Биографии Характеристики Анализ

Теплота Земли. Вероятные источники внутренней теплоты

Д.т.н. Н.А. Гнатусь, профессор,
академик Российской академии технологических наук, г. Москва

В последние десятилетия в мире рассматривается направление более эффективного использования энергии глубинного тепла Земли с целью частичной замены природного газа, нефти, угля. Это станет возможным не только в районах с высокими геотермальными параметрами, но и в любых районах земного шара при бурении нагнетательных и эксплуатационных скважин и создания между ними циркуляционных систем.

Возросший в последние десятилетия в мире интерес к альтернативным источникам энергии вызван истощением запасов углеводородного топлива и необходимостью решения ряда экологических проблем. Объективные факторы (резервы ископаемого топлива и урана, а также изменение среды, вызванные традиционной огневой и атомной энергетикой) позволяют утверждать, что переход к новым способам и формам получения энергии является неизбежным.

Мировая экономика в настоящее время взяла курс на переход к рациональному сочетанию традиционных и новых источников энергии. Тепло Земли занимает среди них одно из первых мест.

Ресурсы геотермальной энергии разделяются на гидрогеологические и петрогеотермальные. Первые из них представлены теплоносителями (составляют всего 1% от общих ресурсов геотермальной энергии) - подземными водами, паром и пароводяными смесями. Вторые представляют собой геотермальную энергию, содержащуюся в раскаленных горных породах.

Применяемая в нашей стране и за рубежом фонтанная технология (самоизлив) добычи природного пара и геотермальных вод проста, но неэффективна. При малом дебите самоизливающихся скважин их теплопродукция может окупить затраты на бурение лишь при небольшой глубине геотермальных коллекторов с высокой температурой в районах термоаномалий. Срок службы таких скважин во многих странах не достигает и 10 лет.

В то же время опыт подтверждает, что при наличии неглубоких коллекторов природного пара строительство ГеоТЭС представляет собой наиболее выгодный вариант использования геотермальной энергии. Эксплуатация таких ГеоТЭС показала их конкурентоспособность по сравнению с другими типами энергоустановок. Поэтому, использование запасов геотермальных вод и парогидротерм в нашей стране на полуострове Камчатка и на островах Курильской гряды, в регионах Северного Кавказа, а также возможно и в других районах целесообразно и своевременно. Но месторождения пара - редкость, его известные и прогнозные запасы невелики. Гораздо более распространенные месторождения теплоэнергетических вод далеко не всегда расположены достаточно близко от потребителя -объекта теплоснабжения. Это исключает возможность крупных масштабов их эффективного использования.

Нередко в сложную проблему перерастают вопросы борьбы с солеотложением. Использование геотермальных, как правило, минерализованных источников в качестве теплоносителя приводит к зарастанию скважинных зон оксидом железа, карбонатом кальция и силикатными образованиями. Кроме того, проблемы эрозии-коррозии и солеотложений отрицательно отражаются на работе оборудования. Проблемой, также, становится сброс минерализованных и содержащих токсичные примеси отработанных вод. Поэтому, простейшая фонтанная технология не может служить основой широкого освоения геотермальных ресурсов.

По предварительным оценкам на территории Российской Федерации прогнозные запасы термальных вод с температурой 40-250 ОС, минерализацией 35-200 г/л и глубиной залегания до 3000 м составляют 21-22 млн м3/сут., что эквивалентно сжиганию 30-40 млн т у.т. в год.

Прогнозные запасы паровоздушной смеси с температурой 150-250 ОС полуострова Камчатка и Курильских островов составляет 500 тыс. м3/сут. и запасы термальных вод с температурой 40-100 ОС - 150 тыс. м3/сут.

Первоочередными для освоения считаются запасы термальных вод с дебитом около 8 млн м3/сут., с минерализацией до 10 г/л и температурой выше 50 ОС.

Гораздо большее значение для энергетики будущего имеет извлечение тепловой энергии, практически неисчерпаемых, петрогеотермальных ресурсов. Эта геотермальная энергия, заключенная в твердых горячих породах, и составляет 99% от общих ресурсов подземной тепловой энергии. На глубине до 4-6 км массивы с температурой 300-400 ОС можно встретить лишь вблизи промежуточных очагов некоторых вулканов, но горячие породы с температурой 100-150 ОС распространены на этих глубинах почти повсеместно, а с температурой 180-200 ОС на довольно значительной части территории России.

На протяжении миллиардов лет ядерные, гравитационные и другие процессы внутри Земли генерировали и генерируют тепловую энергию. Некоторая ее доля излучается в космическое пространство, а теплота аккумулируется в недрах, т.е. теплосодержание твердой, жидкой и газообразной фаз земного вещества и называется геотермальной энергией.

Непрерывная генерация внутриземного тепла компенсирует его внешние потери, служит источником накопления геотермальной энергии и определяет возобновляемую часть ее ресурсов. Общий вынос тепла недр к земной поверхности втрое превышает современную мощность энергоустановок мира и оценивается в 30 ТВт.

Однако очевидно, что возобновляемость имеет значение лишь для ограниченных природных ресурсов, а общий потенциал геотермальной энергии является практически неисчерпаемым, поскольку его следует определять как общее количество теплоты, которым располагает Земля.

Не случайно, в последние десятилетия, в мире рассматривается направление более эффективного использования энергии глубинного тепла Земли с целью частичной замены природного газа, нефти, угля. Это станет возможным не только в районах с высокими геотермальными параметрами, но и в любых районах земного шара при бурении нагнетательных и эксплуатационных скважин и создания между ними циркуляционных систем.

Разумеется, при низкой теплопроводности пород для эффективной работы циркуляционных систем необходимо иметь или создать в зоне отбора тепла достаточно развитую теплообменную поверхность. Такой поверхностью обладают нередко встречающиеся на указанных выше глубинах пористые пласты и зоны естественной трещиностойкости, проницаемость которых позволяет организовать принудительную фильтрацию теплоносителя с эффективным извлечением энергии горных пород, а также искусственного создания обширной теплообменной поверхности в слабопроницаемых пористых массивах методом гидроразрыва (см. рисунок).

В настоящее время гидроразрыв применяется в нефтегазовой промышленности как способ повышения проницаемости пластов для повышения нефтеотдачи при разработке нефтяных месторождений. Современная технология позволяет создавать узкую, но длинную трещину, или короткую но широкую. Известны примеры гидроразрывов с трещинами протяженностью до 2-3 км.

Отечественная идея извлечения основных геотермальных ресурсов, заключенных в твердых породах, была высказана еще в 1914 г. К.Э.Циолковским, а в 1920 г. геотермальная циркуляционная система (ГЦС) в горячем гранитном массиве описана В.А. Обручевым.

В 1963 г. в Париже была создана первая ГЦС извлечения тепла пород пористых пластов для отопления и кондиционирования воздуха в помещениях комплекса «Бродкастин Хаос». В 1985 г. во Франции работало уже 64 ГЦС общей тепловой мощностью 450 МВт при годовой экономии примерно 150 тыс. т нефти. В том же году первая подобная ГЦС была создана в СССР в Ханкальской долине около г. Грозного.

В 1977 г. по проекту Лос-Аламосской национальной лаборатории США начались испытания опытной ГЦС с гидроразрывом практически непроницаемого массива на участке Фен-тон Хилл в штате Нью-Мехико. Нагнетаемая через скважину (нагнетательная) холодная пресная вода нагревалась за счет теплообмена с массивом горных пород (185 ОС) в вертикальной трещине площадью 8000 м2, образованной гидроразвывом на глубине 2,7 км. По другой скважине (эксплуатационная), также пересекающей эту трещину, перегретая вода выходила на поверхность в виде струи пара. При циркуляции в замкнутом контуре под давлением температура перегретой воды на поверхности достигала 160-180 ОС, а тепловая мощность системы - 4-5 МВт. Утечки теплоносителя в окружающий массив составляли около 1% общего расхода. Концентрация механических и химических примесей (до 0,2 г/л) соответствовала кондициям пресной питьевой воды. Трещина гидроразрыва не требовала крепления и поддерживалась в раскрытом состоянии гидростатическим давлением жидкости. Развивающаяся в ней свободная конвекция обеспечивала эффективное участие в теплообмене практически всей поверхности обнажения горячего породного массива.

Извлечение подземной тепловой энергии горячих непроницаемых пород, на основе освоенных и давно практикуемых в нефтегазовой промышленности методов наклонного бурения и гидроразрыва не вызывали сейсмической активности, ни каких-либо иных вредных воздействий на окружающую среду.

В 1983 г. английские ученые повторили американский опыт, создав экспериментальную ГЦС с гидроразрывом гранитов в Карнуэлле. Аналогичные работы проводились в Германии, Швеции. В США осуществлено более 224 проектов геотермального теплоснабжения. При этом допускается, что геотермальные ресурсы могут обеспечить основную часть перспективных потребностей США в тепловой энергии для неэлектрических нужд. В Японии мощность ГеоТЭС в 2000 г. достигла ориентировочно 50 ГВт.

В настоящее время исследования и разведка геотермальных ресурсов ведется в 65 странах. В мире на основе геотермальной энергии создано станций общей мощностью около 10 ГВт. Активную поддержку в освоении геотермальной энергии оказывает ООН.

Накопленный во многих странах мира опыт использования геотермальных теплоносителей показывает, что в благоприятных условиях они оказываются в 2-5 раз выгоднее тепловых и атомных энергоустановок. Расчеты показывают, что за год одна геотермальная скважина может обеспечить замещение 158 тыс. т угля.

Таким образом, тепло Земли представляет собой, пожалуй, единственный крупный, восполняемый энергоресурс, рациональное освоение которого обещает удешевление энергии по сравнению с современной топливной энергетикой. При столь же неисчерпаемом энергетическом потенциале солнечные и термоядерные установки, к сожалению, будут дороже существующих топливных.

Несмотря на весьма длительную историю освоения тепла Земли сегодня геотермальная технология еще не достигла своего высокого развития. Освоение тепловой энергии Земли испытывает большие трудности при строительстве глубоких скважин, являющихся каналом для вывода теплоносителя на поверхность. В связи с высокой температурой на забое (200-250 ОС) традиционные породоразрушающие инструменты малопригодны для работы в таких условиях, предъявляются особые требования к выбору бурильных и обсадных труб, цементных растворов, технологии бурения, креплению и заканчиванию скважин. Отечественная измерительная техника, серийная эксплуатационная арматура и оборудование выпускаются в исполнении, допускающем температуры не выше 150-200 ОС. Традиционное глубокое механическое бурение скважин подчас затягивается на годы и требует значительных финансовых затрат. В основных производственных фондах стоимость скважин составляет от 70 до 90%. Решить эту проблему можно и нужно лишь путем создания прогрессивной технологии разработки основной части геотермальных ресурсов, т.е. извлечения энергии горячих пород.

Проблемой извлечения и использования неисчерпаемой, восполняемой глубинной тепловой энергии горячих пород Земли на территории Российской Федерации наша группа российских ученых и специалистов занимается не один год. Цель работы - создание на основе отечественных, высоких технологий технических средств для глубокого проникновения в недра земной коры. В настоящее время разработано несколько вариантов буровых снарядов (БС), аналогов которым в мировой практике нет.

Работа первого варианта БС увязана с действующей традиционной технологией бурения скважин. Скорость бурения твердых пород (средняя плотность 2500-3300 кг/м3) до 30 м/ч, диаметр скважины 200-500 мм. Второй вариант БС осуществляет бурение скважин в автономном и автоматическом режиме. Запуск осуществляется со специальной пуско-приемочной платформы, с которой и ведется управление его движением. Одну тысячу метров БС в твердых породах сможет пройти в течение нескольких часов. Диаметр скважины от 500 до 1000 мм. Варианты БС многоразового использования обладают большой экономической эффективностью и огромным потенциальным значением. Внедрение БС в производство позволит открыть новый этап в строительстве скважин и обеспечить доступ к получению неисчерпаемых источников тепловой энергии Земли.

Для нужд теплоснабжения необходимая глубина скважин на всей территории страны лежит в пределах до 3-4,5 тыс. м и не превышает 5-6 тыс. м. Температура теплоносителя для жилищно-коммунального теплоснабжения не выходит за пределы 150 ОС. Для промышленных объектов температура, как правило, не превышает 180-200 ОС.

Цель создания ГЦС - обеспечение постоянным, доступным, дешевым теплом отдаленных, труднодоступных и не освоенных районов РФ. Продолжительность эксплуатации ГЦС - 25-30 лет и более. Срок окупаемости станций (с учетом новейших технологий бурения) - 3-4 года.

Создание в Российской Федерации в ближайшие годы соответствующих мощностей по использованию геотермальной энергии для неэлектрических нужд позволит заменить около 600 млн т у.т. Экономия может составить до 2 трлн руб.

В срок до 2030 г. появляется возможность создания энергетических мощностей по замене огневой энергетики до 30%, а до 2040 г. почти полностью исключить органическое сырье в качестве топлива из энергетического баланса Российской Федерации.

Литература

1. Гончаров С.А. Термодинамика. М.: МГТУим. Н.Э. Баумана, 2002. 440 с.

2. Дядькин Ю.Д. и др. Геотермальная теплофизика. С-Пб.: Наука, 1993. 255 с.

3. Минерально-сырьевая база топливно-энергетического комплекса России. Состояние и прогноз / В. К. Бранчугов, Е.А. Гаврилов, В.С. Литвиненко и др. Под ред. В.З. Гарипова, Е.А. Козловского. М. 2004. 548 с.

4. Новиков Г. П. и др. Бурение скважин на термальные воды. М.: Недра, 1986. 229 с.

Теплота Земли. Вероятные источники внутренней теплоты

Геотермия – наука, изучающая тепловое поле Земли. Средняя температура поверхности Земли имеет общую тенденцию к уменьшению. Три млрд. лет назад средняя температура на поверхности Земли составляла 71 о, сейчас – 17 о. Источниками теплового (термического) поля Земли являются внутренние и внешние процессы. Теплота Земли вызывается солнечной радиацией и зарождается в недрах планеты. Величины притока тепла от обоих источников количественно крайне неодинаковы и различны их роли в жизни планеты. Солнечный нагрев Земли составляет 99,5% от всей суммы тепла, получаемого ее поверхностью, а на долю внутреннего нагревания приходится 0,5 %. К тому же приток внутреннего тепла очень неравномерно распределен на Земле и сосредоточен в основном в местах проявления вулканизма.

Внешний источник - это солнечная радиация. Половина солнечной энергии поглощается поверхностью, растительностью и приповерхностным слоем земной коры. Другая половина отражается в мировое пространство. Солнечная радиация поддерживает температуру поверхности Земли в среднем около 0 0 С. Солнце прогревает приповерхностный слой Земли на глубину в среднем 8 – 30 м, при средней глубине в 25 м, влияние солнечного тепла прекращается и температура становится постоянной (нейтральный слой). Глубина эта минимальна в зонах с морским климатом и максимальна в Приполярье. Ниже этой границы располагается пояс постоянной температуры, соответствующей средней годовой температуры данной местности. Так, например, в Москве на территории сельхоз. академии им. Тимирязева, на глубине 20 м температура с 1882 г неизменно сохраняется равной 4,2 о С. В Париже на глубине 28 м термометр уже более 100 лет неизменно показывает 11,83 о С. Слой с постоянной температурой самый глубокий там, где развита многолетняя (вечная) мерзлота. Ниже пояса постоянной температуры следует зона геотермии, для которой свойственно тепло, генерируемое самой Землей.

Внутренними источниками являются недра Земли. Земля излучает в мировое пространство больше тепла, чем она получает от Солнца. К внутренним источникам относят остаточное тепло с того времени, когда планета была расплавлена, тепло термоядерных реакций, протекающих в недрах Земли, тепло гравитационного сжатия Земли под действием силы тяжести, тепло химических реакций и процессов кристаллизации и др. (например приливное трение). Тепло из недр идет в основном из подвижных зон. Увеличение температуры с глубиной связано с существованием внутренних источников тепла – распадом радиоактивных изотопов – U, Th, K, гравитационной дифференциацией вещества, приливным трением, экзотермическими окислительно-восстановительными химическими реакциями, метаморфизмом и фазовыми переходами. Скорость возрастания температуры с глубиной определяется рядом факторов – теплопроводностью, проницаемостью горных пород, близостью вулканических очагов и т.п.

Ниже пояса постоянных температур идет повышение температуры, в среднем 1 о на 33 м (геотермическая ступень ) или на 3 о через каждые 100 м (геотермический градиент ). Эти величины являются показателями теплового поля Земли. Понятно, что эти величины средние и разные по величине в различных областях или зонах Земли. Геотермическая ступень в различных точках Земли различна. Например, в Москве – 38,4 м, в Ленинграде 19,6, в Архангельске – 10. Так, при бурении глубокой скважины на Кольском полуострове на глубине в 12 км предполагали температуру 150 о, в действительности она оказалась порядка 220 градусов. При бурении скважин в северном Прикаспии на глубине 3000 м предполагали температуру 150 о градусов, а она оказалась 108 о.

Следует отметить, что климатические особенности местности и среднегодовая температура не влияют на изменение величины геотермической ступени, причины кроются в следующем:

1) в различной теплопроводности горных пород, слагающих тот или иной район. Под мерой теплопроводности понимают количество тепла в калориях, передаваемое в 1 сек. Через сечение в 1 см 2 при градиенте температуры в 1 о С;

2) в радиоактивности горных пород, чем больше теплопроводность и радиоактивность, тем меньше геотермическая ступень;

3) в различных условиях залегания горных пород и возрасте нарушения их залегания; наблюдения показали, что температура нарастает быстрее в слоях собранных в складки, в них чаще бывают нарушения (трещины), по которым облегчается доступ тепла из глубин;

4) характером подземных вод: потоки горячих подземных вод прогревают горные породы, холодные – охлаждают;

5) удаленностью от океана: около океана за счет охлаждения горных пород массой воды, геотермическая ступень больше, а на контакте – меньше.

Знание конкретной величины геотермической ступени имеет большое практическое значение.

1. Это важно при проектировании шахт. В одних случаях нужно будет принимать меры для искусственного понижения температуры в глубоких выработках (температура – 50 о С является предельной для человека при сухом воздухе и 40 о С при влажном); в других – можно будет вести работы на больших глубинах.

2. Большое значение имеет оценка температурных условий при проходке туннелей в горных местностях.

3. Изучение геотермических условий недр Земли дает возможность использовать пар и горячие источники, выходящие на поверхность Земли. Подземное тепло используется, например, в Италии, Исландии; в России на природном тепле построена на Камчатке экспериментально-промышленная электростанция.

Используя данные о величине геотермической ступени, можно сделать некоторые предположения о температурных условиях глубоких зон Земли. Если принять среднюю величину геотермической ступени за 33 м и допустить, что увеличение температуры с глубиной происходит равномерно, то на глубине 100 км будет температура 3000 о С. Эта температура превышает точки плавления всех веществ известных на Земле, следовательно на этой глубине должны быть расплавленные массы. Но за счет огромного давления 31000 атм. Перегретые массы не имеют признаков, свойственных жидкостей, а наделены признаками твердого тела.

С глубиной геотермическая ступень видимо должна значительно увеличиваться. Если считать, что ступень не меняется с глубиной, то температура в центре Земли должна составлять порядка 200 000 о градусов, а по расчетам она не может превышать 5000 - 10 000 о.

Основными источниками тепловой энергии Земли являются [ , ]:

  • тепло гравитационной дифференциации;
  • радиогенное тепло;
  • тепло приливного трения;
  • аккреционное тепло;
  • тепло трения, выделяющееся за счёт дифференциального вращения внутреннего ядра относительно внешнего, внешнего ядра относительно мантии и отдельных слоёв внутри внешнего ядра.

К настоящему времени количественно оценены лишь первые четыре источника. В нашей стране основная заслуга в этом принадлежит О.Г. Сорохтину и С.А. Ушакову . Нижеприводимые данные в основном базируются на расчётах этих учёных.

Тепло гравитационной дифференциации Земли


Одной из важнейших закономерностей развития Земли является дифференциация её вещества, которая продолжается и в настоящее время. За счёт этой дифференциации произошло формирование ядра и земной коры , изменение состава первичной мантии , при этом разделение первоначально однородного вещества на фракции различной плотности сопровождается выделением тепловой энергии , а максимальное тепловыделение происходит при разделении земного вещества на плотное и тяжёлое ядро и остаточную более лёгкую силикатную оболочку - земную мантию . В настоящее время основная часть этого тепла выделяется на границе мантия - ядро .

Энергии гравитационной дифференциации Земли за всё время её существования выделилось - 1,46*10 38 эрг (1,46*10 31 Дж) . Данная энергия в большей своей части сначала переходит в кинетическую энергию конвективных течений мантийного вещества, а затем в тепло ; другая её часть расходуется на дополнительное сжатие земных недр , возникающее благодаря концентрации плотных фаз в центральной части Земли. Из 1,46*10 38 эрг энергии гравитационной дифференциации Земли на её дополнительное сжатие пошло 0,23*10 38 эрг (0,23*10 31 Дж ), а в форме тепла выделилось 1,23*10 38 эрг (1,23*10 31 Дж ). Величина этой тепловой составляющей существенно превышает суммарное выделение в Земле всех остальных видов энергии. Распределение во времени общей величины и скорости выделения тепловой компоненты гравитационной энергии отражено на Рис. 3.6 .

Рис. 3.6.

Современный уровень генерации тепла при гравитационной дифференциации Земли - 3*10 20 эрг/с (3*10 13 Вт ), что от величины современного теплового потока, проходящего через поверхность планеты в (4,2-4,3)*10 20 эрг/с ((4,2-4,3)*10 13 Вт ), составляет ~ 70% .

Радиогенное тепло


Обусловливается радиоактивным распадом нестабильных изотопов . Наиболее энергоёмкими и долгоживущими (с периодом полураспада , соизмеримым с возрастом Земли) являются изотопы 238 U , 235 U , 232 Th и 40 K . Основной их объём сосредоточен в континентальной коре . Современный уровень генерации радиогенного тепла :

  • по американскому геофизику В.Вакье - 1,14*10 20 эрг/с (1,14*10 13 Вт ) ,
  • по российским геофизикам О.Г. Сорохтину и С.А. Ушакову - 1,26*10 20 эрг/с (1,26*10 13 Вт ) .

От величины современного теплового потока это составляет ~ 27-30 %.

Из общей величины тепла радиоактивного распада в 1,26*10 20 эрг/с (1,26*10 13 Вт ) в земной коре выделяется - 0,91*10 20 эрг/с , а в мантии - 0,35*10 20 эрг/с . Отсюда следует, что доля мантийного радиогенного тепла не превышает 10 % от суммарных современных теплопотерь Земли, и она не может являться основным источником энергии активных тектоно-магматических процессов, глубина зарождения которых может достигать 2900 км; а радиогенное тепло, выделяющееся в коре, относительно быстро теряется через земную поверхность и практически не участвует в разогреве глубинных недр планеты.

В прошлые геологические эпохи величина радиогенного тепла, выделяемого в мантии, должна была быть более высокой. Её оценки на момент образования Земли (4,6 млрд. лет назад ) дают - 6,95*10 20 эрг/с . С этого времени происходит неуклонное снижение скорости выделения радиогенной энергии (Рис. 3.7 ).


За всё время в Земле выделилось ~4,27*10 37 эрг (4,27*10 30 Дж ) тепловой энергии радиоактивного распада, что почти в три раза ниже общей величины тепла гравитационной дифференциации.

Тепло приливного трения


Выделяется при гравитационном взаимодействии Земли в первую очередь с Луной, как ближайшим крупным космическим телом. Благодаря взаимному гравитационному притяжению в их телах возникают приливные деформации - вздутия или горбы . Приливные горбы планет своим дополнительным притяжением оказывают влияние на их движение. Так, притяжение обоих приливных горбов Земли создаёт пару сил, действующих как на саму Землю, так и на Луну. Однако влияние ближнего, обращённого к Луне вздутия несколько сильнее, чем дальнего. В связи с тем, что угловая скорость вращения современной Земли (7,27*10 -5 с -1 ) превышает орбитальную скорость движения Луны (2,66*10 -6 с -1 ), а вещество планет не является идеально упругим, то приливные горбы Земли как бы увлекаются её вращением вперед и заметно опережают движение Луны. Это приводит к тому, что максимальные приливы Земли всегда наступают на её поверхности несколько позже момента кульминации Луны, а на Землю и Луну действует дополнительный момент сил (Рис. 3.8 ) .

Абсолютные значения сил приливного взаимодействия в системе Земля-Луна сейчас относительно невелики и обусловливаемые ими приливные деформации литосферы могут достигать лишь нескольких десятков сантиметров, но они приводят к постепенному торможению вращения Земли и, наоборот, к ускорению орбитального движения Луны и к её удалению от Земли. Кинетическая энергия движения земных приливных горбов переходит в тепловую энергию, вследствие внутреннего трения вещества в приливных горбах.

В настоящее время скорость выделения приливной энергии по Г. Макдональду составляет ~0,25*10 20 эрг/с (0,25*10 13 Вт ), при этом основная её часть (около 2/3) предположительно диссипирует (рассеивается) в гидросфере. Следовательно, доля приливной энергии, вызванной взаимодействием Земли с Луной и рассеиваемой в твёрдой Земле (в первую очередь в астеносфере), не превышает 2 % полной тепловой энергии, генерируемой в её недрах; а доля солнечных приливов не превышает 20 % от воздействия лунных приливов. Поэтому твёрдые приливы не играют теперь практически никакой роли в питании тектонических процессов энергией, но в отдельных случаях могут выступать в качестве "спусковых механизмов", например землетрясений .

Величина приливной энергии прямо связана с расстоянием между космическими объектами. И если для расстояния между Землёй и Солнцем не предполагается каких-либо существенных изменений в геологическом масштабе времени, то в системе Земля-Луна этот параметр является переменной величиной. Вне зависимости от представлений об практически все исследователи признают, что на ранних стадиях развития Земли расстояние до Луны было существенно меньше современного, в процессе же планетного развития, по мнению большинства учёных, оно постепенно увеличивается, а по Ю.Н. Авсюку это расстояние испытывает долгопериодические изменения в виде циклов "прихода - ухода" Луны . Отсюда исходит, что в прошлые геологические эпохи роль приливного тепла в общем тепловом балансе Земли была более значительной. В целом, за всё время развития Земли в ней выделилось ~3,3*10 37 эрг (3,3*10 30 Дж ) энергии приливного тепла (это при условии последовательного удаления Луны от Земли). Изменение же во времени скорости выделения этого тепла представлено на Рис. 3.10 .

Более половины общей величины приливной энергии выделилось в катархее (гадее )) - 4,6-4,0 млрд. лет назад, и в это время только за счёт этой энергии Земля дополнительно могла прогреться на ~500 0 С. Начиная с позднего архея лунные приливы вносили лишь ничтожно малое влияние в развитие энергоёмких эндогенных процессов .

Аккреционное тепло


Это тепло, сохранённое Землёй с момента её формирования. В процессе аккреции , которая продолжалась в течение нескольких десятков миллионов лет, благодаря соударению планетезималей Земля испытала существенный разогрев. При этом по поводу величины этого разогрева нет единого мнения. В настоящее время исследователи склоняются к тому, что в процессе аккреции Земля испытала если не полное, то значительное частичное плавление, что привело к начальной дифференциации ПротоЗемли на тяжёлое железное ядро и лёгкую силикатную мантию, и к формированию "магматического океана" на её поверхности или на небольшой глубине. Хотя ещё до 1990-х годов практически общепризнанной считалась модель относительно холодной первичной Земли, которая постепенно разогревалась за счёт вышерассмотренных процессов, сопровождавшихся выделением значительного количества тепловой энергии.

Точная оценка первичного аккреционного тепла и её сохранившейся до настоящего времени доли связана со значительными трудностями . По О.Г. Сорохтину и С.А. Ушакову , являющихся сторонниками относительно холодной первичной Земли, величина энергии аккреции, перешедшей в тепло, составляет - 20,13*10 38 эрг (20,13*10 31 Дж) . Этой энергии при отсутствии теплопотерь хватило бы для полного испарения земного вещества, т.к. температура могла бы подняться до 30 000 0 С . Но процесс аккреции был относительно длительным, а энергия ударов планетезималей выделялась лишь в приповерхностных слоях растущей Земли и быстро терялась с тепловым излучением, поэтому первичный разогрев планеты не был большим. Величину этого теплового излучения, идущего параллельно с формированием (аккрецией) Земли, указанные авторы оценивают в 19,4*10 38 эрг (19,4*10 31 Дж ) .

В современном энергетическом балансе Земли аккреционное тепло, вероятнее всего, играет незначительную роль.

Д ля России энергия тепла Земли может стать постоянным, надежным источником обеспечения дешевыми и доступными электроэнергией и теплом при использовании новых высоких, экологически чистых технологий по ее извлечению и поставке потребителю. В настоящее время это особенно актуально

Ограниченность ресурсов ископаемого энергетического сырья

Потребности в органическом энергетическом сырье велики в индустриально развитых и развивающихся странах (США, Япония, государства объединенной Европы, Китай, Индия и др.). При этом собственные ресурсы углеводородов в этих странах либо недостаточны, либо зарезервированы, а страна, например США, покупает энергетическое сырье за рубежом или разрабатывает месторождения в других странах.

В России, одной из богатейших по энергетическим ресурсам стран, хозяйственные потребности в энергии пока удовлетворяются возможностями использования природных ископаемых. Однако извлечение ископаемого углеводородного сырья из недр происходит очень быстрыми темпами. Если в 1940–1960-е гг. основными нефтедобывающими районами были «Второе Баку» в Поволжье и Предуралье, то, начиная с 1970-х гг., и по настоящее время таким районом является Западная Сибирь. Но и здесь наблюдается значительное снижение добычи ископаемых углеводородов. Уходит в прошлое эпоха «сухого» сеноманского газа. Прежний этап экстенсивного развития добычи природного газа подошел к завершению. Извлечение его из таких месторождений-гигантов, как Медвежье, Уренгойское и Ямбургское, составило, соответственно, 84, 65 и 50 %. Удельный вес запасов нефти, благоприятных для разработки, во времени также снижается.


Вследствие активного потребления углеводородного топлива, запасы нефти и природного газа на суше значительно сократились. Теперь основные их запасы сосредоточены на континентальном шельфе. И хотя сырьевая база нефтяной и газовой промышленности еще достаточна для добычи нефти и газа в России в необходимых объемах, в ближайшем будущем она будет обеспечиваться все в большей степени за счет освоения месторождений со сложными горно-геологическими условиями. Себестоимость добычи углеводородного сырья при этом будет расти.


Большая часть добываемых из недр невозобновляемых ресурсов используется как топливо для энергетических установок. В первую очередь это , доля которого в структуре топлива составляет 64 %.


В России 70 % электроэнергии вырабатывается на ТЭС. Энергетические предприятия страны ежегодно сжигают около 500 млн т у. т. в целях получения электроэнергии и тепла, при этом на производство тепла расходуется углеводородного топлива в 3–4 раза больше, чем на генерацию электроэнергии.


Количество теплоты, получаемое от сгорания названных объемов углеводородного сырья, эквивалентно использованию сотен тонн ядерного топлива – разница огромна. Однако ядерная энергетика требует обеспечения экологической безопасности (для исключения повторения Чернобыля) и защиты ее от возможных террористических актов, а также осуществления безопасного и дорогостоящего вывода из эксплуатации устаревших и отработавших свой срок энергоблоков АЭС. Доказанные извлекаемые запасы урана в мире составляют порядка 3 млн 400 тыс. т. За весь предшествующий период (до 2007 г.) его добыто около 2 млн т.

ВИЭ как будущее мировой энергетики

Возросший в последние десятилетия в мире интерес к альтернативным возобновляемым источникам энергии (ВИЭ) вызван не только истощением запасов углеводородного топлива, но и необходимостью решения экологических проблем. Объективные факторы (резервы ископаемого топлива и урана, а также изменения окружающей среды, связанные с использованием традиционной огневой и атомной энергетики) и тенденции развития энергетики позволяют утверждать, что переход к новым способам и формам получения энергии является неизбежным. Уже в первой половине XXI в. произойдет полный или почти полный переход на нетрадиционные источники энергии.


Чем раньше будет сделан прорыв в этом направлении, тем менее болезненным он будет для всего общества и более выгодным для страны, где будут сделаны решительные шаги в указанном направлении.


Мировая экономика в настоящее время уже взяла курс на переход к рациональному сочетанию традиционных и новых источников энергии. Энергопотребление в мире к 2000 г. составило более 18 млрд т у. т., а энергопотребление к 2025 г. может возрасти до 30–38 млрд т у. т., по прогнозным данным, к 2050 г. возможно потребление на уровне 60 млрд т у. т. Характерной тенденций развития мировой экономики в рассматриваемый период являются систематическое снижение потребления органического топлива и соответствующий рост использования нетрадиционных энергетических ресурсов. Тепловая энергия Земли занимает среди них одно из первых мест.


В настоящее время Министерством энергетики РФ принята программа развития нетрадиционной энергетики, в том числе 30-ти крупных проектов использования теплонасосных установок (ТНУ), принцип работы которых основан на потреблении низкопотенциальной тепловой энергии Земли.

Низкопотенциальная энергия тепла Земли и тепловые насосы

Источниками низкопотенциальной энергии тепла Земли являются солнечная радиация и тепловое излучение разогретых недр нашей планеты. В настоящее время использование такой энергии – одно из наиболее динамично развивающихся направлений энергетики на основе ВИЭ.


Тепло Земли может использоваться в различных типах зданий и сооружений для отопления, горячего водоснабжения, кондиционирования (охлаждения) воздуха, а также для обогрева дорожек в зимнее время года, предотвращения обледенения, подогрева полей на открытых стадионах и т. п. В англоязычной технической литературе системы, утилизирующие тепло Земли в системах теплоснабжения и кондиционирования, обозначаются как GHP – «geothermal heat pumps» (геотермальные тепловые насосы). Климатические характеристики стран Центральной и Северной Европы, которые вместе с США и Канадой являются главными районами использования низкопотенциального тепла Земли, определяют это главным образом в целях отопления; охлаждение воздуха даже в летний период требуется относительно редко. Поэтому, в отличие от США, тепловые насосы в европейских странах работают в основном в режиме отопления. В США они чаще используются в системах воздушного отопления, совмещенного с вентиляцией, что позволяет как подогревать, так и охлаждать наружный воздух. В европейских странах тепловые насосы обычно применяются в системах водяного отопления. Поскольку их эффективность увеличивается при уменьшении разности температур испарителя и конденсатора, часто для отопления зданий используются системы напольного отопления, в которых циркулирует теплоноситель относительно низкой температуры (35–40 о C).

Виды систем использования низкопотенциальной энергии тепла Земли

В общем случае можно выделить два вида систем использования низкопотенциальной энергии тепла Земли:


– открытые системы: в качестве источника низкопотенциальной тепловой энергии применяются грунтовые воды, подводимые непосредственно к тепловым насосам;

– замкнутые системы: теплообменники расположены в грунтовом массиве; при циркуляции по ним теплоносителя с пониженной относительно грунта температурой происходит «отбор» тепловой энергии от грунта и перенос ее к испарителю теплового насоса (или при использовании теплоносителя с повышенной относительно грунта температурой – его охлаждение).

Минусы открытых систем состоят в том, что скважины требуют обслуживания. Кроме этого, использование таких систем возможно не во всех местностях. Главные требования к грунту и грунтовым водам таковы:

– достаточная водопроницаемость грунта, позволяющая пополняться запасам воды;

– хороший химический состав грунтовых вод (например, низкое железосодержание), позволяющий избежать проблем, связанных с образованием отложений на стенках труб и коррозией.


Замкнутые системы использования низкопотенциальной энергии тепла Земли


Замкнутые системы бывают горизонтальными и вертикальными (рис 1).


Рис. 1. Схема геотермально теплонасосной установки с: а – горизонтальными

и б – вертикальными грунтовыми теплообменниками.

Горизонтальный грунтовой теплообменник

В странах Западной и Центральной Европы горизонтальные грунтовые теплообменники обычно представляют собой отдельные трубы, положенные относительно плотно и соединенные между собой последовательно или параллельно (рис. 2).


Рис. 2. Горизонтальные грунтовые теплообменники с: а – последовательным и

б – параллельным соединением.


Для экономии площади участка, на котором производится теплосъем, были разработаны усовершенствованные типы теплообменников, например, теплообменники в форме спирали (рис. 3), расположенной горизонтально или вертикально. Такая форма теплообменников распространена в США.

И.М. Капитонов

Ядерное тепло Земли

Земное тепло

Земля – довольно сильно нагретое тело и является источником тепла. Она нагревается, прежде всего, за счёт поглощаемого ею солнечного излучения. Но Земля имеет и собственный тепловой ресурс сопоставимый с получаемым теплом от Солнца. Считается, что эта собственная энергия Земли имеет следующее происхождение. Земля возникла около 4.5 млрд лет назад вслед за образованием Солнца из вращающегося вокруг него и уплотняющегося протопланетного газо-пылевого диска. На раннем этапе своего формирования происходил разогрев земной субстанции за счёт сравнительно медленного гравитационного сжатия. Большую роль в тепловом балансе Земли играла также энергия, выделявшаяся при падении на неё мелких космических тел. Поэтому молодая Земля была расплавленной. Остывая, она постепенно пришла к своему нынешнему состоянию с твёрдой поверхностью, значительная часть которой покрыта океаническими и морскими водами. Этот твёрдый наружный слой называют земной корой и в среднем на участках суши его толщина около 40 км, а под океаническими водами – 5-10 км. Более глубокий слой Земли, называемый мантией , также состоит из твёрдого вещества. Он простирается на глубину почти до 3000 км и в нём содержится основная часть вещества Земли. Наконец самая внутренняя часть Земли – это её ядро . Оно состоит из двух слоёв – внешнего и внутреннего. Внешнее ядро это слой расплавленного железа и никеля при температуре 4500-6500 K толщиной 2000-2500 км. Внутреннее ядро радиусом 1000-1500 км представляет собой нагретый до температуры 4000-5000 K твёрдый железо-никелевый сплав плотностью около 14 г/см 3 , возникший при огромном (почти 4 млн бар) давлении.
Помимо внутреннего тепла Земли, доставшегося её в наследство от самого раннего горячего этапа её формирования, и количество которого должно уменьшаться со временем, существует и другой, – долговременный, связанный с радиоактивным распадом ядер с большим периодом полураспада – прежде всего, 232 Th, 235 U, 238 U и 40 K. Энергия, выделяющаяся в этих распадах – на их долю приходится почти 99% земной радиоактивной энергии – постоянно пополняет тепловые запасы Земли. Вышеперечисленные ядра содержатся в коре и мантии. Их распад приводит к нагреву как внешних, так и внутренних слоёв Земли.
Часть огромного тепла, содержащегося внутри Земли, постоянно выходит на её поверхность часто в весьма масштабных вулканических процессах. Тепловой поток, вытекающий из глубин Земли через её поверхность известен. Он составляет (47±2)·10 12 Ватт , что эквивалентно теплу, которое могут генерировать 50 тысяч атомных электростанций (средняя мощность одной АЭС около 10 9 Ватт). Возникает вопрос, играет ли какую-либо существенную роль радиоактивная энергия в полном тепловом бюджете Земли и если играет, то какую? Ответ на эти вопросы долгое время оставался неизвестным. В настоящее время появились возможности ответить на эти вопросы. Ключевая роль здесь принадлежит нейтрино (антинейтрино), которые рождаются в процессах радиоактивного распада ядер, входящих в состав вещества Земли и которые получили название гео-нейтрино .

Гео-нейтрино

Гео-нейтрино – это объединённое название нейтрино или антинейтрино, которые испускаются в результате бета-распада ядер, расположенных под земной поверхностью. Очевидно, что благодаря беспрецедентной проникающей способности, регистрация именно их (и только их) наземными нейтринными детекторами может дать объективную информацию о процессах радиоактивного распада, происходящих глубоко внутри Земли. Примером такого распада является β − -распад ядра 228 Ra, которое является продуктом α-распада долгоживущего ядра 232 Th (см. таблицу):

Период полураспада (T 1/2) ядра 228 Ra равен 5.75 лет, выделяющаяся энергия составляет около 46 кэВ. Энергетический спектр антинейтрино непрерывен с верхней границей близкой к выделяющейся энергии.
Распады ядер 232 Th, 235 U, 238 U представляют собой цепочки последовательных распадов, образующих так называемые радиоактивные ряды . В таких цепочках α-распады перемежаются β − -распадами, так как при α-распадах конечные ядра оказываются смещёнными от линии β-стабильности в область ядер, перегруженных нейтронами. После цепочки последовательных распадов в конце каждого ряда образуются стабильные ядра с близким или равным магическим числам количеством протонов и нейтронов (Z = 82, N = 126). Такими конечными ядрами являются стабильные изотопы свинца или висмута. Так распад T 1/2 завершается образованием дважды магического ядра 208 Pb, причем на пути 232 Th → 208 Pb происходит шесть α-распадов, перемежающихся четырьмя β − -распадами (в цепочке 238 U → 206 Pb восемь α- и шесть β − -распадов; в цепочке 235 U → 207 Pb семь α- и четыре β − -распада). Таким образом, энергетический спектр антинейтрино от каждого радиоактивного ряда представляет собой наложение парциальных спектров от отдельных β − -распадов, входящих в состав этого ряда. Спектры антинейтрино, образующихся в распадах 232 Th, 235 U, 238 U, 40 K, показаны на рис. 1. Распад 40 K это однократный β − -распад (см. таблицу). Наибольшей энергии (до 3.26 МэВ) антинейтрино достигают в распаде
214 Bi → 214 Po, являющемся звеном радиоактивного ряда 238 U. Полная энергия, выделяющаяся при прохождении всех звеньев распада ряда 232 Th → 208 Pb, равна 42.65 МэВ. Для радиоактивных рядов 235 U и 238 U эти энергии соответственно 46.39 и 51.69 МэВ. Энергия, освобождающаяся в распаде
40 K → 40 Ca, составляет 1.31 МэВ.

Характеристики ядер 232 Th, 235 U, 238 U, 40 K

Ядро Доля в %
в смеси
изотопов
Число ядер
относит.
ядер Si
T 1/2 ,
млрд лет
Первые звенья
распада
232 Th 100 0.0335 14.0
235 U 0.7204 6.48·10 -5 0.704
238 U 99.2742 0.00893 4.47
40 K 0.0117 0.440 1.25

Оценка потока гео-нейтрино, сделанная на основе распада ядер 232 Th, 235 U, 238 U, 40 K, содержащихся в составе вещества Земли, приводит к величине порядка 10 6 см -2 сек -1 . Зарегистрировав эти гео-нейтрино, можно получить информацию о роли радиоактивного тепла в полном тепловом балансе Земли и проверить наши представления о содержании долгоживущих радиоизотопов в составе земного вещества.


Рис. 1. Энергетические спектры антинейтрино от распада ядер

232 Th, 235 U, 238 U, 40 K, нормализованные к одному распаду родительского ядра

Для регистрации электронных антинейтрино используется реакция

P → e + + n, (1)

в которой собственно и была открыта эта частица. Порог этой реакции 1.8 МэВ. Поэтому только гео-нейтрино, образующиеся в цепочках распада, стартующих с ядер 232 Th и 238 U, могут быть зарегистрированы в вышеуказанной реакции. Эффективное сечение обсуждаемой реакции крайне мало: σ ≈ 10 -43 см 2 . Отсюда следует, что нейтринный детектор с чувствительным объёмом 1 м 3 будет регистрировать не более нескольких событий в год. Очевидно, что для уверенной фиксации потоков гео-нейтрино необходимы нейтринные детекторы большого объёма, размещённые в подземных лабораториях для максимальной защиты от фона. Идея использовать для регистрации гео-нейтрино детекторы, предназначенные для изучения солнечных и реакторных нейтрино, возникла в 1998 г. . В настоящее время имеется два нейтринных детектора большого объёма, использующих жидкий сцинтиллятор и пригодные для решения поставленной задачи. Это нейтринные детекторы экспериментов KamLAND (Япония, ) и Borexino (Италия, ). Ниже рассматривается устройство детектора Borexino и полученные на этом детекторе результаты по регистрации гео-нейтрино.

Детектор Borexino и регистрация гео-нейтрино

Нейтринный детектор Борексино расположен в центральной Италии в подземной лаборатории под горным массивом Гран Сассо, высота горных пиков которого достигает 2.9 км (рис. 2).


Рис. 2. Схема расположения нейтринной лаборатории под горным массивом Гран Сассо (центральная Италия)

Борексино это несегментированный массивный детектор, активной средой которого являются
280 тонн органического жидкого сцинтиллятора. Им заполнен нейлоновый сферический сосуд диаметром 8.5 м (рис. 3). Сцинтиллятором является псевдокумол (С 9 Н 12) со сдвигающей спектр добавкой РРО (1.5 г/л). Свет от сцинтиллятора собирается 2212 восьмидюймовыми фотоумножителями (ФЭУ), размещёнными на сфере из нержавеющей стали (СНС).


Рис. 3. Схема устройства детектора Борексино

Нейлоновый сосуд с псевдокумолом является внутренним детектором, в задачу которого и входит регистрация нейтрино (антинейтрино). Внутренний детектор окружён двумя концентрическими буферными зонами, защищающими его от внешних гамма-квантов и нейтронов. Внутренняя зона заполнена несцинтиллирующей средой, состоящей из 900 тонн псевдокумола с добавками диметилфталата, гасящими сцинтилляции. Внешняя зона располагается поверх СНС и является водным черенковским детектором, содержащим 2000 тонн сверхчистой воды и отсекающим сигналы от мюонов, попадающих в установку извне. Для каждого взаимодействия, происходящего во внутреннем детекторе, определяется энергия и время. Калибровка детектора с использованием различных радиоактивных источников позволила весьма точно определить его энергетическую шкалу и степень воспроизводимости светового сигнала.
Борексино является детектором очень высокой радиационной чистоты. Все материалы прошли строгий отбор, а сцинтиллятор был подвергнут очистке для максимального уменьшения внутреннего фона. Вследствие высокой радиационной чистоты Борексино является прекрасным детектором для регистрации антинейтрино.
В реакции (1) позитрон даёт мгновенный сигнал, за которым через некоторое время следует захват нейтрона ядром водорода, что приводит к появлению γ-кванта с энергией 2.22 МэВ, создающего сигнал, задержанный относительно первого. В Борексино время захвата нейтрона около 260 мкс. Мгновенный и задержанный сигналы коррелируют в пространстве и во времени, обеспечивая точное распознавание события, вызванного e .
Порог реакции (1) равен 1.806 МэВ и, как видно из рис. 1, все гео-нейтрино от распадов 40 K и 235 U оказываются ниже этого порога и лишь часть гео-нейтрино, возникших в распадах 232 Th и 238 U, может быть зарегистрирована.
Детектор Борексино впервые зарегистрировал сигналы от гео-нейтрино в 2010 г. и недавно опубликованы новые результаты, основанные на наблюдениях в течение 2056 дней в период с декабря 2007 г. по март 2015 г. Ниже мы приведём полученные данные и результаты их обсуждения, основываясь на статье .
В результате анализа экспериментальных данных были идентифицированы 77 кандидатов в электронные антинейтрино, прошедшие все критерии отбора. Фон от событий, имитирующих e , оценивался величиной . Таким образом, отношение сигнал/фон было ≈100.
Главным источником фона были реакторные антинейтрино. Для Борексино ситуация была достаточно благоприятной, так как вблизи лаборатории Гран Сассо нет ядерных реакторов. Кроме того, реакторные антинейтрино более энергичные по сравнению с гео-нейтрино, что позволяло отделить эти антинейтрино по величине сигнала от позитрона. Результаты анализа вкладов гео-нейтрино и реакторных антинейтрино в полное число зарегистрированных событий от e показаны на рис. 4. Количество зарегистрированных гео-нейтрино, даваемое этим анализом (на рис. 4 им соответствует затемнённая область), равно . В извлечённом в результате анализа спектре гео-нейтрино видны две группы – менее энергичная, более интенсивная и более энергичная, менее интенсивная. Эти группы авторы описываемого исследования связывают с распадами соответственно тория и урана.
В обсуждаемом анализе использовалось отношение масс тория и урана в веществе Земли
m(Th)/m(U) = 3.9 (в таблице эта величина ≈3.8). Указанная цифра отражает относительное содержание этих химических элементов в хондритах – наиболее распространённой группе метеоритов (более 90% метеоритов, упавших на Землю, относятся к этой группе). Считается, что состав хондритов за исключением лёгких газов (водород и гелий) повторяет состав Солнечной системы и протопланетного диска, из которого образовалась Земля.


Рис. 4. Спектр светового выхода от позитронов в единицах числа фотоэлектронов для событий-кандидатов в антинейтрино (экспериментальные точки). Затемнённая область – вклад гео-нейтрино. Сплошная линия – вклад реакторных антинейтрино.