Biographies Characteristics Analysis

What is a number with 22 zeros called? Name of numbers

For the convenience of reading and remembering large numbers, the numbers are divided into so-called "classes": on right separate three digits (first class), then three more (second class), and so on. The last class can have three, two and one digit. There is usually a small space between classes. For example, the number 35461298 is written as 35461298. Here 298 is the first class, 461 is the second class, 35 is the third. Each of the digits of a class is called its rank; the number of digits also goes to the right. For example, in the first class 298, the number 8 is the first digit, 9 is the second, 2 is the third. The last class can have three or two digits (in our example: 5 is the first digit, 3 is the second) or one.

The first class gives the number of units, the second, thousands, the third, millions; in accordance with this, the number 35 461 298 reads: thirty-five million four hundred sixty-one thousand two hundred ninety-eight. Therefore they say that the unit of the second class is a thousand; the unit of the third class is the million.

Table, Names of large numbers

1 = 10 0 one
10 = 10 1 ten
100 = 10 2 hundred
1 000 = 10 3 one thousand
10 000 = 10 4
100 000 = 10 5
1 000 000 = 10 6 million
10 000 000 = 10 7
100 000 000 = 10 8
1 000 000 000 = 10 9 billion
(billion)
10 000 000 000 = 10 10
100 000 000 000 = 10 11
1 000 000 000 000 = 10 12 trillion
10 000 000 000 000 = 10 13
100 000 000 000 000 = 10 14
1 000 000 000 000 000 = 10 15 quadrillion
10 000 000 000 000 000 = 10 16
100 000 000 000 000 000 = 10 17
1 000 000 000 000 000 000 = 10 18 quintillion
10 000 000 000 000 000 000 = 10 19
100 000 000 000 000 000 000 = 10 20
1 000 000 000 000 000 000 000 = 10 21 sextillion
10 000 000 000 000 000 000 000 = 10 22
100 000 000 000 000 000 000 000 = 10 23
1 000 000 000 000 000 000 000 000 = 10 24 seplillion
10 000 000 000 000 000 000 000 000 = 10 25
100 000 000 000 000 000 000 000 000 = 10 26
1 000 000 000 000 000 000 000 000 000 = 10 27 octillion
10 000 000 000 000 000 000 000 000 000 = 10 28
100 000 000 000 000 000 000 000 000 000 = 10 29
1 000 000 000 000 000 000 000 000 000 000 = 10 30 quintillion
10 000 000 000 000 000 000 000 000 000 000 = 10 31
100 000 000 000 000 000 000 000 000 000 000 = 10 32
1 000 000 000 000 000 000 000 000 000 000 000 = 10 33 decillion

The unit of the fourth class is called a billion, or, in other words, a billion (1 billion = 1000 million).

The unit of the fifth class is called the trillion (1 trillion = 1000 billion or 1000 billion).

Units of the sixth, seventh, eighth, etc. classes (each of which is 1000 times larger than the previous one) are called quadrillion, quintillion, sextillion, septillion, etc.

Example: 12,021,306,200,000 reads: twelve trillion twenty one billion three hundred six million two hundred thousand.

“I see clumps of vague numbers lurking out there in the dark, behind the little spot of light that the mind candle gives. They whisper to each other; talking about who knows what. Perhaps they do not like us very much for capturing their little brothers with our minds. Or maybe they just lead an unambiguous numerical way of life, out there, beyond our understanding.''
Douglas Ray

We continue ours. Today we have numbers...

Sooner or later, everyone is tormented by the question, what is the largest number. A child's question can be answered in a million. What's next? Trillion. And even further? In fact, the answer to the question of what are the largest numbers is simple. It is simply worth adding one to the largest number, as it will no longer be the largest. This procedure can be continued indefinitely.

But if you ask yourself: what is the largest number that exists, and what is its own name?

Now we all know...

There are two systems for naming numbers - American and English.

The American system is built quite simply. All names of large numbers are built like this: at the beginning there is a Latin ordinal number, and at the end the suffix -million is added to it. The exception is the name "million" which is the name of the number one thousand (lat. mille) and the magnifying suffix -million (see table). So the numbers are obtained - trillion, quadrillion, quintillion, sextillion, septillion, octillion, nonillion and decillion. The American system is used in the USA, Canada, France and Russia. You can find out the number of zeros in a number written in the American system using the simple formula 3 x + 3 (where x is a Latin numeral).

The English naming system is the most common in the world. It is used, for example, in Great Britain and Spain, as well as in most of the former English and Spanish colonies. The names of numbers in this system are built like this: like this: a suffix -million is added to the Latin numeral, the next number (1000 times larger) is built according to the principle - the same Latin numeral, but the suffix is ​​-billion. That is, after a trillion in the English system comes a trillion, and only then a quadrillion, followed by a quadrillion, and so on. Thus, a quadrillion according to the English and American systems are completely different numbers! You can find out the number of zeros in a number written in the English system and ending with the suffix -million using the formula 6 x + 3 (where x is a Latin numeral) and using the formula 6 x + 6 for numbers ending in -billion.

Only the number billion (10 9 ) passed from the English system into the Russian language, which, nevertheless, would be more correct to call it the way the Americans call it - a billion, since we have adopted the American system. But who in our country does something according to the rules! ;-) By the way, sometimes the word trillion is also used in Russian (you can see for yourself by running a search in Google or Yandex) and it means, apparently, 1000 trillion, i.e. quadrillion.

In addition to numbers written using Latin prefixes in the American or English system, the so-called off-system numbers are also known, i.e. numbers that have their own names without any Latin prefixes. There are several such numbers, but I will talk about them in more detail a little later.

Let's go back to writing using Latin numerals. It would seem that they can write numbers to infinity, but this is not entirely true. Now I will explain why. Let's first see how the numbers from 1 to 10 33 are called:

And so, now the question arises, what next. What is a decillion? In principle, it is possible, of course, by combining prefixes to generate such monsters as: andecillion, duodecillion, tredecillion, quattordecillion, quindecillion, sexdecillion, septemdecillion, octodecillion and novemdecillion, but these will already be compound names, and we were interested in our own names numbers. Therefore, according to this system, in addition to those indicated above, you can still get only three - vigintillion (from lat.viginti- twenty), centillion (from lat.percent- one hundred) and a million (from lat.mille- one thousand). The Romans did not have more than a thousand proper names for numbers (all numbers over a thousand were composite). For example, a million (1,000,000) Romans calledcentena miliai.e. ten hundred thousand. And now, actually, the table:

Thus, according to a similar system, numbers are greater than 10 3003 , which would have its own, non-compound name, it is impossible to get! But nevertheless, numbers greater than a million are known - these are the very non-systemic numbers. Finally, let's talk about them.


The smallest such number is a myriad (it is even in Dahl's dictionary), which means a hundred hundreds, that is, 10,000. True, this word is outdated and practically not used, but it is curious that the word "myriad" is widely used, which does not mean a certain number at all, but an uncountable, uncountable set of something. It is believed that the word myriad (English myriad) came to European languages ​​from ancient Egypt.

There are different opinions about the origin of this number. Some believe that it originated in Egypt, while others believe that it was born only in Ancient Greece. Be that as it may, in fact, the myriad gained fame precisely thanks to the Greeks. Myriad was the name for 10,000, and there were no names for numbers over ten thousand. However, in the note "Psammit" (i.e., the calculus of sand), Archimedes showed how one can systematically build and name arbitrarily large numbers. In particular, placing 10,000 (myriad) grains of sand in a poppy seed, he finds that in the Universe (a ball with a diameter of a myriad of Earth diameters) would fit (in our notation) no more than 10 63 grains of sand. It is curious that modern calculations of the number of atoms in the visible universe lead to the number 10 67 (only a myriad of times more). The names of the numbers Archimedes suggested are as follows:
1 myriad = 10 4 .
1 di-myriad = myriad myriad = 10 8 .
1 tri-myriad = di-myriad di-myriad = 10 16 .
1 tetra-myriad = three-myriad three-myriad = 10 32 .
etc.



Googol (from the English googol) is the number ten to the hundredth power, that is, one with one hundred zeros. The "googol" was first written about in 1938 in the article "New Names in Mathematics" in the January issue of the journal Scripta Mathematica by the American mathematician Edward Kasner. According to him, his nine-year-old nephew Milton Sirotta suggested calling a large number "googol". This number became well-known thanks to the search engine named after him. Google. Note that "Google" is a trademark and googol is a number.


Edward Kasner.

On the Internet, you can often find mention that - but this is not so ...

In the well-known Buddhist treatise Jaina Sutra, dating back to 100 BC, the number Asankheya (from the Chinese. asentzi- incalculable), equal to 10 140. It is believed that this number is equal to the number of cosmic cycles required to gain nirvana.


Googolplex (English) googolplex) - a number also invented by Kasner with his nephew and meaning one with a googol of zeros, that is, 10 10100 . Here is how Kasner himself describes this "discovery":


Words of wisdom are spoken by children at least as often as by scientists. The name "googol" was invented by a child (Dr. Kasner"s nine-year-old nephew) who was asked to think up a name for a very big number, namely, 1 with a hundred zeros after it. He was very certain that this number was not infinite, and therefore equally certain that it had to have a name. a googol, but is still finite, as the inventor of the name was quick to point out.

Mathematics and the Imagination(1940) by Kasner and James R. Newman.

Even larger than the googolplex number, Skewes' number was proposed by Skewes in 1933 (Skewes. J. London Math. soc. 8, 277-283, 1933.) in proving the Riemann conjecture concerning prime numbers. It means e to the extent e to the extent e to the power of 79, i.e. ee e 79 . Later, Riele (te Riele, H. J. J. "On the Sign of the Difference P(x)-Li(x)." Math. Comput. 48, 323-328, 1987) reduced Skuse's number to ee 27/4 , which is approximately equal to 8.185 10 370 . It is clear that since the value of the Skewes number depends on the number e, then it is not an integer, so we will not consider it, otherwise we would have to recall other non-natural numbers - the number pi, the number e, etc.


But it should be noted that there is a second Skewes number, which in mathematics is denoted as Sk2 , which is even larger than the first Skewes number (Sk1 ). Skuse's second number, was introduced by J. Skuse in the same article to denote a number for which the Riemann hypothesis is not valid. Sk2 is 1010 10103 , i.e. 1010 101000 .

As you understand, the more degrees there are, the more difficult it is to understand which of the numbers is greater. For example, looking at the Skewes numbers, without special calculations, it is almost impossible to understand which of these two numbers is larger. Thus, for superlarge numbers, it becomes inconvenient to use powers. Moreover, you can come up with such numbers (and they have already been invented) when the degrees of degrees simply do not fit on the page. Yes, what a page! They won't even fit into a book the size of the entire universe! In this case, the question arises how to write them down. The problem, as you understand, is solvable, and mathematicians have developed several principles for writing such numbers. True, every mathematician who asked this problem came up with his own way of writing, which led to the existence of several, unrelated, ways to write numbers - these are the notations of Knuth, Conway, Steinhaus, etc.

Consider the notation of Hugo Stenhaus (H. Steinhaus. Mathematical Snapshots, 3rd edn. 1983), which is quite simple. Steinhouse suggested writing large numbers inside geometric shapes - a triangle, a square and a circle:

Steinhouse came up with two new super-large numbers. He called the number - Mega, and the number - Megiston.

The mathematician Leo Moser refined Stenhouse's notation, which was limited by the fact that if it was necessary to write numbers much larger than a megiston, difficulties and inconveniences arose, since many circles had to be drawn one inside the other. Moser suggested drawing not circles after squares, but pentagons, then hexagons, and so on. He also proposed a formal notation for these polygons, so that numbers could be written without drawing complex patterns. Moser notation looks like this:

Thus, according to Moser's notation, Steinhouse's mega is written as 2, and megiston as 10. In addition, Leo Moser suggested calling a polygon with the number of sides equal to mega - megagon. And he proposed the number "2 in Megagon", that is, 2. This number became known as Moser's number or simply as moser.


But the moser is not the largest number. The largest number ever used in a mathematical proof is the limiting value known as Graham's number, first used in 1977 in the proof of one estimate in Ramsey theory. It is associated with bichromatic hypercubes and cannot be expressed without the special 64-level system of special mathematical symbols introduced by Knuth in 1976.

Unfortunately, the number written in the Knuth notation cannot be translated into the Moser notation. Therefore, this system will also have to be explained. In principle, there is nothing complicated in it either. Donald Knuth (yes, yes, this is the same Knuth who wrote The Art of Programming and created the TeX editor) came up with the concept of superpower, which he proposed to write with arrows pointing up:

In general, it looks like this:

I think that everything is clear, so let's get back to Graham's number. Graham proposed the so-called G-numbers:


  1. G1 = 3..3, where the number of superdegree arrows is 33.

  2. G2 = ..3, where the number of superdegree arrows is equal to G1 .

  3. G3 = ..3, where the number of superdegree arrows is equal to G2 .


  4. G63 = ..3, where the number of superpower arrows is G62 .

The number G63 became known as the Graham number (it is often denoted simply as G). This number is the largest known number in the world and is even listed in the Guinness Book of Records. And here

John Sommer

Put zeros after any number or multiply with tens raised to an arbitrarily large power. It won't seem like much. It will seem like a lot. But naked recordings, after all, are not too impressive. The heaping zeros in the humanities cause not so much surprise as a slight yawn. In any case, to any largest number in the world that you can imagine, you can always add one more ... And the number will come out even more.

And yet, are there words in Russian or any other language for designating very large numbers? Those that are more than a million, billion, trillion, billion? And in general, a billion is how much?

It turns out that there are two systems for naming numbers. But not Arabic, Egyptian, or any other ancient civilizations, but American and English.

In the American system numbers are called like this: the Latin numeral is taken + - million (suffix). Thus, the numbers are obtained:

Trillion - 1,000,000,000,000 (12 zeros)

Quadrillion - 1,000,000,000,000,000 (15 zeros)

Quintillion - 1 and 18 zeros

Sextillion - 1 and 21 zero

Septillion - 1 and 24 zero

octillion - 1 followed by 27 zeros

Nonillion - 1 and 30 zeros

Decillion - 1 and 33 zero

The formula is simple: 3 x + 3 (x is a Latin numeral)

In theory, there should also be numbers anilion (unus in Latin - one) and duolion (duo - two), but, in my opinion, such names are not used at all.

English naming system more widespread.

Here, too, the Latin numeral is taken and the suffix -million is added to it. However, the name of the next number, which is 1,000 times greater than the previous one, is formed using the same Latin number and the suffix - billion. I mean:

Trillion - 1 and 21 zero (in the American system - sextillion!)

Trillion - 1 and 24 zeros (in the American system - septillion)

Quadrillion - 1 and 27 zeros

Quadribillion - 1 followed by 30 zeros

Quintillion - 1 and 33 zero

Quinilliard - 1 followed by 36 zeros

Sextillion - 1 followed by 39 zeros

Sextillion - 1 and 42 zero

The formulas for counting the number of zeros are:

For numbers ending in - illion - 6 x+3

For numbers ending in - billion - 6 x+6

As you can see, confusion is possible. But let's not be afraid!

In Russia, the American system for naming numbers has been adopted. From the English system, we borrowed the name of the number "billion" - 1,000,000,000 \u003d 10 9

And where is the "cherished" billion? - Why, a billion is a billion! American style. And although we use the American system, we took the "billion" from the English one.

Using the Latin names of numbers and the American system, let's call the numbers:

- vigintillion- 1 and 63 zeros

- centillion- 1 and 303 zeros

- Million- one and 3003 zeros! Oh-hoo...

But this, it turns out, is not all. There are also off-system numbers.

And the first one is probably myriad- one hundred hundreds = 10,000

googol(it is in honor of him that the famous search engine is named) - one and one hundred zeros

In one of the Buddhist treatises, a number is named asankhiya- one and one hundred and forty zeros!

Number name googolplex(like Google) was invented by the English mathematician Edward Kasner and his nine-year-old nephew - unit c - dear mother! - googol zeros!!!

But that's not all...

The mathematician Skewes named the Skewes number after himself. It means e to the extent e to the extent e to the power of 79, i.e. e e e 79

And then a big problem arose. You can think of names for numbers. But how to write them down? The number of degrees of degrees of degrees is already such that it simply does not fit on the page! :)

And then some mathematicians began to write numbers in geometric shapes. And the first, they say, such a method of recording was invented by the outstanding writer and thinker Daniil Ivanovich Kharms.

And yet, what is the BIGGEST NUMBER IN THE WORLD? - It is called STASPLEX and is equal to G 100,

where G is the Graham number, the largest number ever used in mathematical proofs.

This number - stasplex - was invented by a wonderful person, our compatriot Stas Kozlovsky, to LJ to which I address you :) - ctac

In the names of Arabic numbers, each digit belongs to its category, and every three digits form a class. Thus, the last digit in a number indicates the number of units in it and is called, accordingly, the place of units. The next, second from the end, digit indicates tens (the tens digit), and the third digit from the end indicates the number of hundreds in the number - the hundreds digit. Further, the digits are repeated in the same way in turn in each class, denoting units, tens and hundreds in the classes of thousands, millions, and so on. If the number is small and does not contain a tens or hundreds digit, it is customary to take them as zero. Classes group numbers in numbers of three, often in computing devices or records a period or space is placed between classes to visually separate them. This is done to make it easier to read large numbers. Each class has its own name: the first three digits are the class of units, followed by the class of thousands, then millions, billions (or billions), and so on.

Since we use the decimal system, the basic unit of quantity is the ten, or 10 1 . Accordingly, with an increase in the number of digits in a number, the number of tens of 10 2, 10 3, 10 4, etc. also increases. Knowing the number of tens, you can easily determine the class and category of the number, for example, 10 16 is tens of quadrillions, and 3 × 10 16 is three tens of quadrillions. The decomposition of numbers into decimal components occurs as follows - each digit is displayed in a separate term, multiplied by the required coefficient 10 n, where n is the position of the digit in the count from left to right.
For example: 253 981=2×10 6 +5×10 5 +3×10 4 +9×10 3 +8×10 2 +1×10 1

Also, the power of 10 is also used in writing decimals: 10 (-1) is 0.1 or one tenth. Similarly with the previous paragraph, a decimal number can also be decomposed, in which case n will indicate the position of the digit from the comma from right to left, for example: 0.347629= 3x10 (-1) +4x10 (-2) +7x10 (-3) +6x10 (-4) +2x10 (-5) +9x10 (-6) )

Names of decimal numbers. Decimal numbers are read by the last digit after the decimal point, for example 0.325 - three hundred and twenty-five thousandths, where thousandths are the digit of the last digit 5.

Table of names of large numbers, digits and classes

1st class unit 1st unit digit
2nd place ten
3rd rank hundreds
1 = 10 0
10 = 10 1
100 = 10 2
2nd class thousand 1st digit units of thousands
2nd digit tens of thousands
3rd rank hundreds of thousands
1 000 = 10 3
10 000 = 10 4
100 000 = 10 5
3rd grade millions 1st digit units million
2nd digit tens of millions
3rd digit hundreds of millions
1 000 000 = 10 6
10 000 000 = 10 7
100 000 000 = 10 8
4th grade billions 1st digit units billion
2nd digit tens of billions
3rd digit hundreds of billions
1 000 000 000 = 10 9
10 000 000 000 = 10 10
100 000 000 000 = 10 11
5th grade trillions 1st digit trillion units
2nd digit tens of trillions
3rd digit hundred trillion
1 000 000 000 000 = 10 12
10 000 000 000 000 = 10 13
100 000 000 000 000 = 10 14
6th grade quadrillions 1st digit quadrillion units
2nd digit tens of quadrillions
3rd digit tens of quadrillions
1 000 000 000 000 000 = 10 15
10 000 000 000 000 000 = 10 16
100 000 000 000 000 000 = 10 17
7th grade quintillions 1st digit units of quintillions
2nd digit tens of quintillions
3rd rank hundred quintillion
1 000 000 000 000 000 000 = 10 18
10 000 000 000 000 000 000 = 10 19
100 000 000 000 000 000 000 = 10 20
8th grade sextillions 1st digit sextillion units
2nd digit tens of sextillions
3rd rank hundred sextillions
1 000 000 000 000 000 000 000 = 10 21
10 000 000 000 000 000 000 000 = 10 22
1 00 000 000 000 000 000 000 000 = 10 23
9th grade septillion 1st digit units of septillion
2nd digit tens of septillions
3rd rank hundred septillion
1 000 000 000 000 000 000 000 000 = 10 24
10 000 000 000 000 000 000 000 000 = 10 25
100 000 000 000 000 000 000 000 000 = 10 26
10th class octillion 1st digit octillion units
2nd digit ten octillion
3rd rank hundred octillion
1 000 000 000 000 000 000 000 000 000 = 10 27
10 000 000 000 000 000 000 000 000 000 = 10 28
100 000 000 000 000 000 000 000 000 000 = 10 29