Биографии Характеристики Анализ

Характеристика нервных клеток. Свойства, типы и строение нейронов

Структурной и функциональной единицей нервной системы является нейрон (нервная клетка). Межклеточная ткань - нейроглия - представляет собой клеточные структуры (глиальные клетки), осуществляющие опорную, защитную, изолирующую и питательную функции для нейронов. Глиальные клетки составляют около 50% от объема ЦНС. Они делятся всю жизнь и их количество с возрастом увеличивается.

Нейроны способны возбуждаться - воспринимать раздражение, отвечая возникновением нервного импульса и проводить импульс. Основные свойства нейронов: 1) Возбудимость – свойство генерировать потенциал действия на раздражение. 2) Проводимость – это способность ткани и клетки проводить возбуждение.

В нейроне различают тело клетки (диаметр 10-100мкм), длинный отросток, отходящий от тела, - аксон (диаметр 1-6 мкм, длина более 1м) и сильно разветвленные концы - дендриты. В соме нейрона идет синтез белка и тело по отношению к отросткам играет трофическую функцию. Роль отростков заключается в проведении возбуждения. Дендриты проводят возбуждение в тело, а аксоны от тела нейрона. Структуры, в которых обычно возникает ПД (генераторный холмик) – аксонный холмик.

Дендриты восприимчивы к раздражению за счет имеющихся нервных окончаний (рецепторов ), которые располагаются на поверхности тела, в органах чувств, во внутренних органах. Например , в коже имеется огромное количество нервных окончаний, воспринимающих давление, боль, холод, тепло; в полости носа расположены нервные окончания, воспринимающие запахи; во рту, на языке находятся нервные окончания, воспринимающие вкус пищи; а в глазах и внутреннем ухе - свет и звук.

Передача нервного импульса от одного нейрона к другому осуществляется с помощью контактов, называемых синапсами. Один нейрон может иметь около 10000 синаптических контактов.

Классификация нейронов.

1. По размерам и форме нейроны делятся на мультиполярные (имеют много дендритов), униполярные (имеют один отросток), биполярные (имеют два отростка).

2. По направлению проведения возбуждения нейроны делятся на центростремительные, передающие импульсы от рецептора в ЦНС, называются афферентными (сенсорными), а центробежные нейроны, передающие информацию от центральной НС к эффекторам (рабочим органам) - эфферентными (моторными ). Оба этих нейрона нередко соединяются между собой посредством вставочного (контактного ) нейрона.

3. По медиатору, выделяющемуся в окончаниях аксонов, различают нейроны адренергические, холинергические, серотонинергические и т.д.

4. В зависимости от отдела ЦНС выделяют нейроны соматической и вегетативной нервной системы.

5. По влиянию выделяют возбуждающие и тормозящие нейроны.

6. По активности выделяют фоново-активные и «молчащие» нейроны, возбуждающиеся только в ответ на раздражение. Фоново-активные нейроны генерируют импульсы ритмично, неритмично, пачками. Они играют большую роль в поддержании тонуса ЦНС и особенно коры большого мозга.

7. По восприятию сенсорной информации делят на моно- (нейроны центра слуха в коре), бимодальные (во вторичных зонах анализаторов в коре – зрительная зона реагирует на световые и звуковые раздражители), полимодальные (нейроны ассоциативных зон мозга)

Функции нейронов.

1. Неспецифические функции. А) Синтез тканевых и клеточных структур. Б) Выработка энергии для обеспечения жизнедеятельности. Обмен веществ. В) Транспортировка веществ из клетки и в клетку.

2. Специфические функции. А) Восприятие изменений внешней и внутренней среды организма с помощью сенсорных рецепторов, дендритов, тела нейрона. Б) Передача сигнала другим нервным клеткам и клеткам-эффекторам: скелетной мускулатуры, гладким мышцам внутренних органов, сосудам и т.д. с помощью синапсов. В) Переработка поступающей к нейрону информации посредством взаимодействия возбуждающих и тормозящих влияний пришедших к нейрону нервных импульсов. Г) Хранение информации с помощью механизмов памяти. Д) Обеспечение связи (нервными импульсами) между всеми клетками организма и регуляция их функций.

Нейрон в процессе онтогенеза изменяется - растет степень ветвления, меняется химический состав самой клетки. Количество нейронов с возрастом уменьшается.

Нервная ткань – совокупность связанных между собой нервных клеток (нейронов, нейроцитов) и вспомогательных элементов (нейроглии), которая регулирует деятельность всех органов и систем живых организмов. Это основной элемент нервной системы, которая делится на центральную (включает головной и спинной мозг) и периферическую (состоящую из нервных узлов, стволов, окончаний).

Основные функции нервной ткани

  1. Восприятие раздражения;
  2. формирование нервного импульса;
  3. быстрая доставка возбуждения к центральной нервной системе;
  4. хранение информации;
  5. выработка медиаторов (биологически активных веществ);
  6. адаптация организма к переменам внешней среды.

Свойства нервной ткани

  • Регенерация — происходит очень медленно и возможна только при наличии неповрежденного перикариона. Восстановление утраченных отростков идет путем прорастания.
  • Торможение — предотвращает возникновение возбуждения или ослабляет его
  • Раздражимость — ответ на влияние внешней среды благодаря наличию рецепторов.
  • Возбудимость — генерирование импульса при достижении порогового значения раздражения. Существует нижний порог возбудимости, при котором самое маленькое влияние на клетку вызывает возбуждение. Верхний порог – это величина внешнего воздействия, которая вызывает боль.

Строение и морфологическая характеристика нервных тканей

Основная структурная единица – это нейрон . Он имеет тело – перикарион (в котором находятся ядро, органеллы и цитоплазма) и несколько отростков. Именно отростки являются отличительной чертой клеток этой ткани и служат для переноса возбуждения. Длина их колеблется от микрометров до 1,5м. Тела нейронов также различных размеров: от 5 мкм в мозжечке, до 120 мкм в коре головного мозга.

До недавнего времени считалось, что нейроциты не способны к делению. Сейчас известно, что образование новых нейронов возможно, правда только в двух местах – это субвентрикулякная зона мозга и гиппокамп. Продолжительность жизни нейронов ровна длительности жизни отдельного индивидуума. Каждый человек при рождении имеет около триллиона нейроцитов и в процессе жизнедеятельности теряет каждый год 10млн клеток.

Отростки делятся на два типа – это дендриты и аксоны.

Строение аксона. Начинается он от тела нейрона аксонным холмиком, на всем протяжении не разветвляется и только в конце разделяется на ветки. Аксон – это длинный отросток нейроцита, который выполняет передачу возбуждения от перикариона.

Строение дендрита . У основания тела клетки он имеет конусообразное расширение, а дальше разделяется на множество веточек (этим обусловлено его название, «дендрон» с древнегреческого – дерево). Дендрит – это короткий отросток и необходим для трансляции импульса к соме.

По количеству отростков нейроциты делятся на:

  • униполярные (есть только один отросток, аксон);
  • биполярные (присутствует и аксон, и дендрит);
  • псевдоуниполярные (от некоторых клеток в начале отходит один отросток, но затем он делится на два и по сути является биполярным);
  • мультиполярные (имеют множество дендритов, и среди них будет лишь один аксон).

Мультиполярные нейроны превалируют в организме человека, биполярные встречаются только в сетчатке глаза, в спинномозговых узлах – псевдоуниполярные. Монополярные нейроны вовсе не встречаются в организме человека, они характерны только для малодифференцированной нервной ткани.

Нейроглия

Нейроглия – это совокупность клеток, которая окружает нейроны (макроглиоциты и микроглиоциты). Около 40% ЦНС приходится на клетки глии, они создают условия для выработки возбуждения и его дальнейшей передачи, выполняют опорную, трофическую, защитную функции.


Макроглия:

Эпендимоциты – образуются из глиобластов нервной трубки, выстилают канал спинного мозга.

Астроциты – звездчатые, небольших размеров с многочисленными отростками, которые образуют гематоэнцефалический барьер и входят в состав серого вещества ГМ.

Олигодендроциты – основные представители нейроглии, окружают перикарион вместе с его отростками, выполняя такие функции: трофическую, изолирования, регенерации.

Нейролемоциты – клетки Шванна, их задача образование миелина, электрическая изоляция.

Микроглия – состоит из клеток с 2-3 ответвлениями, которые способны к фагоцитозу. Обеспечивает защиту от чужеродных тел, повреждений, а также удаление продуктов апоптоза нервных клеток.

Нервные волокна — это отростки (аксоны или дендриты) покрытые оболочкой. Они делятся на миелиновые и безмиелиновые. Миелиновые в диаметре от 1 до 20 мкм. Важно, что миелин отсутствует в месте перехода оболочки от перикариона к отростку и в области аксональных разветвлений. Немиелинизированные волокна встречаются в вегетативной нервной системе, их диаметр 1-4 мкм, перемещение импульса осуществляется со скоростью 1-2 м/с, что намного медленнее, чем по миелинизированых, у них скорость передачи 5-120 м/с.

Нейроны подразделяются за функциональными возможностями:

  • Афферентные – то есть чувствительные, принимают раздражение и способны генерировать импульс;
  • ассоциативные — выполняют функцию трансляции импульса между нейроцитами;
  • эфферентные — завершают перенос импульса, осуществляя моторную, двигательную, секреторную функцию.

Вместе они формируют рефлекторную дугу , которая обеспечивает движение импульса только в одном направлении: от чувствительных волокон к двигательным. Один отдельный нейрон способен к разнонаправленной передачи возбуждения и только в составе рефлекторной дуги происходит однонаправленное течение импульса. Это происходит из-за наличия в рефлекторной дуге синапса – межнейронного контакта.

Синапс состоит из двух частей: пресинаптической и постсинаптической, между ними находится щель. Пресинаптическая часть – это окончание аксона, который принес импульс от клетки, в нем находятся медиаторы, именно они способствуют дальнейшей передачи возбуждения на постсинаптическую мембрану. Самые распространённые нейротрансмитеры: дофамин, норадреналин, гамма аминомасляная кислота, глицин, к ним на поверхности постсинаптической мембраны находятся специфические рецепторы.

Химический состав нервной ткани

Вода содержится в значительном количестве в коре головного мозга, меньше ее в белом веществе и нервных волокнах.

Белковые вещества представлены глобулинами, альбуминами, нейроглобулинами. В белом веществе мозга и аксонных отростках встречается нейрокератин. Множество белков в нервной системе принадлежит медиаторам: амилаза, мальтаза, фосфатаза и др.

В химический состав нервной ткани входят также углеводы – это глюкоза, пентоза, гликоген.

Среди жиров обнаружены фосфолипиды, холестерол, цереброзиды (известно, что цереброзидов нет у новорожденных, их количество постепенно вырастает во время развития).

Микроэлементы во всех структурах нервной ткани распределены равномерно: Mg, K, Cu, Fe, Na. Их значение очень велико для нормального функционирования живого организма. Так магний участвует в регуляции работы нервной ткани, фосфор важен для продуктивной умственной деятельности, калий обеспечивает передачу нервных импульсов.


Чрезвычайно разнообразные по строению и функции нервные клетки составляют основу центральной (головной и спинной мозг) и периферической нервной систем. Совместно с нейронами при описании нервной ткани рассматриваются второй ее важный компонент – глиальные клетки. Они подразделяются на клетки макроглии – астроциты, олигодендроциты, эпендимоциты и клетки микроглии.

Основные функции нервной системы, осуществляемые нейронами – возбуждение, его проведение и передача импульсов на эффекторные органы Нейроглиальные клетки способствуют выполнению нейронами этих функций. Деятельность нервной системы основана на принципе функционирования рефлекторной дуги, состоящей из нейронов, связанных друг с другом посредством специализированных контактов – синапсов различного вида.

Нейроны позвоночных и большинства беспозвоночных животных, как правило, клетки с многими длинными, сложно ветвящимися отростками, часть которых воспринимает возбуждение. Они называются дендритами, а один из отростков, отличающийся большой длиной и разветвлениями в терминальных отделах, именуется аксоном.

Основные функциональные свойства нейронов связаны с особенностью строения их плазматической мембраны, содержащей огромное число потенциал- и лигандзависимых рецепторных комплексов и ионных каналов, а также со способностью выделять в определенных участках (синапсах) нейромедиаторы и нейромодуляторы. Познание структурной организации нервной ткани во многом было обусловлено применением специальных методов окраски нейронов и глиальных клеток. Среди них особого внимания заслуживают методы импрегнации тканей солями серебра по Гольджи и Бильшовскому-Гроссу.

Основы классических представлений о клеточном устройстве нервной системы были заложены в трудах выдающегося испанского нейрогистолога, лауреата Нобелевской премии, Сантьяго Рамон-и-Кахала. Большой вклад в учение о нервной ткани внесли исследования гистологов Казанской и Петербургской-Ленинградской школ нейрогистологии – К. А. Арнштейна, А. С. Догеля, А. Е. Смирнова, Д. А. Тимофеева, А. Н. Миславского, Б. И. Лаврентьева, Н. Г. Колосова, А.А. Заварзина, П.Д.Дейнеки, Н.В. Немилова, Ю.И. Орлова, В.П. Бабминдры и др.

Структурная и функциональная полярность большинства нервных клеток обусловила традиционное выделение трех отделов нейрона: тела, дендритов и аксона . Уникальность строения нейронов проявляется в чрезвычайной разветвленности их отростков, нередко достигающих очень большой длины, и наличием в клетках разнообразных специфических белковых и небелковых молекул (нейромедиаторы, нейромодуляторы, нейропептиды и др.), обладающих высокой биологической активностью.

В основе классификации нервных клеток по их строению лежат:

1) форма тела – выделяют округло-овальные, пирамидные, корзинчатые, веретеновидные, грушевидные, звездчатые и некоторые другие виды клеток;

2) число отростков – униполярные, биполярные (как вариант – псевдоуниполярные), и мультиполярные;

3) характер ветвления дендритов и наличие шипиков (густо- и редковетвистые; шипиковые и бесшипиковые клетки);

4) характер ветвления аксона (ветвление только в терминальной части или наличие коллатералей по всей длине, короткоаксонные или длинноаксонные).

Нейроны также подразделяют по содержанию нейромедиаторов на: холинергические, адренергические, серотонинергические, ГАМК (гаммкергические), аминокислотные (глицинергические, глутаматэргические и др.). Наличие в одном нейроне нескольких нейромедиаторов, даже таких антагонистических по своим эффектам, как ацетилхолин и норадреналин, заставляет относиться к однозначному определению нейромедиаторного и нейропептидного фенотипа нейронов весьма осторожно.

Также существует классическое разделение нейронов (в зависимости от их положения в рефлекторной дуге) на: афферентные (чувствительные), вставочные (ассоциативные) и эфферентные (в том числе и двигательные). Чувствительные нейроны имеют наиболее вариабельную структурную организацию окончаний дендритов, принципиально отличающую их от дендритов остальных нервных клеток. Они часто представлены биполярными (чувствительные ганглии ряда органов чувств), псевдоуниполярными (спинномозговые ганглии) или высокоспециализированными нейросенсорными клетками (фоторецепторы сетчатки или обонятельные клетки). Найдены нейроны центральной нервной системы, не генерирующие потенциал действия (бесспайковые нейроны), и спонтанно-возбудимые осцилляторные клетки. Анализ особенностей их структурной организации и взаимосвязи с «традиционными» нейронами является перспективным направлением в познании деятельности нервной системы.

Тело (сома). Тела нервных клеток могут значительно различаться по форме и размерам. Моторные нейроны передних рогов спинного мозга и гигантские пирамиды коры больших полушарий – одни из самых крупных клеток в организме позвоночных – размер тела пирамид достигает 130 мкм, и наоборот, клетки-зерна мозжечка, имеющие диаметр в среднем 5–7 мкм, самые маленькие нервные клетки позвоночных. Разнообразны по форме и размерам и клетки вегетативной нервной системы.

Ядро. Нейроны имеют, как правило, одно ядро. Оно обычно крупное, округлое, содержит одно-два ядрышка, хроматин отличается низкой степенью конденсации, что свидетельствует о высокой активности ядра. Возможно, что некоторые нейроны являются полиплоидными клетками. Ядерная оболочка представлена двумя мембранами, разделенными перинуклеарным пространством и имеющие многочисленные поры. Количество пор достигает у нейронов позвоночных 4000 на ядро. Важной состовляющей ядра является т.н. «ядерный матрикс» - комплекс ядерных белков, обеспечивающих структурную организацию всех компонентов ядра и участствующих в регуляции процессов репликации, транскрипции и процессинге РНК и их выведении из ядра.

Цитоплазма (перикарион). Многие, особенно крупные пирамидные нейроны, отличаются богатым содержанием гранулярной эндоплазматической сети (ГЭС). Это находит яркое проявление при их окраске анилиновыми красителями в виде базофилии цитоплазмы и включенном в нее базофильным, или тигроидным, веществом (вещество Ниссля). Распределение базофильного вещества Ниссля в цитоплазме перикариона признается одним из критериев дифференцировки нейрона, а также показателем функционального состояния клетки. В нейронах находится также большое число свободных рибосом, обычно собранных в розетки – полисомы. В целом, нервные клетки содержат все основные органеллы, характерные для эукариотической животной клетки, хотя есть ряд особенностей.

Первая касается митохондрий. Интенсивная работа нейрона связана с большими энергетическими затратами, поэтому в них много митохондрий самого разного вида. В теле и отростках нейронов располагаются немногочисленные (3-4 шт) гигантские митохондрии «ретикулярного» и «нитчатого» типов. Расположение крист в них продольное, что также достаточно редко встречается среди митохондрий. Кроме того, в теле и отростках нейрона есть множество мелких митохондрий «традиционного» типа с поперечными кристами. Особенно много митохондрий скапливается в районах синапсов, узлов ветвления дендритов, в начальном участке аксона (аксоном холмике). Из-за интенсивности функционирования митохондрий в нейроне они имеют, как правило, короткий жизненный цикл (некоторые митохондрии живут около часа). Обновляются митохондрии путем традиционного деления или почкования митохондрий и поставляются в отростки клетки посредством аксонального или дендритного транспорта.

Еще одной из характерных черт строения цитоплазмы нейронов позвоночных и беспозвоночных животных является присутствие внутриклеточного пигмента – липофусцина. Липофусцин относится к группе внутриклеточных пигментов, главным составляющим которых являются каротиноид желтого или коричневого цвета. Он находится в мелких мембранозных гранулах, рассеянных по цитоплазме нейрона. Значение липофусцина активно обсуждается. Считается, что это пигмент «старения» нейрона и связан он с процессами неполного расщепления веществ в лисосомах.

В процессе жизненного цикла нервных клеток количество липофусциновых гранул достоверно увеличивается и по их распределению в цитоплазме можно косвенно судить о возрасте нейрона.

Выделяют четыре морфологические стадии «старения» нейрона. У молодых нейронов (1- я стадия - диффузная) - липофусцина мало и он рассеян по цитоплазме нейрона. У зрелых нервных клеток (2-я стадия, околоядерная) - количество пигмента увеличивается и он начинает скапливаться в зоне ядра. У стареющих нейронов (3-я стадия - полярная), липофусцина все больше и больше и скопления его гранул концентрируются около одного из полюсов нейрона. И наконец, у старых нейронов (4-я стадия, биполярная), липофусцин заполняет большой объем цитоплазмы и его скопления находятся на противоположных полюсах нейрона. В ряде случаев липофусцина в клетке становится так много, что его гранулы деформируют ядро. Накопление липофусцина в процессе старения нейронов и организма связывают также со свойством липофусцина, как каротиноида, связывать кислород. Полагают, что таким образом нервная система адаптируется к происходящему с возрастом ухудшению кислородного питания клеток.

Особой разновидностью эндоплазматической сети, характерной для перикариона нейронов, являются субповерхностные цистерны – одна-две уплощенные мембранные везикулы, расположенные около плазматической мембраны и нередко связанные с ней электронно-плотным неоформленным материалом. В перикарионе и в отростках (аксоне и дендритах) нередко обнаруживаются мультивезикулярные и мультиламеллярные мембранозные тельца, представленные скоплениями пузырьков или фибриллярного материала со средним диаметром 0,5 мкм. Они являются производными конечных стадий функционирования лизосом в процессах физиологической регенерации компонентов нейрона и участвуют в обратном (ретроградном) транспорте.



Нервная ткань. Периферический нерв.

Эволюционно наиболее молодая ткань организма человека

Участвует в построении органов нервной системы

Вместе с эндокринной системой обеспечивает нейрогуморальную регуляцию деятельности тканей и органов, коррелирует и интегрирует их функции в пределах организма. А также адаптирует их к изменяющимся условиям среды.

Нерв ткань воспринимает раздражения, приходит в состояние возбуждения , формирует и проводит нервные импульсы.

Находится в провизорном состоянии. Не достигла дефинитивного (не сформировалась окончательно) развития и как таковая не существует , так как процесс ее образования шел одновременно с формированием органов нервной системы.

Провизор

ность нервной ткани подтверждается апоптозами, т.е запрограммирована гибелью большого количества клеток. Ежегодно мы теряем до 10 млн клеток нервной ткани.

1) Нервные клетки (нейроциты/нейроны)

2) Вспомогательные клетки (нейроглия)

Процесс развития нервной ткани в эмбриональном периоде связан с преобразованием нервной закладки. Она выделяется в составе дорсальной эктодермы и обособляется из нее в виде нервной пластинки .

Нервная пластинка прогибается по средней линии, образуя нервный желобок. Его края смыкаются , образуя нервную трубку.

Часть клеток нервной пластинки не входят в состав нерв трубки и располагаются по бокам от нее,образуя нервный гребень.

Вначале нерв трубка состоит из одного слоя цилиндрических клеток, затем становится многослойной.

Выделяют три слоя:

1) Внутренний / эпендимный - клетки имеют длинный отросток , клетки пронизывают толщу нервной трубки, на периферии образуют разграничительную мембрану

2) Мантийный слой - тоже клеточный, два вида клеток

- нейробласты (из них формируются нервные клетки)

- спонгеобласты (из них - клетки астроцитной нейроглии и алигодендроглии)

На основе этой зоны формируется серое веществоспинного и головного мозга.

Отростки клеток мантийной зоны уходят в краевую вуаль.

3) Наружный (краевая вуаль)

Не имеет клеточного строения. На ее основе формируется белое вещество спинного и головного мозга.

Клетки ганглеозной пластинки частвуют в образовпнии нервных клеток вегетативных и спинальных ганглиев мозгового вещества надпочечников и пигментных клеток.

Характеристика нервных клеток

Нервные клетки являются структурно-функциональной единицей нервной ткани. Они обеспечивают ее способность воспринимать раздражение, возбуждаться, формировать и проводить нервные импульсы. Исходя из выполняемой функции, нервные клетки имеют специфическое строение.


В нейроне различают:

1) Тело клетки (перикареон)

2) Два вида отростков: аксон и дендрит

1) В состав перикореона входит клеточная оболочка, ядро и цитоплазма с органеллами и элементами цитоскелета.

Клеточная оболочка обеспечивает клетке защитные ф ункции. Хорошо проницаема для различных ионов, обладает высокой возбудимостью , быстро проводит волну деполяризации (нервные импульсы)

Ядро клетки - крупное, лежит эксцентрично (в центре), светлое, с обилием пылевидного хроматина. В ядре круглое ядрышко, что придает сходства ядру с совиным глазом. Ядро практически всегда одно.

В нервных клетках ганглией предстательной железы мужчин и стенки матки женщин обнаруживается до 15 ядер.

В цитоплазме присутствуют все общеклеточные органеллы, особенно хорошо развиты белоксинтезирующие органеллы.

В цитоплазме имеются локальные скопления гранулярной ЭПС с высоким содержанием рибосом и РНК. Эти участки окрашиваются в толлуидиновый синий цвет (по Нисселю) и имеют вид гранул (тигроид). Наличие тигроидов в клетке - показатель высокой степени его зрелости или дифференцировки и показатель высокой ф ункциональной активности.

Комплекс гольджи чаще располагается в том месте цитоплазмы, где от клетки отходит аксон. В его цитоплазме нет тигроида. Участок с к. Гольджи - аксонный холмик . Наличие к. Гольджи - актвный транспорт белков из тела клетки в аксон .

Митохондрии образуют крупные скопения в местах контакта соседних нервных кл еток.

Метаболизм нервных клеток носит аэробный характер, поэтому особенно чувствительны к гипоксии.

Лизосомы обеспечивают процесс внутриклеточной регенерации , лизируют состарившиеся клеточные органеллы .

Клеточный центр лежит между ядром и дендритами . Нервные клетки не делятся . Основной механизм регенерации - внутриклеточная регенерация .

Цитоскелет представлен нейротрубочкам и и нейрофибриллами , образуют густую сеть перикореони и поддерживают форму клетки. В аксоне лежат продольно, направляют транспортные потоки между телом и отростками нервной клетки.

А. Нейрон - это структурно-функциональная единица нервной ткани . Выделяют тело нейрона и его отростки. Оболочка нейрона (клеточная мембрана) образует замкнутое пространство, содержащее протоплазму (цитоплазма и ядро). Цитоплазма состо­ит из основного вещества (цитозоль, гиалоплазма) и органелл. Гиалоплазма под электронным микроскопом выглядит относи­тельно гомогенным веществом и является внутренней средой ней­рона. Большинство органелл и ядро нейрона, как и любой другой клетки, заключены в свои отсеки (компартией™), образуемые собственными (внутриклеточными) мембранами, обладающими избирательной проницаемостью к отдельным ионам и частицам, находящимся в гиалоплазме и органеллах. Это определяет отли­чительный состав их друг от друга.

Мозг человека содержит около 25 млрд. нервных клеток, взаимо­действие между которыми осуществляется посредством множества синапсов (межклеточные, соединения), число которых в тысячи раз больше самих клеток (10 |5 -10 16), так как их аксоны многократно делятся дихотомически. Нейроны оказывают свое влияние на органы и ткани также посредством синапсов. Нервные клетки имеются и вне ЦНС: периферический отдел вегетативной нервной системы, афферентные нейроны спинномозговых ганглиев и ганглиев череп­ных нервов. Периферических нервных клеток намного меньше, чем - центральных, - всего около 25 млн. Важную роль в деятельности I Нервной системы играют глиальные клетки (см. раздел 2.1, Д).

Отростки нейрона представляют собой большое число денд-)ритов и один аксон (рис. 2.1). Нервные клетки имеют электри-гческий заряд, как и другие клетки животного организма и даже растений (рис. 2.2). Потенциал покоя (ПП) нейрона составляет 60-80 мВ, ПД - нервный импульс - 80-110 мВ. Сома и дендриты покрыты нервными окончаниями - синаптическими бутонами иотростками глиальных клеток. На одном нейроне число синаптических бутонов может достигать 10 000. Аксон начинается от тела клетки аксонным холмиком. Диаметр тела клетки составляет 10-100 мкм, аксона - 1-6км, на периферии длина аксона может достигать 1 м и более. Нейроны мозга образуют колонки, ядра и слои, выполняющие определенные функции. Клеточные скопле­ния составляют серое вещество мозга. Между клетками проходят немиелинизированные и миелинизированные нервные волокна (соответственно дендриты и аксоны нейронов).



Б. Классификация нейронов. Нейроны делят на следующие группы.

1. По медиатору, выделяющемуся в окончаниях аксонов, раз­личают нейроны адренергические, холинергические, серотони-нергическиеит.д.

2. В зависимости от отдела ЦНС выделяют нейроны соматиче­ской и вегетативной нервной системы.

3. По направлению информации различают следующие нейро­ны:

Афферентные, воспринимающие с помощью рецепторов ин­формацию о внешней и внутренней среде организма и пере­дающие ее в вышележащие отделы ЦНС;

Эфферентные, передающие информацию к рабочим органам - эффекторам (нервные клетки, иннервирующие эффекторы, иногда называют эффекторными);

Вставочные (интернейроны), обеспечивающие взаимодейст­вие между нейронами ЦНС.

4. По влиянию выделяют возбуждающие и тормозящие нейроны.

5. По активности различают фоново-активные и «молчащие» нейроны, возбуждающиеся только в ответ на раздражение. Фоново-активные нейроны отличаются общим рисунком генерации им­пульсов, так как одни нейроны разряжаются непрерывно (ритмич­но или аритмично), другие - пачками импульсов. Интервал между импульсами в пачке составляет миллисекунды, между пачками - секунды. Фоново-активные нейроны играют важную роль в под­держании тонуса ЦНС и особенно коры большого мозга.

6. По воспринимаемой сенсорной информации нейроны делят на моно-, би- и полимодальные. Мономодальными являются нейроны центра слуха в коре большого мозга. Бимодальные нейроны встре­чаются во вторичных зонах анализаторов в коре (нейроны вторич­ной зоны зрительного анализатора в коре большого мозга реаги­руют на световые и звуковые раздражители). Полимодальные Ней­роны - это нейроны ассоциативных зон мозга, моторной коры; они реагируют на раздражения рецепторов кожного, зрительного, слухового и других анализаторов.

Рис. 2.1. Мотонейрон спинного мозга. Указаны функции отдельных структурных элементов нейрона [Эккерт Р., Рэнлелл Д., Огастин Дж., 1991] В. Функциональные структуры нейрона. 1.Структуры, обеспе­чивающие синтез макромолекул, которые транспортируются по аксону и дендритам, - это сома (тело нейрона), выполняющая трофическую функцию по отношению к отросткам (аксону и ден­дритам) и клеткам-эффекторам. Отросток, лишенный связи с те­лом нейрона, дегенерирует. 2. Структуры, воспринимающие импульсы от других нервных клеток, - это тело и дендриты нейрона с расположенными на них шипиками, занимающие до 40% от поверхности сомы нейрона и дендритов. Если шипики не получают импульсацию, то они исче­зают. Импульсы могут поступать и к окончанию аксона - аксо-аксонные синапсы. Это происходит, например, в случае пресинаптического торможения. 3. Структуры, в которых обычно возникает ПД (генераторный пункт ПД), - аксонный холмик. 4. Структуры, проводящие возбуждение к другому нейрону или к эффектору, - аксон. 5. Структуры, передающие импульсы на другие клетки, - си­напсы. Г. Классификация синапсов ЦНС.Основу классификации со­ставляет несколько признаков. 1. По способу передачи сигналов различают химические синапсы (наиболее распространенные в ЦНС), в которых посредником (медиатором) передачи является химическое вещество; электрические, в которых сигналы переда­ются электрическим током, и смешанные синапсы - электрохими­ческие. 2. В зависимости от местоположения выделяют ак-

сосоматические, аксодендритные, аксо-аксонные, дендросоматические, денд-родендритные синапсы.

3. По эффекту различают возбуждающие и тормозящие синапсы. В процессе деятельности нервной системы отдельные нейроны

объединяются в ансамбли (модули), нейронные сети. Последние могут включать несколько нейронов, десятки, тысячи нейронов, при этом совокупность нейронов, образующих модуль, обеспечи­вает появление у модуля новых свойств, которыми не обладают отдельные нейроны. Деятельность каждого нейрона в составе мо­дуля становится функцией не только поступающих к нему сигна­лов, но и функцией процессов, обусловленных той или иной кон­струкцией модуля (П.Г.Костюк).

Д. Глиальные клетки (нейроглия - «нервный клей»). Эти клетки более многочисленны, чем нейроны, составляют около 50% от объ­ема ЦНС. Они способны к делению в течение всей жизни. По раз­меру глиальные клетки в 3-4 раза меньше нервных, их число ог­ромно - достигает 14 * 10"°, с возрастом увеличивается (число нейронов уменьшается). Тела нейронов, как и их аксоны, окружены глиальными клетками. Глиальные клетки выполняют несколько функций: опорную, защитную, изолирующую, обменную (снаб­жение нейронов питательными веществами). Микроглиальные клетки способны к фагоцитозу, ритмическому изменению своего объема (период «сокращения» - 1,5 мин, «расслабления» - 4 мин). Циклы изменения объема повторяются через каждые 2-20 ч. Пола­гают, что пульсация способствует продвижению аксоллазмы в нейронах и влияет на ток межклеточной жидкости. Мембранный потенциал клеток нейроглии составляет 70-90 мВ, однако ПД они не генерируют, генерируют только локальные токи, электротони-чески распространяющиеся от одной клетки к другой. Процессы возбуждения в нейронах и электрические явления в глиальных клетках, по-видимому, взаимодействуют.

Е. Цереброспинальная жидкость (ликвор) - бесцветная прозрач­ная жидкость, заполняющая мозговые желудочки, спинномозговой канал и субарахноидальное пространство. Ее происхождение связа­но с интерстициальной жидкостью мозга. Значительная часть цереброспинальной жидкости образуется в специализированных сплетениях желудочков мозга. Непосредственной питательной средой клеток мозга является интерстициальная жидкость, в ко­торую клетки выделяют также продукты своего обмена. Цереб­роспинальная жидкость представляет собой совокупность фильтрата плазмы крови и интерстициальной жидкости; она со­держит около 90% воды и примерно 10% сухого остатка (2% -органические, 8% - неорганические вещества). От плазмы крови она отличается, как и межклеточная жидкость других тканей, низ­ким содержанием белка (0,1 г/л, в плазме - 75 г/л), меньшим содер­жанием аминокислот (0,8 и 2 ммоль/л соответственно) и глюкозы (3,9 и около 5 ммоль/л соответственно). Ее объем 100-200 мл (12-14% от общего объема мозга), за сутки вырабатывается около 600 мл. Обновление этой жидкости происходит 4-8 раз в сутки, давление цереброспинальной жидкости составляет 7-14 мм рт. ст., в вертикальном положении тела - в 2 раза больше. Цереб­роспинальная жидкость выполняет также защитную роль: явля­ется своеобразной гидравлической «подушкой» мозга, обладает бактерицидными свойствами: ликвор содержит иммуноглобули­ны классов О и А, систему комплемента, моноциты и лимфоци­ты. Отток цереброспинальной жидкости происходит нескольки­ми путями: 30-40% ее оттекает через субарахноидальное про­странство в продольный синус венозной системы головного мозга; 10-20% - через периневральные пространства черепных и спинномозговых нервов в лимфатическую систему; часть жидко­сти реабсорбируется сосудистыми сплетениями мозга.

ФУНКЦИИ НЕЙРОНОВ

Жизнь животного организма сосредоточена в клетке. У каждой клетки имеются общие (основные) функции, одинаковые с функ­циями других клеток, и специфические, свойственные в основном данному виду клеток.

А. Функции нейрона, идентичные общим функциям любых кле­ток организма.

1.Синтез тканевых и клеточных структур, а также необходимых для жизнедеятельности соединений (анаболизм). При этом энергия не только расходуется, но и накапливается, по­скольку клетка усваивает органические соединения, богатые энер­гией (белки, жиры и углеводы, поступающие в организм с пищей). В клетку питательные вещества поступают, как правило, в виде продуктов гидролиза белков, жиров, углеводов (мономеров) - это моносахара, аминокислоты, жирные кислоты и моноглицериды. Процесс синтеза обеспечивает восстановление структур, подвер­гающихся распаду.

2. Выработка энергии в результате катаболизма - совокупно­сти процессов распада клеточных и тканевых структур и сложных соединений, содержащих энергию. Энергия необходима для обес­печения жизнедеятельности каждой живой клетки.

3. Трансмембранный перенос веществ, обеспечивающий поступ­ление в клетку необходимых веществ и выделение из клетки мета­болитов и веществ, используемых другими клетками организма.

Б. Специфические функции нервных клеток ЦНС и перифериче­ского отдела нервной системы.

1. Восприятие изменений внешней и внутренней среды организма. Эта функция осуществляется прежде всего с помощью перифери­ческих нервных образований - сенсорных рецепторов (см. раз­дел 1.1.6) и посредством шипикового аппарата дендритов и тела нейрона (см. раздел 2.1).

2. Передача сигнала другим нервным клеткам и клеткам-эффекторам: скелетной мускулатуры, гладким мышцам внутрен­них органов, сосудам, секреторным клеткам. Эта передача реали­зуется с помощью синапсов (см. раздел 4.3).

3. Переработка поступающей к нейрону информации посредст­вом взаимодействия возбуждающих и тормозящих влияний при­шедших к нейрону нервных импульсов (см. раздел 4.5-4.8).

4. Хранение информации с помощью механизмов памяти (см. раз­дел 6.6). Любой сигнал внешней и внутренней среды организма вначале преобразуется в процесс возбуждения, который является наиболее характерным проявлением активности любой нервной клетки.

5. Нервные импульсы обеспечивают связь между всеми клетками организма и регуляцию их функций (см. раздел 1.1).

6. С помощью химических веществ нервные клетки оказывают трофическое влияние на эффекторные клетки организма (питание; см. раздел 1.1).

Жизнедеятельность самой нервной клетки обеспечивается взаимодействием всех ее органелл и клеточной мембраны (совокупность структурных элементов, образующих оболочку клетки), как и любой другой клетки организма.