос о том, какие компоненты входят в состав анализируемого объекта, и количественный анализ , который даёт информацию о количественном содержании компонентов. При проведении качественного и количественного анализа измеряют аналитический сигнал – свойство анализируемого вещества, которое позволяет судить о наличии в нём тех или иных компонентов. Это может быть сила тока, ЭДС системы, интенсивность излучения, цвет и т. д.

Классификацию видов анализа можно проводить по различным признакам. Например, в зависимости от количества анализируемого вещества, объема растворов, используемых для анализа, а также от применения техники выполнения эксперимента методы анализа делят на макро-, полумикро-, микро- и ультрамикроанализы.

Полумикроанализ имеет ряд преимуществ: экономятся время и реагенты, повышается надежность результатов анализа благодаря использованию более специфических и высокочувствительных реагентов, уменьшается расход реактивов и материалов.

Задачей качественного анализа является определение химических элементов, ионов, атомов, молекул и т. д. в анализируемом веществе (объекте).

Качественный анализ можно проводить как химическими, так и инструментальными (физическими и физико-химическими) методами.

Анализ исследуемого вещества в качественном химическом анализе можно проводить «мокрым» и «сухим» путем. В первом случае анализ осуществляют в растворах путем добавления соответствующих реактивов. Во втором случае определение состава вещества основано на его способности окрашивать в характерный цвет бесцветное пламя горелки или давать окрашенные «перлы» при сплавлении с бурой. Открытие отдельных ионов в полумикроанализе производится в основном «мокрым путем».

Для открытия ионов в растворах применяют различные характерные реакции, которые сопровождаются внешними эффектами – возникновением аналитического сигнала , например, изменением цвета раствора, выпадением или растворением осадка, выделением газа.

Вещества, с помощью которых открывают ионы, называются реагентами на соответствующие ионы, а происходящие при этом химические превращенияаналитическими реакциями.

Применяемые в качественном анализе реакции должны протекать быстро, отличаться высокой чувствительностью и по возможности являться необратимыми.



Чувствительность реакций определяет возможность обнаружения вещества в растворе. Она характеризуется пределом обнаружения (открываемым минимумом) , предельной концентрацией, предельным разбавлением и минимальным объёмом предельно разбавленного раствора.

Предел обнаружения – это минимальное количество компонента, которое может быть открыто с помощью данной аналитической реакции. Предел обнаружения выражают в микрограммах (мкг), обозначают g (1g = 0.001 мг = 10 –6 г).

Предельная концентрация – это наименьшая концентрация (C min), при которой определяемое вещество может быть обнаружено в растворе данной аналитической реакцией с вполне определенной вероятностью (P ), обычно равной единице. Предельную концентрацию обозначают C min, P и выражают в г/мл.

Предельное разбавление (V lim) – максимальный объём раствора, в котором может быть обнаружен 1 г данного вещества при помощи данной аналитической реакции. Предельное разбавление выражается в мл/г.

Предельная концентрация и предельное разбавление связаны соотношением

В качественном анализе применяются только такие реакции, предел обнаружения (открываемый минимум) которых не превышает 50 мкг.

По числу компонентов, взаимодействующих в данных условиях с применяемым реагентом и дающих аналитический сигнал, реакции и реагенты делятся на групповые, избирательные и специфические.

Групповыми называются реакции, когда с реагентом в данных условиях взаимодействует и дает аналитический сигнал целая группа ионов, реагент называется групповым . Например, S 2– при pH = 5 осаждает Ag + , Pb 2+ , Bi 3+ , Cd 2+ , Sn 2+, 4+ и др. Следовательно, S 2– – групповой реагент, а осаждение сульфидов – групповая реакция. Групповые реакции в основном используют для разделения целых групп ионов.

В лабораторном практикуме для проведения систематического анализа катионов наиболее часто используется метод, основанный на разделении катионов по кислотно-основному принципу (табл. 14.1.1).

Таблица 11.1.1

Кислотно-основная классификация катионов

№ группы Название Катионы Групповой реагент
I Растворимая Na + , K + , NH 4 + нет
II Хлоридная Ag + , Pb 2+ , Hg 2 2+ 2н HCl осаждает соответствующие хлориды
III Сульфатная Ca 2+ , Ba 2+ , Sr 2+ 2н H 2 SO 4 осаждает соответствующие сульфаты
IV Амфотерная Al 3+ , Cr 3+ , Zn 2+ , Sn 2+ , Sn 4+ , As 3+ , As 5+ NaOH образует растворимые в избытке реагента гидроксиды
V Гидроксидная Fe 2+ , Fe 3+ , Mn 2+ , Mg 2+ , Bi 3+ , Sb 3+, Sb 5+ 2н NaOH осаждает соответствующие гидроксиды
VI Аммиакатная Cu 2+ , Ni 2+ , Co 2+ , Cd 2+ , Hg 2+ 2н NH 4 OH образует гидроксиды, растворимые в избытке реагента с образованием аммиакатов

Избирательными (селективными) называются реакции, когда с реагентом в данных условиях взаимодействует и дает аналитический сигнал ограниченное число компонентов. Такой реагент называется избирательным. Например, магнезиальная смесь (аммиачный раствор MgCl 2 и NH 4 Cl) образует белый мелкокристаллический осадок с двумя ионами PO 4 3– и AsO 4 3– . Избирательные реакции используют как для разделения, так и для обнаружения ионов.

Специфическими называются реакции, когда с реагентом в данных условиях взаимодействует и дает аналитический сигнал один компонент. Реагент называется специфическим. Такие реакции очень удобны для обнаружения ионов, но число их ограниченно. Некоторые специфические реагенты для идентификации катионов представлены в табл. 11.1.2.

Качественный анализ - это метод, используемый в аналитической химии для определения ионов внутри вещества. Проанализируем его особенности, а также варианты практического применения элементов в аналитической химии.

Классификация

Качественный анализ - это метод, который предполагает деление на несколько групп:

  • химические, которые основываются на каком-либо внешнем эффекте;
  • физические, позволяющие определять состав с помощью тепловых, магнитных, электрических свойств;
  • физико-химические, базирующиеся на анализе физических процессов, происходящих в результате химических взаимодействий.

При проведении экспериментов выбирается та разновидность, которая больше всего подходит в конкретном случае.

Предназначение

Качественный анализ - это открытие ионов, химических элементов, молекул, групп в анализируемой пробе вещества. Его целью является обнаружение определенных ионов либо элементов, которые есть в составе соединения.

Определение качественного анализа объясняет применение в его рамках физических и химических свойств вещества.

Избирательность

Из многочисленных химических реакций применяют для обнаружения ионов либо элементов только те процессы, которые характеризуются внешним результатом. Методы качественного анализа эффективны при образовании осадка, выделении газа, изменении окраски, выделении энергии. Все процессы, лежащие в основе метода, именуют аналитическими реакциями.

Качественный анализ - это способ, который базируется на селективных (специфичных) процессах, проявляемых у конкретного иона (группы элементов).

Требования к реакциям

Существуют определенные требования, которые предъявляются к взаимодействиям в качественном анализе:

  • быстрота и необратимость протекания;
  • внешние признаки (осадок, газ, цвет);
  • высокая чувствительность

Специфичной называют такую реакцию, которая дает возможность обнаруживать необходимый элемент даже в случае его минимальных концентраций, причем при присутствии в смеси иных элементов.

Чувствительность определяется минимальным количеством выявляемого элемента, при которой он обнаруживается без дополнительного обогащения раствора. Это важная характеристика качественного анализа, позволяющая вести речь об эффективности проведенного (планируемого) эксперимента.

Методы проведения

Выделяют следующие методы качественного и количественного анализа:

  • по числу выявляемых частиц: элементарный, функциональный, фазовый, изотопный, молекулярный;
  • по количеству соединения, взятого для проведения анализа: макро- (более 100 мг, 5 мл), микро- (не больше 0,1 мл, 1 - мг), полумикро - (средний диапазон), ультрамикрометоды (вещества берется меньше 0,1 мг, 0,05 мл);
  • по определяемому объекту: органический и неорганический.

Небольшая справка

Краткая характеристика качественного и количественного анализа позволяет понять их основные различия. При качественном анализе образец может быть в виде раствора либо сухого материала, в котором присутствует сразу несколько соединений. Анализ образца осуществляют дробной методикой, открывая ионы с помощью определенных качественных реакций.

Сначала выявляют наличие катиона аммония, так как его легче всего вывести с помощью реагентов из смеси. Далее осуществляется выявление анионов, подводятся итоги о составе имеющейся пробы.

Как определить катион аммония

Для того чтобы открыть данные ионы, в качественном анализе используются две методики. Первый вариант базируется на добавлении раствора щелочи (гидроксида активного металла). Несколько капель рассматриваемого раствора либо соли аммония обрабатывают раствором гидроксида натрия (калия). В результате качественной реакции наблюдается выделение газообразного аммиака. Для его обнаружения применяют индикаторную бумагу (фенолфталеин становится малиновым).

Второй способ определения катионов аммония в пробе предполагает использование реактива Несслера. Несколькими его каплями обрабатывают избыток щелочи для осаждения цветных оснований, которые мешают наблюдению осадка, появляющегося в результате взаимодействия с реактивом Несслера катиона аммония.

Данный реактив - это комплексная соль калия и ртути, дающая с катионом аммония красно-бурый осадок. Его используют для определения в смеси катионов кальция.

Определение катионов кальция

Для проведения качественного анализа допустимо применение микроскопической реакции в виде гипса. К нескольким каплям анализируемого раствора прибавляют одну каплю концентрированной серной кислоты. Спустя пару минут переносят ее на предметное стекло, выпаривают до образования каемки. Результат эксперимента изучают под микроскопом.

Второй вариант обнаружения катионов кальция в анализируемой пробе основывается на окрашивании летучими солями кальция бесцветного пламени спиртовки в насыщенный кирпично-красный цвет.

Определение катионов железа

Двухвалентное и трехвалентное железо обнаруживают из начального раствора, так как под действием некоторых химических реактивов (перекиси водорода, щелочи, сероводорода) происходит изменение степени окисления с +2 до +3. Для обнаружения катиона железа со степенью окисления +2 необходимо к испытуемому раствору прибавить смесь гексацианоферрата (3) калия и соляной кислоты. При появлении насыщенного синего осадка берлинской лазури можно вести речь о содержании в растворе Fe 2+ .

Для того чтобы определить трехвалентное железо, нужно добавить к раствору соли K 4 и Появление насыщенного синего цвета является подтверждением присутствия в растворе Fe 3+ .

Способы обнаружения Co2+, Ni2+, Cr3+

У данных катионов есть специфические реакции, поэтому их можно обнаруживать в порциях начального раствора. Для обнаружения катиона кобальта к имеющемуся раствору добавляют по каплям ацетат натрия до получения кислой среды. Потом к раствору добавляют фторид натрия (или аммония) и NH4NCS, чтобы катион железа связался в комплекс, далее экстрагируют изоамиловым спиртом.

При образовании комплексного соединения наблюдается окрашивание органического слоя растворителя в синий цвет.

Для открытия в анализируемом растворе катиона никеля используют раствор фторида натрия (убирают катионы двухвалентного железа и меди), потом добавляют нашатырный спирт и несколько капель диметилглиоксима. При наличии катиона никеля наблюдается появление осадка насыщенного красного цвета.

Для выявления катиона трехвалентного хрома к раствору добавляют несколько капель раствора уксусной кислоты и ацетата натрия, а также избыток комплексона 3 (ЭДТА). Затем всю смесь нагревают на водяной бане. Появление фиолетовой окраски свидетельствует о наличии в анализируемом растворе катиона трехвалентного хрома.

Определение анионов

Для выявления сульфата используют взаимодействие с хлоридом бария. К нескольким каплям раствора, в котором есть данный анион, добавляют несколько капель хлорида бария. Сульфат бария обрабатывают раствором азотной или соляной кислоты, появляющийся осадок не растворяется.

Карбонат можно выявить в растворе с помощью специфической реакции с соляной кислотой. При наличии в растворе карбоната наблюдается выделение углекислого газа.

Хлорид можно найти в анализируемом растворе, воспользовавшись нитратом серебра. Появление белого творожистого осадка является подтверждением присутствия хлорида.

Качественный анализ

Глава 10. КАЧЕСТВЕННЫЙ И КОЛИЧЕСТВЕННЫЙ АНАЛИЗ ВЕЩЕСТВ

Аналитическая химия наука о методах определœения химического состава и структуры веществ.

Химический анализ лежит в базе современного химико-технологического контроля и установления государственных стандартов на выпускаемую продукцию.

Задача качественного анализа – определœение химического состава исследуемого соединœения.

Качественный анализ проводят химическими, физическими и физико-химическими методами. Физические и физико-химические методы анализа основаны на измерении какого-либо параметра системы, который является функцией состава. Так, в спектральном анализе исследуют спектры излучения, возникающие при внесении вещества в пламя горелки.

Химические методы качественного анализа основаны на превращении анализируемого вещества в новые соединœения, обладающие определœенными свойствами. По образованию характерных соединœений элементов и устанавливается элементарный состав вещества. Так, ионы Cu 2+ можно обнаружить по образованию комплексного иона 2+ лазурно-синœего цвета. Катион NH 4 + обнаруживают по выделœению газообразного аммиака NH 3 ­ действие раствора щелочи при нагревании.

Качественные аналитические реакции по способу их выполнения делятся на реакции ʼʼмокрымʼʼ и ʼʼсухимʼʼ путем. Наибольшее значение имеют реакции ʼʼмокрымʼʼ путем. Для проведения их исследуемое вещество должно быть предварительно растворено. В качественном анализе находят применение только те реакции, которые сопровождаются какими-либо хорошо заметными внешними эффектами: изменением окраски раствора, выпадением или растворением осадка, выделœением газов с характерным запахом или цветом и т.п. Особенно часто применяются реакции, сопровождающиеся образованием осадков и изменением окраски раствора. Такие реакции называются реакциями ʼʼоткрытияʼʼ, т.к. с их помощью обнаруживаются присутствующие в растворе ионы. Для отделœения одной группы ионов от другой или одного иона от другого применяются реакции осаждения.

Учитывая зависимость отколичества анализируемого вещества, объёма раствора и техники выполнения отдельных операций химические методы качественного анализа делятся на макро- (1-10 г или 10-100 мл исследуемого вещества), полумикро- (0,05-0,5 г или 1-10 мл), микро- (0,001-10 –6 г или 0,1-10 –4 мл), и ультрамикроанализ и др.

Анализ ʼʼсухимʼʼ путем проводится с твердыми веществами. Он делиться на анализ методом растирания и пиротехнический анализ. Последний основан на утем проводится с твердыми веществами. тдельных операций химические методы качественного анализа делятся на макро-, микро-, полнагревании исследуемого вещества в пламени горелки. Рассмотрим реакции окрашивания пламени – летучие соли многих металлов при внесении их в несветящуюся часть пламени горелки окрашивают пламя в различные цвета͵ характерные для этих металлов: Li и Sr – карминово-красная окраска пламени, Na – интенсивно-желтая, K – фиолетовая, Rb и Сs – розово-фиолетовая, Ca – оранжево-красная, Ba – зелœеная, Cu и B – желто-зелœеная, Pb и As – бледно-голубая и т.д.

Чувствительность аналитических реакций – то наименьшее количество вещества (иона), ĸᴏᴛᴏᴩᴏᴇ можно открыть с помощью данного реагента. Количественно чувствительность реакций характеризуется тремя показателями: открываемым минимумом, пре­дельной концентрацией, пределом разбавления.

В аналитической практике определяемый ион обычно приходится открывать в присутствии других ионов. Реакции и реагенты, дающие возможность открывать данный ион в присутствии других, называются специфичными.

Качественный анализ - понятие и виды. Классификация и особенности категории "Качественный анализ" 2017, 2018.

  • - Качественный анализ

    Устройство ИК спектрометра Как правило, Ик-спектрометр работает по 2-х лучевой схеме: 2 параллельных световых потока пропускают через кювету с анализируемым образцом и кювету сравнения – это позволяет уменьшить погрешности, связанные с рассеянием, отражением и... .


  • - КАЧЕСТВЕННЫЙ АНАЛИЗ КАТИОНОВ

    КАЧЕСТВЕННЫЙ АНАЛИЗ НЕОРГАНИЧЕСКИХ СОЕДИНЕНИЙ Способы выполнения аналитических реакций Аналитические реакции могут выполняться «сухим» и «мокрым» путем. В первом случае исследуемое вещество и реагенты берут в твердом состоянии и обычно осуществляют... .


  • - Качественный анализ в ТСХ

    Основные элементы установок ТСХ Тонкослойная хроматография Метод тонкослойной хроматографии (ТСХ), получивший в настоящее время широкое распространение, был разработан Н.А. Измайловым и М.С. Шрайбер в 1938 г. В методе ТСХ неподвижная твердая фаза тонким слоем... .


  • - Качественный анализ

    Электрохимические ячейки В вольтамперометрии используются ячейки, состоящие из поляризуемого рабочего и неполяризуемого электрода сравнения. Требования к рабочему электроду: § площадь рабочего электрода должна быть небольшой; § электрод должен быть поляризован... .


  • - Качественный анализ неорганических соединений

    Качественный анализ – это идентификация (обнаружение) компонентов анализируемых веществ и приблизительная количественная оценка их содержания в веществах и материалах. В качестве компонентов могут быть атомы и ионы, изотопы элементов и отдельные нуклиды, молекулы,...