Биографии Характеристики Анализ

Температурный коэффициент скорости химической реакции (правило Вант-Гоффа). Химическая кинетика

Скорость химической реакции зависит от температуры, причем при повышении температуры скорость реакции увеличивается. Голландский уч1ный Вант-Гофф показал, что при повышении температуры на 10 градусов скорость большинства реакций увеличивается в 2-4 раза;

VT 2 =VT 1 *y (T2-T1)/10

Где VT 2 и VT 1 – скорости реакции при температурах T 2 и T 1 ; у – температурный коэффициент скорости реакции, который показывает, во сколько раз увеличилась скорость реакции при повышении температуры на 10К.

При концентрации реагирующих веществ 1 моль/л скорость реакции численно равна константе скорости k. Тогда уравнение показывает, что константа скорости зависит от температуры так же, как и скорость процесса.

3. Напишите вариант реакции отщепления (элиминирования) с выделением галогенводорода .

C 2 H 5 Cl=C 2 H 4 +HCl

Билет №4

1. Что такое «атомная масса», «молекулярная масса», «моль вещества» и что принято за атомную единицу массы (а.е.м.)?

АТОМНАЯ МАССА - масса атома в атомных единицах массы (а. е. м.). За единицу а. е. м. принята 1/12 массы изотопа углерод- 12.

а.е.м. = 1/12 m 12 6 С = 1, 66 * 10 -24

МОЛЕКУЛЯРНАЯ МАССА - молярная масса соединения, отнесенная к 1/12 молярной массы атома углерода-12.

МОЛЬ - количество вещества, содержащее столько же частиц или структурных единиц (атомов, ионов, молекул, радикалов, электронов, эквивалентов и др.), что и в 12 а. е. м. изотопа углерода-12.

Формула увеличения скорости реакции в присутствии катализатора.

Изменить величину Еа (энергию активации) можно с помощью катализаторов. Вещества, принимающие участие, но не расходующиеся в процессе реакции, назваются катализаторами. Само это явление называется катализом. Увеличение скорости реакции в присутствии катализатора определяется формулой

В зависимости от того, находится ли катализатор в той же фазе, что и реагирующие вещества, или образует самостоятельную фазу, говорят о гомогенном или гетерогенном катализе. Механизм каталитического действия для них не одинков, однако и в том и в другом случае происходит ускорение реакции за счет снижения Еа. Существует ряд специфических катализаторов - ингибиторов, снижающих скорость реакции.

где -параметры каталитического процесса, V, k , Еа- некаталитического процесса.

Напишите реакции сгорания углеродсодержащих неорганических веществ в кислороде, указав окислитель и восстановитель, а также степени окисления углерода до и после реакции.

С – восстановитель, процесс окисления

О – окислитель, процесс восстановления

Билет № 5

1. Что такое «электроотрицательность», «валентность», «степень окисления» элемента и каковы основные правила их определения?

СТЕПЕНЬ ОКИСЛЕНИЯ - условный заряд атома элемента, полученный в предположении, что соединение состоит из ионов. Она может быть положительной, отрицательной, нулевой, дробной и обозначается арабской цифрой со знаком «+» или «-» в виде верхнего правого индекса символа элемента: С 1- , О 2- , Н + , Мg 2+ , N 3- , N 5+ , Сr 6+ .

Для определения степени окисления (с. о.) элемента в соединении (ионе) пользуются следующими правилами:

1 В простых веществах (Н2, S8, Р4) с. о. равна нулю.

2 Постоянную с. о. имеют щелочные (Э+) и щелочно-земельные (Э2+) элементы, а также фтор Р-.

3 Водород в большинстве соединений имеет с. о. Н+ (Н2О, СН4, НС1), в гидридах - Н- (-NaН, СаН2); с. о. кислорода, как правило, равна -2 (О2-), в пероксидах (-О-О-) - 1 (О-).

4 В бинарных соединениях неметаллов отрицательная с. о. приписывается элементу, расположенному справа).

5 Алгебраическая сумма с. о. молекулы равна нулю, иона - его заряду.

Способность атома присоединять или замещать определенное число других атомов называют ВАЛЕНТНОСТЬЮ. Мерой валентности считают число атомов водорода или кислорода, присоединенных к элементу, при условии, что водород одно- , а кислород двухвалентен.


Правило Вант-Гоффа:

при повышении температуры на 10 градусов скорость гомогенной хим.реакции увеличивается в 2-4 раза.

где V2 - скорость реакции при температуре Т2, V1- скорость реакции при температуре Т1, - температурный коэффициент реакции (если он равен 2, например, то скорость реакции будет увеличиваться в 2 раза при повышении температуры на 10 градусов).

Из уравнения Вант-Гоффа температурный коэффициент вычисляется по формуле:

Теория активных соударений обобщает закономерности зависимости скорости хим.р-и от температуры:

1.Реагировать могут не все молекулы, а только находящиеся в особом активном состоянии

2.Активация молекулы происходит в результате биомолекулярного столкновения.

3.При столкновении частиц с примерно одинаковым запасом энергии происходит её перераспределение, в результате чего энергия одной из молекул достигает значения, соответствующего энергии активации.

4.Влияние температуры на скорость реакции: смещение равновесия между обычными и активными молекулами в сторону увеличения концентрации первых.

Энергетический профиль реакции (график зависимости потенциальной энергии от координаты реакции)

Энергия активации Еа – минимальная дополнительная энергия, которую необходимо сообщить молекуле сверх среднего её значения для того, чтобы стало возможным хим. взаимодействие.

Уравнение Аррениуса устанавливает зависимость константы скорости химической реакции k от температуры Т.

Здесь А характеризует частоту столкновений реагирующих молекул, R - универсальная газовая постоянная.

7. Катализ. Гомогенный и гетерогенный катализ. Осбенности каталитич.активности ферментов. Катализ- изменение скорости химических реакций в присутствии веществ, которые после завершения реакции остаются в неизменном виде и количестве. Увеличение скорости реакции называют положительным катализом , уменьшение – отрицательным катализом (или ингибированием) . Катализаторами называют вещества, которые вызывают положительный катализ; вещества, замедляющие реакции – ингибиторами . Различают гомогенный и гетерогенный катализ. Ускорение реакции диспропорционирования пероксида водорода в водном растворе в присутствии дихромат-ионов является примером гомогенного катализа(катализатор образует одну фазу с реакционной смесью), а в присутствии оксида марганца(IV) – примером гетерогенного катализа(водный раствор пероксида водорода-жидкая фаза, оксид марганца-твердая). Катализаторы биохимических реакций имеют белковую природу и называются ферментами . Ферменты отличаются от обычных катализаторов рядом особенностей: 1)они обладают значительно более высокой каталитической эффективностью; 2)высокая специфичность, т.е. избирательность действия; 3)многие ферменты проявляют каталитическую активность только по отношению к одному субстрату; 4)ферменты проявляют максимальную эффективность только в мягких условиях, характеризующихся небольшим интервалом температур и значений рН.Активность фермента=Скорость реакции нулевого порядка. 8.Химическое равновесие. Обратимые и необратимые по направлению реакции. Химическое равновесие : динамическое состояние, при котором скорость прямой и обратной реакций равны. Константа равновесия : при постоянных внешних условиях в равновесии отношение произведение концентраций продуктов к произведению концентраций реагентов с учетом стехиометрии есть величина постоянная, не зависящая от химического состава системы. К с связана со стандартной Е Гиббса соотношением:Принцип Ле-Шателье: воздействие какого-либо фактора (t, c, p) на равновесную систему стимулирует смещение равновесия в таком направлении, которое способствует восстановлению первоначальных характеристик системы.Термодинамические условия равновесия : G 2 -G 1 =0S 2 -S 1 =0Обратимая р-ция: при данных условиях самопроизвольно протекающая как в прямом, так и в обратном направлении.Условия протекания до конца: - Труднорастворимый осадок - газ - малодиссоциирующее в-во (вода) - устойчивое комплексное соединениеНеобртаимая р-ия : при данных условия протекает в одном направление. Положение химического равновесия зависит от следующих парамктров реакции: температуры, давления и концентрации. Влияние, которое оказывают эти факторы на химическую реакцию, подчиняются закономерности, которая была высказана в общем виде в 1884 году французским ученым Ле-Шателье. Современная формулировка принципа Ле-Шателье такова:

9. Роль воды и растворов в жизнедеятельности. Термодинамика растворения. Раствор -это гомогенная система переменного состава из двух и более веществ, находящаяся в состоянии равновесия. Классификация: 1) взвеси (грубо-дисперсная система): суспензии(тв.в-во в жидкости) и эмульсии(жидк. в жидк.) 2) коллоиды, золи (тонко-дисперсные системы). Значение растворов в жизнедеятельности : многие хим.процессы протекают лишь при условии, что участвующие в них вещества находятся в растворенном состоянии. Важнейшие биологические жидкости(кровь, лимфа, моча, слюна, пот) являются растворами солей, белков, углеводов, липидов в воде. Усвоение пищи связано с переходом питат.веществ в растворенное состояние. Биохимические реакции в живых организмах протекают в растворах. Биожидкости участвуют в транспорте питат.веществ(жиров, аминокислот, кислорода), лекарственных препаратов к органам и тканям, а также в выведении из организма метаболитов. В жидких средах организма поддерживается постоянство кислотности, концентрации солей и органических веществ (концентрационный гомеостаз). Самым распространенным растворителем на нашей планете является вода. Особенности воды : по своей теплоемкости превосходит все вещества; аномальное поведение при охлаждении – вода уплотняется, начинает тонуть, потом поднимается(все др.вещества тонут при уплотнении); может возгоняться(возгонка воды) – сублимация(при определен.условиях лед может переходить в пар без предварительного превращения в жидкую воду, т.е. без плавления); вода растворяет все вещества(вопрос только сколько?); высокая диэлектрическая постоянная воды(величина, показывающая во сколько раз сила взаимодействия между двумя зарядами в данном веществе меньше, чем в вакууме); высокая критическая температура; вода является амфолитом(не кислота, не осн-е); участвует в создании полимерных структур организма(белок, липиды…); основа мембранного транспорта. Термодинамика растворения: согласно 2-му началу термодинамики при р, Т=const вещества самопроизвольно могут растворяться в каком-либо растворителе, если в результате этого процесса энергия Гиббса системы уменьшается, т.е. G=( H - T S)<0 . ( H -энтальпийный фактор,T S -энтропийный фактор растворения). При растворении жидких и твердых веществ S >0. При растворении газов в жидкости S<0. Изменение энтальпии представляет собой алгебраическую сумму изменения энтальпии H кр в результате разрушения кристаллической решетки и изменения энтальпии H сол за счет сольватации частицами растворителя H раств = H кр + H сол . При растворении газов энтальпия H кр =0, т.к. не надо затрачивать энергию на разрушение кристаллической решетки. При растворении может происходить изменение и энтропии, и энтальпии.10 . Идеальный раствор - энтальпия смешивания равна 0 (гомогенные смеси углеводородов; гипотетический раствор, где равенство всех сил межмолекулярного взаимодействия.) Константа растворимости или ПР -это произведение концентраций ионов трудно растворимого электролита в насыщенном растворе при данной температуре- величина постоянная BaCO 3 = Ba + CO 3 , Ks= Условия растворения и образования осадков Осаждение и растворение- обменные реакции, протекающие в растворе электролита ---1)Электролит выпадет в осадок, если произведение концентрации его ионов в растворе больше константы растворимости с(Ba)*с(CO 3)>Kпр 2)Осадок его растворится если все наоборот11. Колигативные свойства растворов. Коллигативные свойства растворов - это те их свойства, которые при данных условиях оказываются равными и независимыми от химической природы растворённого вещества; свойства растворов, которые зависят лишь от количества кинетических единиц и от их теплового движения. Закон Рауля и следствие из него - Пар, находящийся в равновесии с жидкостью, называют насыщенным. Давление такого пара над чистым растворителем (p0) называют давлением или упругостью насыщенного пара чистого растворителя. Давление пара раствора, содержащего нелетучее растворенное вещество, прямо пропорционально мольной доле растворителя в данном растворе:p = p0 · χр-ль , где p - давление пара над раствором, ПА;p0 - давление пара над чистым растворителем;χр-ль -мольная доля растворителя.Для растворов электролитов используют несколько другую форму уравнения, позволяющую добавить в неё изотонический коэффициент:Δp = i · p0 · χв-ва, где Δp - собственно изменение давления по сравнению с чистым растворителем;χв-ва - мольная доля вещества в растворе. Из закона Рауля возникает два следствия . Согласно одному из них температура кипения раствора выше температуры кипения растворителя. Это обусловлено тем, что давление насыщенного пара растворителя над раствором становится равным атмосферному давлению (условие кипения жидкости) при более высокой температуре, чем в случае чистого растворителя. Повышение температуры кипения Ткип пропорционально моляльности раствора:. Ткип= Кэ сm где Кэ – эбулиоскопическая постоянная растворителя,cm-моляльная концентрация.Согласно второму следствию из закона Рауля температура замерзания (кристаллизации) раствора ниже температуры замерзания (кристаллизации) чистого растворителя. Это обусловлено более низким давлением пара растворителя над раствором, чем над растворителем. Понижение температуры замерзания (кристаллизации) Тзам пропорционально моляльности раствора: Тзам= Кк сm где Кк - криоскопическая постоянная раствораПонижение температуры кристаллизации растворов.Условием кристаллизации является равенство давления насыщенного пара растворителя над раствором давлению пара над твёрдым растворителем. Поскольку давление пара растворителя над раствором всегда ниже, чем над чистым растворителем, это равенство всегда будет достигаться при температуре более низкой, чем температура замерзания растворителя. Так, океанская вода начинает замерзать при температуре около минус 2 °C.Разность между температурой кристаллизации растворителя и температурой начала кристаллизации раствора есть понижение температуры кристаллизации.Повышение температуры кипения растворовЖидкость кипит при той температуре, при которой общее давление насыщенного пара становится равным внешнему давлению. давление насыщенных паров над раствором при любой температуре будет меньше, чем над чистым растворителем, и равенство его внешнему давлению будет достигаться при более высокой температуре. Таким образом, температура кипения раствора нелетучего вещества T всегда выше, чем температура кипения чистого растворителя при том же давлении T° .Повышение температуры кипения бесконечно разбавленных растворов нелетучих веществ не зависит от природы растворённого вещества и прямо пропорционально моляльной концентрации раствора. Самопроизвольный переход растворителя через полупроницаемую мембрану, разделяющую раствор и растворитель или два раствора с различной концентрацией растворенного вещества, называется осмосом. Осмос обусловлендиффузией молекул растворителя через полупроницаемую перегородку, которая пропускает только молекулы растворителя. Молекулы растворителя диффундируют из растворителя в раствор или из менее концентрированного раствора в более концентрированный.Количественно осмос характеризуется осмотическим давлением , равным силе, приходящейся на единицу площади поверхности, и заставляющей молекулы растворителя проникать через полупроницаемую перегородку. Оно равно давлению столба раствора в осмометре высотой h. При равновесии внешнее давление уравновешивает осмотическое давление. В этом случае скорости прямого и обратного переходов молекул через полупроницаемую перегородку становится одинаковыми. Осмотическое давление возрастает с увеличением концентрации растворенного вещества и температуры. Вант-Гофф предположил, что для осмотического давления можно применить уравнение состояния идеального газа: pV = nRТ или p = (n/V) RТ откудаp = с RТ , где p - осмотическое давление (кПа), с – молярная концентрация раствора. Осмотическое давление прямо пропорционально молярной концентрации растворенного вещества и температуре. Осмос играет очень важную роль в биологических процессах , обеспечивая поступление воды в клетки и другие структуры. Растворы с одинаковым осмотическим давлением называются изотоническими . Если осмотическое давление выше внутриклеточного, то оно называется гипертоническим, если ниже внутриклеточного - гипотоническим. Изотонический коэффициент (также фактор Вант-Гоффа; обозначается i) - безразмерный параметр, характеризующий поведение вещества в растворе. Он численно равен отношению значения некоторого коллигативного свойства раствора данного вещества и значения того же коллигативного свойства неэлектролита той же концентрации при неизменных прочих параметрах системы. Изоосмия -относительное постоянство осмотического давления в жидких средах и тканях организма, обусловленное поддержанием на данном уровне концентраций содержащихся в них веществ: электролитов, белков.Это одна из важнейших физиологических констант организма, обеспечиваемых механизмами саморегуляции (Гомеостаз). ГЕМОЛИЗ - разрушение эритроцитов, сопровождающееся выходом из них гемоглобина. Физические причины относится действие высоких и низких температур, ультразвука, к химическим - гемолитические яды, нек-рые лекарственные средства и др. Гемолиз может возникнуть при переливании несовместимой крови, введении гипотонических р-ров.Плазмолиз -при помещении клеток в гипертонический раствор вода из клеток уходит в более концентрированный раствор и наблюдается сморщивание клеток.

Элементы теории растворов электролитов. Сильные и слабые электролиты. Константа ионизации слабого электролита. Закон разведения Оствальда. Ионная сила раствора. Активность и коэффициент активности ионов. Электролиты в организме, слюна как электролит.

Электролиты – это вещества с ионными или сильнополярными ковалентными связями в водных растворах, подвергающиеся электролитической диссоциации, в результат чего образуются катионы и анионы.

Сильные электролиты – вещества, способные диссоциировать нацело. К ним относится большинство солей, а так же некоторые вещества молекулярного строения (HCl).

Слабые электролиты диссоциируют в незначительно степени, и преобладающей формой их является молекулярная (H2S, органические кислоты).

Количественно способность молекулярного электролита к диссоциации определяется степенью ионизации(она зависит от концентрации электролита):

где Nобщ – общее число молекул в растворе; N иониз – число молекул, распавшихся на ионы.

Константа ионизации :

Где [A],[B] – распавшиеся ионы

– не распавшееся на ионы вещество.

Закон разбавления Оствальда:

K= α 2 c/1- α ,

Где α – степень ионизации

С – молярная концентрация

Ионная сила раствора :

I=0.5∑с i z i 2 ,

Где с i – молярная концентрация иона в растворе, моль/л

z i – заряд иона.

Активность иона – это его эффективная концентрация.

Активность связана с молярной концентрацией следующим образом:

где f – коэффициент активности

Электролиты в организме : Na и Cl участвуют в поддержании кислотно-щелочного баланса, осмотического равновесия в организме. Са играет большую роль в построении костной ткани и зубов, в регулировании кислотности крови и ее свертывании, в возбудимости мышечной и нервной ткани. К находится преимущественно в жидкостях тела и мягких тканях, где является необходимым элементом для поддержания осмотического давления, регуляции рН крови.Mg является кофактором многих ферментативных реакций, необходим на всех этапах синтеза белка. В живых организмах Fe является важным микроэлементом, катализирующим процессы обмена кислородом. Сo входит в состав витамина В 12 , задействован при кроветворении, функциях нервной системы и печени, ферментативных реакциях. Zn необходим для метаболизма витамина E, участвует в синтезе разных анаболических гормонов в организме, включая инсулин, тестостерон и гормон роста. Mn оказывает влияние на рост, образование крови и функции половых желёз.

Слюна как электролит является сложной биохимической средой. Количество ионов Н+ и ОН" определяет рН слюны, который в норме равен 6,9. Величина водородного показателя изменяется в зависимости от характера патологического процесса в полости рта. Так. при инфекционных заболеваниях реакция слюны кислая. Из неорганических веществ в слюне содержатся анионы хлора, брома, иода, фтора. Анионы фосфатов, фтора способствуют увеличению электрохимических потенциалов, анион хлора - переносу ионных зарядов и является деполяризатором (фактор, ускоряющий анодные и катодные процессы). В слюне определяются микроэлементы: железо, медь, серебро, марганец, алюминий и др. - и макроэлементы: кальций, калий, натрий, магний, фосфор.

Задача 336.
При 150°С некоторая реакция заканчивается за 16 мин. Принимая температурный коэффициент скорости реакции равным 2,5, рассчитать, через какое время закончится эта реакция, если проводить ее: а) при 20 0 °С; б) при 80°С.
Решение:
Согласно правилу Вант Гоффа зависимость скорости от температуры выражается уравнением:

v t и k t - скорость и константа скорости реакции при температуре t°С; v (t + 10) и k (t + 10) те же величины при температуре (t + 10 0 C); - температурный коэффициент скорости реакции, значение которого для большинства реакций лежит в пределах 2 – 4.

а) Учитывая, что скорость химической реакции при данной температуре обратно пропорциональна продолжительности её протекания, подставим данные, приведённые в условии задачи в формулу, количественно выражающую правило Вант-Гоффа, получим:

б) Так как данная реакция протекает с понижением температуры, то при данной температуре скорость этой реакции прямо пропорциональна продолжительности её протекания, подставим данные, приведённые в условии задачи в формулу, количественно выражающую правило Вант-Гоффа, получим:

Ответ : а) при 200 0 С t2 = 9,8 c; б) при 80 0 С t3 = 162 ч 1мин 16 c.

Задача 337.
Изменится ли значение константы скорости реакции: а) при замене одного катализатора другим; б) при изменении концентраций реагирующих веществ?
Решение:
Константа скорости реакции – это величина, зависящая от природы реагирующих веществ, от температуры и от присутствия катализаторов, не зависит от концентрации реагирующих веществ. Она может быть равна скорости реакции в случае, когда концентрации реагирующих веществ равны единице (1 моль/л).

а) При замене одного катализатора другим изменится скорость данной химической реакции, она или увеличится. В случае применения катализатора увеличится скорость химической реакции, то, соответственно увеличится и значение константы скорости реакции. Изменение значения константы скорости реакции произойдёт и при замене одного катализатора другим, который увеличит или уменьшит скорость данной реакции по отношению к исходному катализатору.

б) При изменении концентрации реагирующих веществ изменится значения скорости реакции, а значение константы скорости реакции не изменится.

Задача 338.
Зависит ли тепловой эффект реакции от ее энергии активации? Ответ обосновать.
Решение:
Тепловой эффект реакции зависит только от начального и конечного состояния системы и не зависит от промежуточных стадий процесса. Энергия активации – это избыточная энергия, которой должны обладать молекулы веществ, для того чтобы их столкновение могло привести к образованию нового вещества. Энергию активации можно изменить повышением или понижением температуры, соответственно понижая или увеличивая её. Катализаторы понижают энергию активации, а ингибиторы – понижают.

Таким образом, изменение энергии активации приводит к изменению скорости реакции, но не к изменению теплового эффекта реакции. Тепловой эффект реакции – величина постоянная и не зависит от изменения энергии активации для данной реакции. Например, реакция образования аммиака из азота и водорода имеет вид:

Данная реакция экзотермическая, > 0). Реакция протекает с уменьшением числа молей реагирующих частиц и числа молей газообразных веществ, что приводит систему из менее устойчивого состояния в более устойчивое, энтропия уменьшается, < 0. Данная реакция в обычных условиях не протекает (она возможна только при достаточно низких температурах). В присутствии катализатора энергия активации уменьшается, и скорость реакции возрастает. Но, как до применения катализатора, так и в присутствии его тепловой эффект реакции не изменяется, реакция имеет вид:

Задача 339.
Для какой реакции прямой или обратной - энергия активации больше, если прямая реакция идет с выделением теплоты?
Решение:
Разность энергий активации прямой и обратной реакций равна тепловому эффекту: H = E a(пр.) - Е а(обр.) . Данная реакция протекает с выделением теплоты, т.е. является экзотермической, < 0 Исходя из этого, энергия активации прямой реакции имеет меньшее значение, чем энергия активации обратной реакции:
E a(пр.) < Е а(обр.) .

Ответ: E a(пр.) < Е а(обр.) .

Задача 340.
Во сколько раз увеличится скорость реакции, протекающей при 298 К, если энергию активации её уменьшить на 4 кДж/моль?
Решение:
Обозначим уменьшение энергии активации через Ea, а константы скоростей реакции до и после уменьшения энергии активации соответственно через k и k". Используя уравнение Аррениуса, получим:

E a - энергия активации, k и k" - константы скорости реакции, Т – температура в К (298).
Подставляя в последнее уравнение данные задачи и, выражая энергию активации в джоулях, рассчитаем увеличение скорости реакции:

Ответ : В 5 раз.

Температура и скорость реакции

При фиксированной температуре реакция возможна, если взаимодействующие молекулы обладают определнным запасом энергии. Аррениус эту избыточную энергию назвал энергией активации , а сами молекулы активированными .

По Аррениусу константа скорости k и энергия активации E a связаны соотношением, получившим название уравнения Аррениуса:

Здесь A – предэкспоненциальный множитель, R – универсальная газовая постоянная, T – абсолютная температура.

Таким образом, при постоянной температуре скорость реакции определяет E a . Чем больше E a , тем меньше число активных молекул и тем медленнее протекает реакция. При уменьшении E a скорость возрастает, а при E a = 0 реакция протекает мгновенно.

Величина E a характеризует природу реагирующих веществ и определяется экспериментально из зависимости k = f (T ). Записав уравнение (5.3) в логарифмическом виде и решая его для констант при двух температурах, находим E a :

γ – температурный коэффициент скорости химической реакции. Правило Вант-Гоффа имеет ограниченное применение, поскольку величина γ зависит от температуры, а вне области E a = 50–100 кДж ∙ моль –1 это правило вообще не выполняется.

На рис. 5.4 видно, что затрачиваемая на перевод начальных продуктов в активное состояние (А* – активированный комплекс) энергия затем полностью или частично вновь выделяется при переходе к конечным продуктам. Разность энергий начальных и конечных продуктов определяет ΔH реакции, которая от энергии активации не зависит.

Таким образом, по пути из исходного состояния в конечное система должна преодолеть энергетический барьер. Только активные молекулы, обладающие в момент столкновения необходимым избытком энергии, равным E a , могут преодолеть этот барьер и вступить в химическое взаимодействие. С ростом температуры увеличивается доля активных молекул в реакционнной среде.

Предэкспоненциальный множитель A характеризует общее число соударений. Для реакций с простыми молекулами A близок к теоретической величине столкновений Z , т. е. A = Z , рассчитываемой из кинетической теории газов. Для сложных молекул A Z , поэтому необходимо вводить стерический фактор P :

Здесь Z – число всех соударений, P – доля соударений, благоприятных в пространственном отношении (принимает значения от 0 до ), – доля активных, т. е. благоприятных в энергетическом отношении соударений.

Размерность константы скорости получается из соотношения

Анализируя выражение (5.3), приходим к выводу, что существуют две принципиальные возможности ускорения реакции:
а) увеличение температуры,
б) снижение энергии активации.

Задачи и тесты по теме "Химическая кинетика. Температура и скорость реакции"

  • Скорость протекания химической реакции. Катализаторы - Классификация химических реакций и закономерности их протекания 8–9 класс

    Уроков: 5 Заданий: 8 Тестов: 1

Задача № 1. Взаимодействие со свободным кислородом приводит к образованию высокотоксичного диоксида азота / /, хотя эта реакция в физиологических условиях протекает медленно и при низких концентрациях не играет существенной роли в токсическом повреждении клеток, но, однако патогенные эффекты резко возрастают при его гиперпродукции. Определите, во сколько раз возрастает скорость взаимодействия оксида азота (II) c кислородом при увеличении давления в смеси исходных газов в два раза, если скорость реакции описывается уравнением ?

Решение .

1. Увеличение давления вдвое равноценно двойному увеличению концентрации (с ) и . Поэтому скорости взаимодействия, соответствующие и ,примут в соответствии с законом действия масс выражения: и

Ответ . Скорость реакции увеличится в 8 раз.

Задача № 2. Считается, что концентрация хлора (зеленоватый газ с резким запахом) в воздухе выше 25 ppm опасна для жизни и здоровья, но, имеются данные, что если пациент восстановился после острого тяжелого отравления этим газом, то остаточных явлений не наблюдается. Определите, как изменится скорость реакции: , протекающей в газовой фазе, если увеличить в 3-и раза: концентрацию , концентрацию , 3) давление / /?

Решение .

1. Если обозначить концентрации и соответственно через и , то выражение для скорости реакции примет вид: .

2. После увеличения концентраций в 3-и раза они будут равны для и для . Поэтому выражение для скорости реакции примет вид: 1) 2)

3. Увеличение давления во столько же раз увеличивает концентрацию газообразных реагирующих веществ, поэтому

4. Увеличение скорости реакции по отношению к первоначальной определяется отношением соответственно: 1) , 2) , 3) .

Ответ . Скорость реакции увеличится в: 1) , 2) , 3) раза.

Задача № 3 . Как изменяется скорость взаимодействия исходных веществ при изменении температуры с до , если температурный коэффициент реакции равен 2,5?

Решение .

1. Температурный коэффициент показывает, как меняется скорость реакции при изменении температуры на каждые (правило Вант-Гоффа): .

2. Если же изменение температуры: , то с учетом того, что , получаем: . Отсюда, .

3. По таблице антилогарифмов находим: .

Ответ . При изменении температуры (т.е. при повышении) скорость увеличится в 67,7 раз.

Задача № 4 . Вычислите температурный коэффициент скорости реакции, зная, что с повышением температуры на скорость возрастает в 128 раз.

Решение .

1. Зависимость скорости химической реакции от температуры выражается эмпирическим правилом Вант-Гоффа:

.Решая уравнение относительно , находим: , . Следовательно, =2

Ответ . =2.

Задача № 5 . Для одной из реакций были определены две константы скорости: при 0,00670 и при 0,06857. Определите константу скорости этой же реакции при .

Решение .

1. По двум значениям констант скорости реакции, используя уравнение Аррениуса, определяем величину энергии активации реакции: . Для данного случая: Отсюда: Дж/моль.

2. Рассчитаем константу скорости реакции при , используя в расчетах константу скорости при и уравнение Аррениуса: . Для данного случая: и с учетом того, что: , получаем: . Следовательно,

Ответ .

Вычисление константы химического равновесия и определение направление смещения равновесия по принципу Ле-Шателье .

Задача №6. Двуокись углерода / / в отличие от моноксида углерода / / не нарушает физиологических функций и анатомической целостности живого организма и удушающий эффект их обусловлен лишь присутствием в высокой концентрации и снижением процентного содержания кислорода во вдыхаемом воздухе. Чему равна константа равновесия реакции / /: при температуре , выраженная через: а) парциальные давления реагирующих веществ ; б) их молярные концентрации , зная, что состав равновесной смеси выражается объемными долями: , и , а общее давление в системе составляет Па?

Решение .

1. Парциальное давление газа равно общему давлению, умноженному на объемную долю газа в смеси, поэтому:

2. Подставляя эти значения в выражение константы равновесия, получим:

3. Взаимосвязь между и устанавливается на основе уравнения Менделеева ­ Клапейрона для идеальных газов и выражается равенством: , где – разность между числом молей газообразных продуктов реакции и газообразных исходных веществ. Для данной реакции: . Тогда: .

Ответ . Па. .

Задача № 7. В каком направлении сместится равновесие в следующих реакциях:

3. ;

а) при повышении температуры, б) при понижении давления, в) при увеличении концентрации водорода?

Решение .

1. Химическое равновесие в системе устанавливается при постоянстве внешних параметров ( и др.). Если эти параметры меняются, то система выходит из состояния равновесия и начинает преобладать прямая (вправо) или обратная реакции (влево). Влияние различных факторов на смещение равновесия отражено в принципе Ле Шателье.

2. Рассмотрим влияние на вышеуказанные реакции всех 3-х факторов, влияющих на химическое равновесие.

а) При повышении температуры равновесие смещается в сторону эндотермической реакции, т.е. реакции, идущей с поглощением тепла . 1-я и 3-я реакции – экзотермические / /, следовательно, при повышении температуры равновесие сместится в сторону обратной реакции, а во 2-ой реакции / / – в сторону прямой реакции.

б) При понижении давления равновесие смещается в сторону возрастания числа молей газов, т.е. в сторону большего давления . В 1-ой и 3-ей реакциях в левой и правой частях уравнения будет одинаковое число молей газов (2-2 и 1-1 соответственно). Поэтому изменение давления не вызовет смещения равновесия в системе. Во 2-ой реакции в левой части 4 моля газов, в правой – 2 моля, поэтому при понижении давления равновесие сместится в сторону обратной реакции.

в) При увеличении концентрации компонентов реакции равновесие смещается в сторону их расхода. В 1-ой реакции водород находится в продуктах, и увеличение его концентрации усилит обратную реакцию, в ходе которой он расходуется. Во 2-ой и 3-ей реакциях водород входит в число исходных веществ, поэтому увеличение его концентрации смещает равновесие в сторону реакции, идущей с расходом водорода.

Ответ .

а) При повышении температуры в реакциях 1 и 3 равновесие будет смещено влево, а в реакции 2 – вправо.

б) На реакции 1 и 3 понижение давления не повлияет, а в реакции 2 – равновесие будет смещено влево.

в) Повышение температуры в реакциях 2 и 3 повлечет за собой смещение равновесия вправо, а в реакции 1 – влево.

1.2. Ситуационные задачи №№ с 7 по 21 для закрепления материала (выполнить в протокольной тетради).

Задача № 8. Как изменится скорость окисления глюкозы в организме при снижении температуры с до , если температурный коэффициент скорости реакции равен 4 ?

Задача № 9 .Используя приближенное правило Вант-Гоффа, вычислить, на сколько нужно повысить температуру, чтобы скорость реакции возросла в 80 раз? Температурный коэффициент скорости принять равным 3.

Задача № 10. Для практической остановки реакции применяют быстрое охлаждение реакционной смеси («замораживание реакции»). Определите, во сколько раз изменится скорость реакции при охлаждении реакционной смеси с 40 до , если температурный коэффициент реакции равен 2,7.

Задача № 11. Изотоп , применяющийся для лечения некоторых опухолей, имеет период полураспада 8,1 суток. Через какое время содержание радиоактивного йода в организме пациента уменьшится в 5 раз?

Задача № 12. Гидролиз некоторого синтетического гормона (фармпрепарата) является реакцией первого порядка с константой скорости 0,25 (). Как изменится концентрация этого гормона через 2 месяца?

Задача №13. Период полураспада радиоактивного равен 5600 лет. В живом организме за счет обмена веществ поддерживается постоянное количество . В останках мамонта содержание составило от исходного. Определите, когда жил мамонт?

Задача № 14. Период полураспада инсектицида (ядохимиката, применяемого для борьбы с насекомыми) составляет 6 месяцев. Некоторое количество его попало в водоем, где установилась концентрация моль/л. За какое время концентрация инсектицида понизится до уровня моль/л?

Задача №15. Жиры и углеводы окисляются с заметной скоростью при температуре 450 - 500°, а в живых организмах - при температуре 36 - 40°. В чем причина резкого уменьшения температуры, необходимой для окисления?

Задача № 16. Пероксид водорода разлагается в водных растворах на кислород и воду. Реакцию ускоряют как неорганический катализатор (ион ), так и биоорганический (фермент каталаза). Энергия активации реакции в отсутствие катализатора 75,4 кДж/моль. Ион снижает ее до 42 кДж/моль, а фермент каталаза - до 2 кДж/моль. Рассчитайте соотношение скоростей реакции в отсутствие катализатора в случаях присутствия и каталазы. Какой вывод можно сделать об активности фермента? Реакция протекает при температуре 27 °С.

Задача № 17 Константа скорости распада пенициллина при рации Дж/моль.

1.3. Контрольные вопросы

1. Объясните, что означают термины: скорость реакции, константа скорости?

2. Как выражается средняя и истинная скорость химических реакций?

3. Почему о скорости химических реакций имеет смысл говорить только для данного момента времени?

4. Сформулируйте определение обратимой и необратимой реакции.

5. Дайте определение закона действующих масс. В равенствах, выражающих этот закон, отражена ли зависимость скорости реакции от природы реагирующих веществ?

6. Как зависит скорость реакции от температуры? Что называется энергией активации? Что такое активные молекулы?

7. От каких факторов зависит скорость гомогенной и гетерогенной реакции? Приведите примеры.

8. Что такое порядок и молекулярность химических реакций? В каких случаях они не совпадают?

9. Какие вещества называются катализаторами? Каков механизм ускоряющего действия катализатора?

10. В чем заключается понятие «отравление катализатора»? Какие вещества называют ингибиторами?

11. Что называется химическим равновесием? Почему оно называется динамическим? Какие концентрации реагирующих веществ называют равновесными?

12. Что называют константой химического равновесия? Зависит ли она от природы реагирующих веществ, их концентрации, температуры, давления? Каковы особенности математической записи для константы равновесия в гетерогенных системах?

13. Что такое фармакокинетика лекарств?

14. Процессы, происходящие с лекарственным препаратом в организме, количественно характеризуются рядом фармакокинетических праметров. Приведите основные из них.