Биографии Характеристики Анализ

Физиологическая характеристика нейрона. Нейроны

В основе современного представления о структуре и функции ЦНС лежит нейронная теория.

Нервная система построена из двух типов клеток: нервных и глиальных, причем число последних в 8 - 9 раз превышает число нервных. Однако, именно нейроны обеспечивают все многообразие процессов, связанных с передачей и обработкой информации.

Нейрон, нервная клетка, является структурно-функциональной единицей ЦНС. Отдельные нейроны, в отличие от других клеток организма, действующих изолированно, «работают» как единое целое. Их функции состоит в передаче информации (в форме сигналов) от одного участка нервной системы к другому, в обмене информацией между нервной системой и различными участками тела. При этом передающие и принимающие нейроны объединены в нервные сети и цепи.

3
В нервных клетках происходят сложнейшие процессы обработки информации. С их помощью формируются ответные реакции организма (рефлексы) на внешние и внутренние раздражения.

Нейроны обладают рядом признаков, общих для всех клеток тела. Независимо от своего местонахождения и функций, любой нейрон, как всякая другая клетка, имеет плазматическую мембрану, определяющую границы индивидуальной клетки. Когда нейрон взаимодействует с другими нейронами, или улавливает изменения в локальной среде, он делает это с помощью мембраны и заключенных в ней молекулярных механизмов. Стоит отметить, что мембрана нейрона обладает значительно более высокой прочностью, чем другие клетки организма.

Все, что находится внутри плазматической мембраны (кроме ядра), называется цитоплазмой. Здесь содержатся цитоплазматические органеллы, необходимые для существования нейрона и выполнения им своей работы. Митохондрии обеспечивают клетку энергией, используя сахар и кислород для синтеза специальных высокоэнергетических молекул, расходуемых клеткой по мере надобности. Микротрубочки - тонкие опорные структуры - помогают нейрону сохранять определенную форму. Сеть внутренних мембранных канальцев, с помощью которых клетка распределяет химические вещества, необходимые для ее функционирования, называется эндоплазматическим ретикулумом.

А. Нейрон - это структурно-функциональная единица нервной ткани . Выделяют тело нейрона и его отростки. Оболочка нейрона (клеточная мембрана) образует замкнутое пространство, содержащее протоплазму (цитоплазма и ядро). Цитоплазма состо­ит из основного вещества (цитозоль, гиалоплазма) и органелл. Гиалоплазма под электронным микроскопом выглядит относи­тельно гомогенным веществом и является внутренней средой ней­рона. Большинство органелл и ядро нейрона, как и любой другой клетки, заключены в свои отсеки (компартией™), образуемые собственными (внутриклеточными) мембранами, обладающими избирательной проницаемостью к отдельным ионам и частицам, находящимся в гиалоплазме и органеллах. Это определяет отли­чительный состав их друг от друга.

Мозг человека содержит около 25 млрд. нервных клеток, взаимо­действие между которыми осуществляется посредством множества синапсов (межклеточные, соединения), число которых в тысячи раз больше самих клеток (10 |5 -10 16), так как их аксоны многократно делятся дихотомически. Нейроны оказывают свое влияние на органы и ткани также посредством синапсов. Нервные клетки имеются и вне ЦНС: периферический отдел вегетативной нервной системы, афферентные нейроны спинномозговых ганглиев и ганглиев череп­ных нервов. Периферических нервных клеток намного меньше, чем - центральных, - всего около 25 млн. Важную роль в деятельности I Нервной системы играют глиальные клетки (см. раздел 2.1, Д).

Отростки нейрона представляют собой большое число денд-)ритов и один аксон (рис. 2.1). Нервные клетки имеют электри-гческий заряд, как и другие клетки животного организма и даже растений (рис. 2.2). Потенциал покоя (ПП) нейрона составляет 60-80 мВ, ПД - нервный импульс - 80-110 мВ. Сома и дендриты покрыты нервными окончаниями - синаптическими бутонами иотростками глиальных клеток. На одном нейроне число синаптических бутонов может достигать 10 000. Аксон начинается от тела клетки аксонным холмиком. Диаметр тела клетки составляет 10-100 мкм, аксона - 1-6км, на периферии длина аксона может достигать 1 м и более. Нейроны мозга образуют колонки, ядра и слои, выполняющие определенные функции. Клеточные скопле­ния составляют серое вещество мозга. Между клетками проходят немиелинизированные и миелинизированные нервные волокна (соответственно дендриты и аксоны нейронов).



Б. Классификация нейронов. Нейроны делят на следующие группы.

1. По медиатору, выделяющемуся в окончаниях аксонов, раз­личают нейроны адренергические, холинергические, серотони-нергическиеит.д.

2. В зависимости от отдела ЦНС выделяют нейроны соматиче­ской и вегетативной нервной системы.

3. По направлению информации различают следующие нейро­ны:

Афферентные, воспринимающие с помощью рецепторов ин­формацию о внешней и внутренней среде организма и пере­дающие ее в вышележащие отделы ЦНС;

Эфферентные, передающие информацию к рабочим органам - эффекторам (нервные клетки, иннервирующие эффекторы, иногда называют эффекторными);

Вставочные (интернейроны), обеспечивающие взаимодейст­вие между нейронами ЦНС.

4. По влиянию выделяют возбуждающие и тормозящие нейроны.

5. По активности различают фоново-активные и «молчащие» нейроны, возбуждающиеся только в ответ на раздражение. Фоново-активные нейроны отличаются общим рисунком генерации им­пульсов, так как одни нейроны разряжаются непрерывно (ритмич­но или аритмично), другие - пачками импульсов. Интервал между импульсами в пачке составляет миллисекунды, между пачками - секунды. Фоново-активные нейроны играют важную роль в под­держании тонуса ЦНС и особенно коры большого мозга.

6. По воспринимаемой сенсорной информации нейроны делят на моно-, би- и полимодальные. Мономодальными являются нейроны центра слуха в коре большого мозга. Бимодальные нейроны встре­чаются во вторичных зонах анализаторов в коре (нейроны вторич­ной зоны зрительного анализатора в коре большого мозга реаги­руют на световые и звуковые раздражители). Полимодальные Ней­роны - это нейроны ассоциативных зон мозга, моторной коры; они реагируют на раздражения рецепторов кожного, зрительного, слухового и других анализаторов.

Рис. 2.1. Мотонейрон спинного мозга. Указаны функции отдельных структурных элементов нейрона [Эккерт Р., Рэнлелл Д., Огастин Дж., 1991] В. Функциональные структуры нейрона. 1.Структуры, обеспе­чивающие синтез макромолекул, которые транспортируются по аксону и дендритам, - это сома (тело нейрона), выполняющая трофическую функцию по отношению к отросткам (аксону и ден­дритам) и клеткам-эффекторам. Отросток, лишенный связи с те­лом нейрона, дегенерирует. 2. Структуры, воспринимающие импульсы от других нервных клеток, - это тело и дендриты нейрона с расположенными на них шипиками, занимающие до 40% от поверхности сомы нейрона и дендритов. Если шипики не получают импульсацию, то они исче­зают. Импульсы могут поступать и к окончанию аксона - аксо-аксонные синапсы. Это происходит, например, в случае пресинаптического торможения. 3. Структуры, в которых обычно возникает ПД (генераторный пункт ПД), - аксонный холмик. 4. Структуры, проводящие возбуждение к другому нейрону или к эффектору, - аксон. 5. Структуры, передающие импульсы на другие клетки, - си­напсы. Г. Классификация синапсов ЦНС.Основу классификации со­ставляет несколько признаков. 1. По способу передачи сигналов различают химические синапсы (наиболее распространенные в ЦНС), в которых посредником (медиатором) передачи является химическое вещество; электрические, в которых сигналы переда­ются электрическим током, и смешанные синапсы - электрохими­ческие. 2. В зависимости от местоположения выделяют ак-

сосоматические, аксодендритные, аксо-аксонные, дендросоматические, денд-родендритные синапсы.

3. По эффекту различают возбуждающие и тормозящие синапсы. В процессе деятельности нервной системы отдельные нейроны

объединяются в ансамбли (модули), нейронные сети. Последние могут включать несколько нейронов, десятки, тысячи нейронов, при этом совокупность нейронов, образующих модуль, обеспечи­вает появление у модуля новых свойств, которыми не обладают отдельные нейроны. Деятельность каждого нейрона в составе мо­дуля становится функцией не только поступающих к нему сигна­лов, но и функцией процессов, обусловленных той или иной кон­струкцией модуля (П.Г.Костюк).

Д. Глиальные клетки (нейроглия - «нервный клей»). Эти клетки более многочисленны, чем нейроны, составляют около 50% от объ­ема ЦНС. Они способны к делению в течение всей жизни. По раз­меру глиальные клетки в 3-4 раза меньше нервных, их число ог­ромно - достигает 14 * 10"°, с возрастом увеличивается (число нейронов уменьшается). Тела нейронов, как и их аксоны, окружены глиальными клетками. Глиальные клетки выполняют несколько функций: опорную, защитную, изолирующую, обменную (снаб­жение нейронов питательными веществами). Микроглиальные клетки способны к фагоцитозу, ритмическому изменению своего объема (период «сокращения» - 1,5 мин, «расслабления» - 4 мин). Циклы изменения объема повторяются через каждые 2-20 ч. Пола­гают, что пульсация способствует продвижению аксоллазмы в нейронах и влияет на ток межклеточной жидкости. Мембранный потенциал клеток нейроглии составляет 70-90 мВ, однако ПД они не генерируют, генерируют только локальные токи, электротони-чески распространяющиеся от одной клетки к другой. Процессы возбуждения в нейронах и электрические явления в глиальных клетках, по-видимому, взаимодействуют.

Е. Цереброспинальная жидкость (ликвор) - бесцветная прозрач­ная жидкость, заполняющая мозговые желудочки, спинномозговой канал и субарахноидальное пространство. Ее происхождение связа­но с интерстициальной жидкостью мозга. Значительная часть цереброспинальной жидкости образуется в специализированных сплетениях желудочков мозга. Непосредственной питательной средой клеток мозга является интерстициальная жидкость, в ко­торую клетки выделяют также продукты своего обмена. Цереб­роспинальная жидкость представляет собой совокупность фильтрата плазмы крови и интерстициальной жидкости; она со­держит около 90% воды и примерно 10% сухого остатка (2% -органические, 8% - неорганические вещества). От плазмы крови она отличается, как и межклеточная жидкость других тканей, низ­ким содержанием белка (0,1 г/л, в плазме - 75 г/л), меньшим содер­жанием аминокислот (0,8 и 2 ммоль/л соответственно) и глюкозы (3,9 и около 5 ммоль/л соответственно). Ее объем 100-200 мл (12-14% от общего объема мозга), за сутки вырабатывается около 600 мл. Обновление этой жидкости происходит 4-8 раз в сутки, давление цереброспинальной жидкости составляет 7-14 мм рт. ст., в вертикальном положении тела - в 2 раза больше. Цереб­роспинальная жидкость выполняет также защитную роль: явля­ется своеобразной гидравлической «подушкой» мозга, обладает бактерицидными свойствами: ликвор содержит иммуноглобули­ны классов О и А, систему комплемента, моноциты и лимфоци­ты. Отток цереброспинальной жидкости происходит нескольки­ми путями: 30-40% ее оттекает через субарахноидальное про­странство в продольный синус венозной системы головного мозга; 10-20% - через периневральные пространства черепных и спинномозговых нервов в лимфатическую систему; часть жидко­сти реабсорбируется сосудистыми сплетениями мозга.

ФУНКЦИИ НЕЙРОНОВ

Жизнь животного организма сосредоточена в клетке. У каждой клетки имеются общие (основные) функции, одинаковые с функ­циями других клеток, и специфические, свойственные в основном данному виду клеток.

А. Функции нейрона, идентичные общим функциям любых кле­ток организма.

1.Синтез тканевых и клеточных структур, а также необходимых для жизнедеятельности соединений (анаболизм). При этом энергия не только расходуется, но и накапливается, по­скольку клетка усваивает органические соединения, богатые энер­гией (белки, жиры и углеводы, поступающие в организм с пищей). В клетку питательные вещества поступают, как правило, в виде продуктов гидролиза белков, жиров, углеводов (мономеров) - это моносахара, аминокислоты, жирные кислоты и моноглицериды. Процесс синтеза обеспечивает восстановление структур, подвер­гающихся распаду.

2. Выработка энергии в результате катаболизма - совокупно­сти процессов распада клеточных и тканевых структур и сложных соединений, содержащих энергию. Энергия необходима для обес­печения жизнедеятельности каждой живой клетки.

3. Трансмембранный перенос веществ, обеспечивающий поступ­ление в клетку необходимых веществ и выделение из клетки мета­болитов и веществ, используемых другими клетками организма.

Б. Специфические функции нервных клеток ЦНС и перифериче­ского отдела нервной системы.

1. Восприятие изменений внешней и внутренней среды организма. Эта функция осуществляется прежде всего с помощью перифери­ческих нервных образований - сенсорных рецепторов (см. раз­дел 1.1.6) и посредством шипикового аппарата дендритов и тела нейрона (см. раздел 2.1).

2. Передача сигнала другим нервным клеткам и клеткам-эффекторам: скелетной мускулатуры, гладким мышцам внутрен­них органов, сосудам, секреторным клеткам. Эта передача реали­зуется с помощью синапсов (см. раздел 4.3).

3. Переработка поступающей к нейрону информации посредст­вом взаимодействия возбуждающих и тормозящих влияний при­шедших к нейрону нервных импульсов (см. раздел 4.5-4.8).

4. Хранение информации с помощью механизмов памяти (см. раз­дел 6.6). Любой сигнал внешней и внутренней среды организма вначале преобразуется в процесс возбуждения, который является наиболее характерным проявлением активности любой нервной клетки.

5. Нервные импульсы обеспечивают связь между всеми клетками организма и регуляцию их функций (см. раздел 1.1).

6. С помощью химических веществ нервные клетки оказывают трофическое влияние на эффекторные клетки организма (питание; см. раздел 1.1).

Жизнедеятельность самой нервной клетки обеспечивается взаимодействием всех ее органелл и клеточной мембраны (совокупность структурных элементов, образующих оболочку клетки), как и любой другой клетки организма.

Нервная ткань состоит из нервных клеток - нейронов и вспомогательных нейроглиальных клеток, или клеток-спутниц. Нейрон - элементарная структурно-функциональная единица нервной ткани. Основные функции нейрона: генерация,

проведение и передача нервного импульса, который является носителем информации в нервной системе. Нейрон состоит из тела и отростков, причем эти отростки дифференцированы построению и функции. Длина отростков у различных нейронов колеблется от нескольких микрометров до 1-1,5 м. Длинный отросток (нервное волокно) у большинства нейронов имеет миелиновую оболочку, состоящую из особого жироподобного вещества - миелина. Она образуется одним из типов нейроглиальных клеток - олигодендроцитами. По наличию или отсутствию миелиновой оболочки все во-

волокна делятся соответственно на мякотные (миелинизированые) и безмякотные (немиелинизированные). Последние погружены в тело специальной нейроглиальной клетки нейролеммоцита. Миелиновая оболочка имеет белый цвет, что позволило раз-

разделить вещество нервной системы на серое и белое. Тела нейронов и их короткие отростки образуют серое вещество мозга, а волокна - белое вещество. Миелиновая оболочка способствует изоляции нервного волокна. Нервный импульс проводится по такому волокну быстрее, чем по лишенному миелина. Миелин покрывает не все волокно: примерно на расстоянии в 1 мм в нем имеются промежутки - перехваты Ранвье, участвующие в быстром проведении нервного импульса. Функциональное различие отростков нейронов связано с проведением нервного импульса. Отросток, по которому импульс идет от тела нейрона, всегда один и называется аксоном. Аксон практически не меняет диаметр на всем своем протяжении. У большинства нервных клеток это длинный отросток. Исключением являются нейроны чувствительных спинномозговых и черепных ганглиев, у которых аксон короче дендрита. Аксон на конце может ветвиться. В некоторых местах (миелинизированных аксонов - в перехватах Ранвье) от аксонов могут перпендикулярно отходить тонкие ответвления - коллатерали. Отросток нейрона, по которому импульс идет к телу клетки, - дендрит. Нейрон может иметь один или несколько дендритов. Дендриты отходят от тела клетки постепенно и ветвятся под острым углом. Скопления нервных волокон в ЦНС называются трактами, или путями. Они осуществляют проводящую функцию в различных отделах головного и спинного мозга и образуют там белое вещество. В периферической нервной системе отдельные нервные волокна собираются в пучки, окруженные соединительной тканью, в которой проходят также кровеносные и лимфатические сосуды. Такие пучки образуют нервы - скопления длинных отростков нейронов, покрытых общей оболочкой. Если информация по нерву идет от периферических чувствительных образований - рецепторов - в головной или спинной мозг, то такие нервы называются чувствительными, центростремительными или афферентными. Чувствительные нервы - нервы, состоящие из дендритов чувствительных нейронов, передающие возбуждение от органов чувств к ЦНС. Если информация по нерву идет из ЦНС к исполнительным органам (мышцам или железам), нерв называется центробежным, двигательным или эфферентным. Двигательные нервы - нервы, образованные аксонами двигательных нейронов, проводящие нервные импульсы от центра к рабочим органам (мышцам или железам). В смешанных нервах проходят как чувствительные, так и двигательные волокна. В том случае, когда нервные волокна подходят к какому-либо органу, обеспечивая его связь с ЦНС, принято говорить об иннервации данного органа волокном или нервом. Тела нейронов с короткими отростками по-разному расположены относительно друг друга. Иногда они образуют достаточно плотные скопления, которые называются нервными ганглиями, или узлами (если они находятся за пределами ЦНС, т. е. в периферической нервной системе), и ядрами (если они находятся в ЦНС). Нейроны могут образовывать кору - в этом случае они расположены слоями, причем в каждом слое находятся нейроны, сходные по форме и выполняющие определенную функцию (кора мозжечка, кора больших полушарий). Кроме того, в некоторых участках нервной системы (ретикулярная формация) нейроны расположены диффузно, не образуя плотных скоплений и представляя собой сетчатую структуру, пронизанную волокнами белого вещества. Передача сигнала от клетки к клетке осуществляется в особых образованиях - синапсах. Это специализированная структура, обеспечивающая передачу нервного импульса с нервного волокна на какую-либо клетку (нервную, мышечную). Передача осуществляется с помощью особых веществ - медиаторов.

Разнообразие

Тела самых крупных нейронов достигают в диаметре 100-120 мкм (гигантские пирамиды Беца в коре больших полушарий), самые мелкие - 4-5 мкм (зернистые клетки коры мозжечка). По количеству отростков нейроны делятся на мультиполярные, биполярные, униполярные и псевдоуниполярные. Мультиполярные нейроны имеют один аксон и много дендритов, это большинство нейронов нервной системы. Биполярные имеют один аксон и один дендрит, униполярные - только аксон; они характерны для анализаторных систем. Из тела псевдоуниполярного нейрона выходит один отросток, который сразу после выхода делится на два, один из которых выполняет функцию дендрита, а другой аксона. Такие нейроны находятся в чувствительных ганглиях.

Функционально нейроны подразделяются на чувствительные, вставочные (релейные и интернейроны) и двигательные. Чувствительные нейроны - нервные клетки, воспринимающие раздражения из внешней или внутренней среды организма. Двигательные нейроны - моторные нейроны, иннервирующие мышечные волокна. Кроме того, некоторые нейроны иннервируют железы. Такие нейроны вместе с двигательными называют исполнительными.

Часть вставочных нейронов (релейные, или переключательные, клетки) обеспечивает

связь между чувствительными и двигательными нейронами. Релейные клетки, как правило, весьма крупные, с длинным аксоном (тип Гольджи I). Другая часть вставочных нейронов имеет небольшой размер и относительно короткие аксоны (интернейроны, или тип Гольджи II). Их функция связана с управлением состояния релейных клеток.

Все перечисленные нейроны формируют совокупности - нервные цепи и сети, проводящие, обрабатывающие и запоминающие информацию. На концах отростков ней-

нейронов расположены нервные окончания (концевой аппарат нервного волокна). Соответственно функциональному разделению нейронов различают рецепторные, эффекторные и межнейронные окончания. Рецепторными называются окончания дендритов чувствительных нейронов, воспринимающие раздражение; эффекторными - окончания аксонов исполнительных нейронов, образующие синапсы на мышечном волокне или на железистой клетке; межнейронными - окончания аксонов вставочных и

чувствительных нейронов, образующие синапсы на других нейронах.

Морфологически нервная система представлена двумя типами клеток: нейронами (рис. 28) и нейроглией.

Рис. 28. 1 - ядро; 2 - дендриты; и - тело; 4 - аксонный холмик; 5 - лемоцит (клетка Шванна); б - перехваты узла; 7 - нервное окончание; 8 - скачкообразный переход ПД

Функцию ЦНС, заключается в обработке информации, выполняют преимущественно нейроны, количество которых составляет около 10". В ЦНС выделяют три типа нейронов, роняться как морфологически, так и функционально:

1) афферентные;

2) вставные;

3) эфферентные.

Вместе с тем нейроны составляют меньшую (около 10 %) часть клеточного пула ЦНС, а 90 % всех клеток составляет нейроглия.

Функции нейроглии

Нейроглия - это неоднородные клетки, заполняющие пространство между нейронами и кровеносными капиллярами. Они различаются как по форме, так и по функции.

Рис. 29. Взаимоотношения нейроглиальных элементов с другими структурами мозга: 1 - нейрон; 2 - астроцит; 3 - олигодендроцит; 4 - кровеносный капилляр; 5 - клетка епендими; 6 - синапс; 7-перехват узла; 8 - миелиновая оболочка

Различают несколько типов глиальных клеток:

а) астроциты;

б) олигодендроциты;

в) микроглиальные;

г) епендимные клетки.

Каждая из них выполняет свою функциональную задачу в обеспечении функции основных структур ЦНС - нейронов. Общая функция этих клеток - создание опоры для нейронов, их защита и "помощь" в выполнении специфических функций (рис. 29).

Астроциты , которые составляют около 60 % клеток нейроглии, выполняют разнообразные функции по созданию благоприятных условий для функционирования нейронов. Особенно важную роль они играют в период высокой активности последних.

Астроциты участвуют в:

1) создании гематоэнцефалического барьера (ГЭБ), что ограничивает свободное проникновение различных веществ из крови;

2) резорбции некоторых медиаторов ЦНС (например глутамата, ГАМК), их обмене и даже обеспечивают обратное возвращение готовых медиаторов в нейрон, активно функционирует; а также некоторых ионов (например Ю) из межклеточной жидкости в период активного функционирования прилегающих нейронов.

В астроцитах синтезируется ряд факторов, относящихся к регуляторам роста. Факторы роста астроцитов участвуют в регуляции роста и развития нейронов. Эта их функция особенно ярко проявляется во время становления ЦНС: во внутриутробный и ранний постнатальный период развития.

Олигодендроциты образуют миелиновую оболочку нейронов (составляют около 25-30 % всех глиальных клеток). На периферии эту функцию выполняют лемоцити. Кроме того, они могут поглощать микроорганизмы, то есть вместе с астроцитами участвуют в иммунных механизмах мозга.

Микроглиальные клетки как часть ретикулоэндотелиальной системы организма участвуют в фагоцитозе (составляют около 10 % всех глиальных клеток).

Эпендимные клетки выстилают желудочки головного мозга, участвуя в процессах секреции спинномозговой жидкости.

Морфофункциональная характеристика нейронов

Нейроны - своеобразные клетки, которые имеют кроме тела (сомы) один или несколько отростков, называемых дендритами и аксонами. С помощью дендритов нервный импульс поступает к телу нейрона, а при помощи аксонов - отходит от нейрона. Уникальность нейронов заключается в том, что вскоре после рождения человека они утрачивают способность к физиологической регенерации путем распределения. Самовосстановление их происходит лишь на уровне субклеточных структур, отдельных молекул.

Размер тела нейрона (от 5 до 100 мкм) определяет и диаметр их аксонов: в малых нейронах - около 1 мкм, а в крупных-до 6 мкм. Это сказывается на скорости распространения ими нервного импульса. Начальную часть аксона, что функционально отличается, называют аксонним холмиком.

Сома нейрона покрыта типичной плазматичною мембраной. На ней представлены все виды белков, обеспечивающих трансмембранное транспортировку и поддержание концентрационных градиентов. Для сомы нейрона характерно, что практически вся его мембрана постсинаптична. Дело в том, что передача нервных импульсов между нейронами осуществляется с помощью синапсов. А их у каждого нейрона так много и располагаются они на теле так тесно, что практически между ними нет свободного участка мембраны (рис. 30). Расстояние между отдельными синапсами примерно одинакова, поэтому количество их на теле нейрона в первую очередь определяют по размерам сомы: на малых клетках их до 5000, а на больших-к

Рис. 30.

1 - аксосоматичний синапс; 2 - аксодендритний синапс; 3 - аксодендритний синапс шипиковой формы; 4 - аксодендритний синапс дивергентного типа; А - аксон; П -дендрит

200 000. Однако существуют функциональные различия и в количестве синапсов на теле клетки: у чувствительных нейронов синапсов меньше, а у вставочных и эффекторных - больше.

Мембранный потенциал не во всех нейронах находится на одинаковом уровне. В крупных нейронах он выше, чем в малых, и колеблется от -90 до -40 мВ. Функциональную характеристику крупных нейронов благодаря их размерам на сегодня изучены лучше и описано ниже на их примере.

Мембрана особой участки нейрона - аксонного холмика, от которого отходит аксон, несколько отличается от других отделов сомы нейрона. Во-первых, она свободна от синапсов. Во-вторых, имеет своеобразный набор ионных каналов. Можно выделить пять типов таких каналов:

1) быстрые потенциалозависимые Na+-каналы;

2) Са+-каналы;

3) медленные потенциалозависимые К+-каналы;

4) быстрые потенциалозависимые ИС-каналы;

5) кальциезависимые ИС-каналы.

Особенность аксонного холмика заключается в том, что в него мембранный потенциал ниже (около -60 мВ), чем на других участках тела нейрона.

Синапсы ЦНС

Нервные клетки за счет своих отростков функционируют в тесном взаимодействии друг с другом, образуя своеобразную сеть. Это взаимодействие осуществляется с помощью синапсов. В результате каждый нейрон контактирует прямо или (чаще) косвенно с сотнями, тысячами других.

Для некоторых систем мозга, например, ответственных за процессы обучения, памяти, способность к организации и реорганизации связей между нейронами сохраняется на всю жизнь. В других отделах ЦНС формируются постоянные ведущие пути от одного нейрона к другому, и их становление завершается к определенному этапу развития человека. В мозгу, что растет, аксоны находят путь к клеткам, в которых они должны посылать сигнал, идя по определенному химическому следу. Достигая места назначения, аксон разветвляется, и каждая из его веточек заканчивается терминалиями.

в Зависимости от места расположения различают синапсы аксодендритные, аксосоматичные, аксоаксональные и дендросоматичные (см. рис. 30). Функционируют синапсы ЦНС так же, как и нервно-мышечные. Но в то же время между ними существуют и некоторые различия, обусловленные тем, что они значительно более разнообразны как по составу медиаторов, так и за реакцией постсинаптической мембраны на них.

Синапсы ЦНС, особенно их постсинаптична мембрана, - это место приложения не только медиаторов, но и многих других биологически активных соединений, ядов, лекарственных веществ.

Модуляция синапсов. Характерно, что отдельные образования синапсов - это не навсегда застывшие структуры. На протяжении жизни человека они могут трансформироваться, подвергаясь модулювальному влияния. Этому способствует выделение некоторых медиаторов. Кроме того, в случае постоянного (частого) прохождение нервных импульсов через структуры синапсов могут меняться в направлении увеличения размеры синаптической бляшки и количество медиатора в ней, площадь пре - и постсинаптической мембраны. Кроме того, на постсинаптической мембране может меняться плотность рецепторов. Как следствие функция синапса модифицируется, что обеспечивает улучшение и ускорение передачи нервного импульса. Эти изменения сопровождают процесс обучения, формирования памяти. их считают основой создания нервных цепей для обеспечения рефлекторных ответов. Можно заметить, что наличие синапсов в ЦНС упорядочивает ее функцию.

В ЦНС основные синапсы (98 %) локализуются на дендритах и лишь 2 % - на соме. В среднем каждый аксон образует около 2000 синаптических окончаний.

Механизм функционирования химических синапсов в ЦНС

Выделение медиатора происходит под воздействием поступления ПД, что вызывает деполяризацию пресинаптической мембраны, вследствие чего в синаптическую щель выливается содержимое нескольких сотен пузырьков. Медиатор, дифундуючи синаптической жидкостью, через синаптическую щель достигает постсинаптической мембраны, где соединяется с соответствующим рецептором. Как следствие открываются хемозбудительные каналы и повышается проницаемость мембраны для ионов № Это обусловливает деполяризацию мембраны - возникновение местного потенциала. Такой по

Рис. 31. а. б - деполяризация не достигает критического уровня; в - результат суммации

потенциал модерниза ции называют возбуждающим постсинаптичним потенциалом (ЗПСП; рис. 31).

Генерация ПД происходит в результате суммации возбуждающего постсинаптического потенциала. Этому способствуют его отличительные характеристики: сравнительно большая продолжительность существования во времени (нарастание деполяризации - 1-2 мс, падение-10-12 мс) и способность распространяться на прилегающие участки мембраны. То есть в целом указанные выше механизмы общие для нервно-мышечных и центральных синапсов. Поэтому переход локального постсинаптического потенциала в ПД происходит в самой постсинаптической мембране вследствие процессов суммации.

Вследствие суммации (рис. 32) возбуждающий постсинаптичний потенциал может переходить в ПД. Различают суммации временную и пространственную.

Временная суммация основывается на: длительности состояния деполяризации возбуждающего постсинаптического потенциала; частой импульсации одного синапса.

Рис. 32. Временная (а) пространственная (б) суммация возбуждения в нервных центрах:

1 - раздражитель, который поступает одним нервом; 2 - раздражитель, поступающий вторым нервом

Когда до пресинаптической мембраны с коротким промежутком поступают несколько ПД, то возбуждающий постсинаптичний потенциал, который возникает после каждого из них, наслаивается на предыдущий, увеличивая амплитуду, и при достижении критического уровня переходит в ПД. Такое явление случается из-за того, что обычно нервным волокном поступают не одиночные ПД, а их группы ("пачки").

Пространственная суммация обусловлена одновременным поступлением к нейрону импульсов по размещенным рядом сына псах. Возбуждающий постсинаптичний потенциал, возникающий под каждым синапсом, распространяется с декрементом (постепенным снижением амплитуды). Однако вследствие довольно тесного расположения близлежащих синапсов возбудительные постсинаптические потенциалы могут суммироваться по амплитуде. Вследствие этого деполяризация может достичь критического уровня и вызвать ПД. Как правило, этот процесс легче всего развивается в области аксонного холмика. Обусловлено это тем, что вследствие более низкого исходного уровня мембранного потенциала именно здесь ближе к критическому уровню деполяризации.

Синоптическая задержка.

Вследствие того, что для передачи возбуждения через синапс нужен выход и взаимодействие медиатора с постсинаптичною мембраной, суммирование, скорость передачи возбуждения в нем замедляется. Синаптическая задержка в ЦНС составляет около 0,2-0,5 мс.

Тормозные синапсы

В норме функция ЦНС осуществляется благодаря тому, что кроме указанных выше синапсов, передающих возбуждение, существует огромное количество тормозных синапсов (рис. 33).

Различают два вида торможения:

o пресинаптичне

o постсинаптичне.

В этих названиях отражено локализацию тормозного синапса относительно возбуждающего. Различаются указанные виды торможения не только по месту расположения синапса, но и по физиологическим механизмом. Пресинаптичне торможения основывается на уменьшении или прекращении высвобождения медиатора из пресинаптического нервного окончания возбуждающего синапса, постсинаптичне - на снижении возбудимости мембраны сомы и дендритов нейронов.

Пресинаптичне торможение избирательно исключает отдельные входы в нервной клетки, тогда как постсинаптичне окончательно снижает возбудимость нейрона. Пресинаптичне торможения продолжительнее, чем постси

Рис. 33.

1 - аферент возбуждающего нейрона;

2 - аферент, что возбуждает тормозной нейрон;

3 - пресинаптичне возбуждения;

4 - постсинаптичне торможения;

5 - возбуждающий нейрон;

6 - тормозной нейрон

наптичне. Несмотря на то что именно торможение не распространяется, блокируя проведение возбуждения, ограничивает его распространение, оно, прерывая бесконечную циркуляцию по ЦНС, упорядочивает ее функции.

Постсинаптичне торможения.

Основной вид торможения в ЦНС - постсинаптичне. Давайте разберем его механизмы на примере типового тормозного синапса - аксосоматичной. На теле нейрона тормозные синапсы, как правило, расположены между возбуждающими синапсами и аксонним бугорком. Основные медиаторы, которые вызывают этот вид торможения - аминокислоты ГАМК и глицин. Каждый стимул, поступивший к тормозного синапса, вызывает не деполяризацию, а наоборот, гиперполяризацией постсинаптической мембраны, называют тормозным постсинаптичним потенциалом (вания лисп). По своим временным ходом он является зеркальным отражением возбуждающего постсинаптического потенциала с временем нарастания 1-2 мс и убыванию - 10-12 мс (рис. 34). Гиперполяризация основывается на повышении проницаемости мембраны для К+.

Конкретный механизм торможения зависит от времени поступления возбуждающего постсинаптического потенциала от расположенного рядом возбуждающего синапса. При этом также происходит временная и пространственная суммация. Если возбуждающий постсинаптичний потенциал накладывается на начальную фазу тормозного, то амплитуда первого снижается, поскольку поступления в клетку №+ компенсируется одновременным выходом К+. А если возбуждающий постсинаптичний потенциал возникает в поздней стадии тормозного постсинаптического потенциала, он просто смещается на величину гиперполяризаии мембраны. И в том, и в другом случае галь

Рис. 34.

а - развитие гиперполяризации на постсинаптической мембране тормозного синапса; б - механизм постсинаптического торможения; 4 - действие раздражителя

мівного постсинаптического потенциала блокирует возникновение ПД, а следовательно, и передачу нервного импульса через этот нейрон.

Постсинаптичне торможение широко представлено в нервной системе. Оно есть в нервных центрах, в мотонейронах спинного мозга, в симпатических ганглиях.

Медиаторы ЦНС

В ЦНС функцию медиаторов выполняет большое (около 30) количество биологически активных веществ. Принадлежность синапсов к возбудимого или тормозного определяют спецификой медиаторов, а также разновидностью рецепторов, встроенных в постсинаптичну мембрану. Поскольку к одному и тому же медиатору, как правило, существует несколько рецепторов, при их взаимодействии могут возникать диаметрально противоположные эффекты - возбуждающий или тормозной постсинаптические потенциалы. Разногласия между рецепторами можно обнаружить не только за отличием эффекта, но и с помощью применения химически активных веществ, которые могут блокировать передачу нервного импульса через синапс (результат связывания с рецептором) или потенцировать эффект медиатора. Эти вещества могут быть как эндогенного (образуются в самой ЦНС или других органах и поступают в ЦНС через кровь и лимфу), так и экзогенного происхождения.

Медиаторами нейронов ЦНС считают большое количество биологически активных веществ. В зависимости от химической структуры их можно разделить на четыре группы:

1. Амины (АХ, НА, А, дофамин, серотонин).

2. Аминокислоты (глицин, глутамин, аспарагиновая, ГАМК и некоторые другие).

3. Пуриновые нуклеотиды (АТФ).

4. Нейропептиды (гипоталамические либерины и статины, опиоидные пептиды, вазопрессин, вещество Р, холецистокинин, гастрин и др.).

Раньше считали, что во всех окончаниях одного нейрона выделяется один медиатор (принцип Дейла). Однако в последние годы, особенно после открытия нейропептидов (ничтожной величины белковых молекул), оказалось, что во многих нейронах может содержаться два или более медиаторов.

По эффекту медиаторы можно разделить на два типа: ионотропные и метаботропные. Ионотропные медиаторы после взаимодействия с рецепторами постсинаптической мембраны изменяют проницаемость ионных каналов. В отличие от них метаботропные медиаторы постсинаптичний влияние оказывают через активацию специфических ферментов мембраны. Вследствие этого в самой мембране, а чаще всего в цитозоле клетки активируются вторичные посредники (месенжери). Метаболические изменения, происходящие в клетке или мембране, продолжительнее и глубже, чем во время действия ионотропных медиаторов. Они могут затрагивать даже геном клетки, участвуя в формировании памяти.

Метаботропну активность имеют большинство нейропептидов и некоторые другие медиаторы, например амины. Выделяясь вместе с "основным", метаботропний медиатор модулирует (усиливает или ослабляет) его эффект или регулирует его выход.

Электрические явления мозга

в настоящее время широко применяют методы исследования функций ЦНС благодаря отводу биотоков. Для этого применяют два основных подхода: вживлению электродов и снятия электрических потенциалов с поверхности мозга. Первый метод не имеет принципиальных отличий от методик исследования других возбудимых тканей. При отведении потенциалов с поверхности мозга регистрируют активность клеток коры. Причем биотоки коры полушарий большого мозга можно зарегистрировать непосредственно с кожи головы.

Электроэнцефалография. Снятия биотоков с кожи головы называют электроэнцефалографией , а кривую - электроэнцефалограммой (ЭЭГ)- Первым их исследователем был Г. Бергер. Для исследования применяют биполярные отведения (оба электрода отводные) и монополярные (только один электрод активный, а второй, индифферентный размещают на дольке (мочке) уши). Электрическое сопротивление полушарий большого мозга, расположенные между кожей и корой, накладывает свой отпечаток, поэтому волны ЭЭГ немного отличаются от таких ЕКоГ: меньше и амплитуда, и частота зубцов, что обусловлено также удаленностью электродов от поверхности мозга.

Разновидности ритмов ЭЭГ. в Зависимости от активности головного мозга регистрируют различные типы ЭЭГ. их принято характеризовать в зависимости от амплитуды и частоты (рис. 35). У человека, который не спит и находится в состоянии покоя, с закрытыми глазами, в большинстве отделов коры регистрируется регулярный ритм с частотой 8-13 Гц, так называемый а-ритм. В состоянии активной деятельности он сменяется на более частые (более 13 имп.1с) колебания небольшой амплитуды - $-ритм. При этом в различных отделах ЦНС ритм будет разный, то есть произойдет десинхронизация ЭЭГ. Во время перехода КО сну и самого сна появляются медленные волны: -ритм (7-4 Гц) и Х-ритм (3,5-0,5 Гц) и высокой амплитуды. Однако указанную закономерность наблюдается не во всех отделах коры полушарий большого мозга.

Рис. 35. ЭЭГ затылочной -г) и моторной (д-е) участков коры полушарий большого мозга человека при различных состояний и во время мышечной работы (по А.Бы. Сологуб): а - за распахнутых глаз (видно преимущественно р-волны); б - за закрытых глаз в состоянии покоя (видно а-волны); в - в состоянии дремоты; г - во время засыпания; г - во время глубокого сна; п - частая асинхронная активность во время выполнения непривычной или тяжелой работы (явление десинхронизации); е, является - различные формы синхронизации: е - медленные потенциалы в темпе выполнения циклических движений; есть - появление а-ритма во время выполнения усвоенного движения

Происхождение волн ЭЭГ-достаточно сложный процесс алгебраической суммации микропроцессов, протекающие на уровне многочисленных нейронов, различных синапсов в конкретном отделе коры головного мозга. Самая эффективная суммация при синхронном возбуждении многих клеток, что проявляется ограничением сенсорного (от лат. - ощущение) притока импульсов. Поступления афферентных возбуждений при расплющивания глаз предопределяет десинхронизацией. Основной водитель ритма коры - структуры таламуса, через которые в нее поступает аферентна сигнализация, т. е. можно условно считать, что таламичные отделы - пейсмекери корковой активности.

По ЭЭГ можно оценивать функциональное состояние коры, ее отдельных участков. Различные повреждения, заболевания сопровождаются характерными изменениями ЭЭГ.