Биографии Характеристики Анализ

Прямое преобразование фурье позволяет определить. Преобразование фурье

Преобразование Фурье – это семейство математических методов, основанных на разложении исходной непрерывной функции от времени на совокупность базисных гармонических функций (в качестве которых выступают синусоидальные функции) различной частоты, амплитуды и фазы. Из определения видно, что основная идея преобразования заключается в том, что любую функцию можно представить в виде бесконечной суммы синусоид, каждая из которых будет характеризоваться своей амплитудой, частотой и начальной фазой.

Преобразование Фурье является основоположником спектрального анализа. Спектральный анализ – это способ обработки сигналов, который позволяет охарактеризовать частотный состав измеряемого сигнала. В зависимости от того, каким образом представлен сигнал, используют разные преобразования Фурье. Различают несколько видов преобразования Фурье:

– Непрерывное преобразование Фурье (в англоязычной литературе Continue Time Fourier Transform – CTFT или, сокращенно, FT );

– Дискретное преобразование Фурье (в англоязычной литературе Discrete Fourier Transform – DFT );

– Быстрое преобразование Фурье (в англоязычной литературе Fast Fourier transform – FFT ).

Непрерывное преобразование Фурье

Преобразование Фурье является математическим инструментом, применяемым в различных научных областях. В некоторых случаях его можно использовать как средство решения сложных уравнений, описывающих динамические процессы, которые возникают под воздействием электрической, тепловой или световой энергии. В других случаях оно позволяет выделять регулярные составляющие в сложном колебательном сигнале, благодаря чему можно правильно интерпретировать экспериментальные наблюдения в астрономии, медицине и химии. Непрерывное преобразование фактически является обобщением рядов Фурье при условии, что период разлагаемой функции устремить к бесконечности. Таким образом, классическое преобразование Фурье имеет дело со спектром сигнала, взятым во всем диапазоне существования переменной.

Существует несколько видов записи непрерывного преобразования Фурье, отличающихся друг от друга значением коэффициента перед интегралом (две формы записи):

или

где и - Фурье-образ функцииили частотный спектр функции ;

- круговая частота.

Следует отметить, что разные виды записи встречаются в различных областях науки и техники. Нормировочный коэффициент необходим для корректного масштабирования сигнала из частотной области во временную. Нормировочный коэффициент уменьшает амплитуду сигнала на выходе обратного преобразования для того чтобы она совпадала с амплитудой исходного сигнала. В математической литературе прямое и обратное преобразование Фурье умножаются на множитель , в то время как в физике чаще всего при прямом преобразовании множитель не ставят, а при обратном ставят множитель . Если последовательно рассчитать прямое преобразование Фурье некоторого сигнала, а после взять обратное преобразование Фурье, то результат обратного преобразования должен полностью совпадать с исходным сигналом.

Если функция нечетная на интервале (−∞, +∞), то преобразование Фурье может быть представлено через синус-функцию:

Если функция четная на интервале (−∞, +∞), то преобразование Фурье может быть представлено через косинус-функцию:

Таким образом, непрерывное преобразование Фурье позволяет представить непериодическую функцию в виде интеграла функции, представляющей в каждой своей точке коэффициент ряда Фурье для непериодической функции.

Преобразование Фурье является обратимым, то есть если по функции был рассчитан ее Фурье-образ , то по Фурье-образу можно однозначно восстановить исходную функцию . Под обратным преобразованием Фурье понимают интеграл вида (две формы записи):

или

где - Фурье-образ функцииили частотный спектр функции ;

- круговая частота.

Если функция нечетная на интервале (−∞, +∞), то обратное преобразование Фурье может быть представлено через синус-функцию:

Если функция четная на интервале (−∞, +∞), то обратное преобразование Фурье может быть представлено через косинус-функцию:

В качестве примера, рассмотрим следующую функцию . График исследуемой экспоненциальной функции представлен ниже.

Поскольку функция является четной функцией, то непрерывное преобразование Фурье будет определяться следующим образом:

В результате получили зависимость изменения исследуемой экспоненциальной функции на частотном интервале (см. ниже).

Непрерывное преобразование Фурье используют, как правило, в теории при рассмотрении сигналов, которые изменяются в соответствии с заданными функциями, но на практике обычно имеют дело с результатами измерений, которые представляют собой дискретные данные. Результаты измерений фиксируются через равные промежутки времени с определённой частотой дискретизации, например, 16000 Гц или 22000 Гц. Однако в общем случае дискретные отсчёты могут идти неравномерно, но это усложняет математический аппарат анализа, поэтому на практике обычно не применяется.

Существует важная теорема Котельникова (в иностранной литературе встречается название «теорема Найквиста-Шеннона», «теорема отсчетов»), которая гласит, что аналоговый периодический сигнал, имеющий конечный (ограниченный по ширине) спектр (0…fmax), может быть однозначно восстановлен без искажений и потерь по своим дискретным отсчётам, взятым с частотой, большей или равной удвоенной верхней частоте спектра - частота дискретизации (fдискр >= 2*fmax). Другими словами, при частоте дискретизации 1000 Гц из аналогового периодического сигнала можно восстановить сигнал с частотой до 500 Гц. Следует отметить, что дискретизация функции по времени приводит к периодизации ее спектра, а дискретизация спектра по частоте приводит к периодизации функции.

Это одно из преобразований Фурье, широко применяемых в алгоритмах цифровой обработки сигналов.

Прямое дискретное преобразование Фурье ставит в соответствие временной функции , которая определена N-точками измерений на заданном временном интервале, другую функцию , которая определена на частотном интервале. Следует отметить, что функция на временном интервале задается с помощью N-отсчетов, а функция на частотном интервале задается с помощью K-кратного спектра.

k ˗ индекс частоты.

Частота k-го сигнала определяется по выражению

где T - период времени, в течение которого брались входные данные.

Прямое дискретное преобразование может быть переписано через вещественную и мнимую составляющие. Вещественная составляющая представляет собой массив, содержащий значения косинусоидальных составляющих, а мнимая составляющая представляет собой массив, содержащий значения синусоидальных составляющих.

Из последних выражений видно, что преобразование раскладывает сигнал на синусоидальные составляющие (которые называются гармониками) с частотами от одного колебания за период до N колебаний за период.

Дискретное преобразование Фурье имеет особенность, так как дискретная последовательность может быть получена суммой функций с различным составом гармонического сигнала. Другими словами, дискретная последовательность раскладывается на гармонические переменные – неоднозначно. Поэтому при разложении дискретной функции с помощью дискретного преобразования Фурье во второй половине спектра возникают высокочастотные составляющие, которых не было в оригинальном сигнале. Данный высокочастотный спектр является зеркальным отображением первой части спектра (в части частоты, фазы и амплитуды). Обычно вторая половина спектра не рассматривается, а амплитуды сигнала первой части спектра - удваиваются.

Следует отметить, что разложение непрерывной функции не приводит к появлению зеркального эффекта, так как непрерывная функция однозначно раскладывается на гармонические переменные.

Амплитуда постоянной составляющей является средним значением функции за выбранный промежуток времени и определяется следующим образом:

Амплитуды и фазы частотных составляющих сигнала определяются по следующим соотношениям:

Полученные значения амплитуды и фазы называют полярным представлением (polar notation). Результирующий вектор сигнала будет определяться следующим образом:

Рассмотрим алгоритм преобразования дискретно заданной функции на заданном интервале (на заданном периоде) с количеством исходных точек

Д искретное преобразование Фурье

В результате преобразования получаем вещественное и мнимое значение функции , которая определена на частотном диапазоне.

Обратное дискретное преобразование Фурье ставит в соответствие частотной функции , которая определена K-кратным спектром на частотном интервале, другую функцию , которая определена на временном интервале.

N ˗ количество значений сигнала, измеренных за период, а также кратность частотного спектра;

k ˗ индекс частоты.

Как уже было сказано, дискретное преобразование Фурье N-точкам дискретного сигнала ставит в соответствие N-комплексных спектральных отсчетов сигнала . Для вычисления одного спектрального отсчета требуется N операций комплексного умножения и сложения. Таким образом, вычислительная сложность алгоритма дискретного преобразования Фурье является квадратичной, другими словами требуется операций комплексного умножения и сложения.

Преобразование Фурье - преобразование, сопоставляющее функции некой вещественной переменной. Данная операция выполняется каждый раз, когда мы воспринимаем различные звуки. Ухо производит автоматическое «вычисление», выполнить которое наше сознание способно только после изучения соответствующего раздела высшей математики. Орган слуха у человека строит преобразование, в результате которого звук (колебательное движение условных частиц в упругой среде, которые распространяются в волновом виде в твердой, жидкой или газообразной среде) предоставляется в виде спектра последовательно идущих значений уровня громкости тонов разной высоты. После этого мозг превращает данную информацию в привычный всем звук.

Математическое преобразование Фурье

Преобразование звуковых волн или других колебательных процессов (от светового излучения и океанского прилива и до циклов звездной или солнечной активности) можно проводить и с помощью математических методов. Так, пользуясь данными приемами, можно разложить функции, представив колебательные процессы набором синусоидальных составляющих, то есть волнообразных кривых, которые переходят от минимума к максимуму, затем снова к минимуму, подобно морской волне. Преобразование Фурье - преобразование, функция которого описывает фазу или амплитуду каждой синусоиды, отвечающей определенной частоте. Фаза представляет собой начальную точку кривой, а амплитуда - ее высоту.

Преобразование Фурье (примеры приведены на фото) является весьма мощным инструментарием, который применяется в разнообразных областях науки. В отдельных случаях он используется в качестве средства решения довольно сложных уравнений, которые описывают динамические процессы, возникающие под воздействием световой, тепловой или электрической энергии. В иных случаях он позволяет определять регулярные составляющие в сложных колебательных сигналах, благодаря этому можно верно интерпретировать различные экспериментальные наблюдения в химии, медицине и астрономии.

Историческая справка

Первым человеком, применившим данный метод, стал французский математик Жан Батист Фурье. Преобразование, названное впоследствии его именем, изначально использовалось для описания механизма теплопроводности. Фурье всю свою сознательную жизнь занимался изучением свойств тепла. Он внес огромный вклад в математическую теорию определения корней алгебраических уравнений. Фурье являлся профессором анализа в Политехнической школе, секретарем Института египтологии, состоял на императорской службе, на которой отличился во время строительства дороги на Турин (под его руководством было осушено более 80 тысяч квадратных километров малярийных болот). Однако вся эта активная деятельность не помешала ученому заниматься математическим анализом. В 1802 году им было выведено уравнение, которое описывает распространение тепла в твердых телах. В 1807 году ученый открыл метод решения данного уравнения, которое и получило название "преобразование Фурье".

Анализ теплопроводности

Ученый применил математический метод для описания механизма теплопроводности. Удобным примером, в котором не возникает трудностей с вычислением, является распространение тепловой энергии по железному кольцу, погруженному одной частью в огонь. Для проведения опытов Фурье накалял докрасна часть этого кольца и закапывал его в мелкий песок. После этого проводил замеры температуры на противоположной его части. Первоначально распределение тепла является нерегулярным: часть кольца - холодная, а другая - горячая, между данными зонами можно наблюдать резкий градиент температуры. Однако в процессе распространения тепла по всей поверхности металла она становится более равномерной. Так, вскоре данный процесс приобретает вид синусоиды. Сначала график плавно нарастает и так же плавно убывает, точно по законам изменения функции косинуса или синуса. Волна постепенно выравнивается и в результате температура становится одинаковой на всей поверхности кольца.

Автор данного метода предположил, что начальное нерегулярное распределение вполне можно разложить на ряд элементарных синусоид. Каждая из них будет иметь свою фазу (первоначальное положение) и свой температурный максимум. При этом каждая такая компонента изменяется от минимума к максимуму и обратно на полном обороте вокруг кольца целое число раз. Составляющая, имеющая один период, была названа основной гармоникой, а значение с двумя и более периодами - второй и так далее. Так, математическая функция, которая описывает температурный максимум, фазу или позицию называет преобразованием Фурье от функции распределения. Ученый свел единую составляющую, которая трудно поддается математическому описанию, к удобному в обращении инструменту - рядам косинуса и синуса, в сумме дающим исходное распределение.

Суть анализа

Применяя данный анализ к преобразованию распространения тепла по твердому предмету, имеющему кольцевую форму, математик рассудил, что повышение периодов синусоидальной компоненты приведет к ее быстрому затуханию. Это хорошо прослеживается на основной и второй гармониках. В последней температура дважды достигает максимального и минимального значений на одном проходе, а в первой - только один раз. Получается, что расстояние, преодолеваемое теплом во второй гармонике, будет вдвое меньше, чем в основной. Кроме того, градиент во второй также будет вдвое круче, чем у первой. Следовательно, поскольку более интенсивный тепловой поток проходит расстояние вдове меньшее, то данная гармоника будет затухать в четыре раза быстрее, чем основная, как функция времени. В последующих данный процесс будет проходить еще быстрее. Математик считал, что данный метод позволяет рассчитать процесс первоначального распределения температуры во времени.

Вызов современникам

Алгоритм преобразования Фурье стал вызовом теоретическим основам математики того времени. В начале девятнадцатого века большинство выдающихся ученых, в том числе и Лагранж, Лаплас, Пуассон, Лежандр и Био, не приняли его утверждение о том, что начальное распределение температуры раскладывается на составляющие в виде основной гармоники и более высокочастотные. Однако академия наук не могла проигнорировать результаты, полученные математиком, и удостоила его премии за теорию законов теплопроводности, а также проведение сравнения ее с физическими экспериментами. В подходе Фурье главное возражение вызывал тот факт, что разрывная функция представлена суммой нескольких синусоидальных функций, которые являются непрерывными. Ведь они описывают разрывающиеся прямые и кривые линии. Современники ученого никогда не сталкивались с подобной ситуацией, когда разрывные функции описывались комбинацией непрерывных, таких как квадратичная, линейная, синусоида либо экспонента. В том случае, если математик был прав в своих утверждениях, то сумма бесконечного ряда тригонометрической функции должна сводиться к точной ступенчатой. В то время подобное утверждение казалось абсурдным. Однако, несмотря на сомнения, некоторые исследователи (например Клод Навье, Софи Жермен) расширили сферу исследований и вывели их за пределы анализа распределения тепловой энергии. А математики тем временем продолжали мучиться вопросом о том, может ли сумма нескольких синусоидальных функций сводиться к точному представлению разрывной.

200-летняя история

Данная теория развивалась на протяжении двух столетий, на сегодняшний день она окончательно сформировалась. С ее помощью пространственные или временные функции разбиваются на синусоидальные составляющие, которые имеют свою частоту, фазу и амплитуду. Данное преобразование получается двумя разными математическими методами. Первый из них применяется в том случае, когда исходная функция является непрерывной, а второй - в том случае, когда она представлена множеством дискретных отдельных изменений. Если выражение получено из значений, которые определены дискретными интервалами, то его можно разбить на несколько синусоидальных выражений с дискретными частотами - от наиболее низкой и далее вдвое, втрое и так далее выше основной. Такую сумму принято называть рядом Фурье. Если начальное выражение задано значением для каждого действительного числа, то его можно разложить на несколько синусоидальных всех возможных частот. Его принято называть интегралом Фурье, а решение подразумевает под собой интегральные преобразования функции. Независимо от способа получения преобразования, для каждой частоты следует указывать два числа: амплитуду и частоту. Данные значения выражаются в виде единого Теория выражений комплексных переменных совместно с преобразованием Фурье позволила проводить вычисления при конструировании различных электрических цепей, анализ механических колебаний, изучение механизма распространения волн и другое.

Преобразование Фурье сегодня

В наши дни изучение данного процесса в основном сводится к нахождению эффективных методов перехода от функции к ее преобразованному виду и обратно. Такое решение называется прямое и обратное преобразование Фурье. Что это значит? Для того чтобы и произвести прямое преобразование Фурье, можно воспользоваться математическими методами, а можно и аналитическими. Несмотря на то что при их использовании на практике возникают определенные трудности, большинство интегралов уже найдены и внесены в математические справочники. С помощью численных методов можно рассчитывать выражения, форма которых основывается на экспериментальных данных, либо функции, интегралы которых в таблицах отсутствуют и их сложно представить в аналитической форме.

До появления вычислительной техники расчеты таких преобразований были весьма утомительными, они требовали ручного выполнения большого количества арифметических операций, которые зависели от числа точек, описывающих волновую функцию. Для облегчения расчетов сегодня существуют специальные программы, позволившие реализовать новые Так, в 1965 году Джеймс Кули и Джон Тьюки создали программное обеспечение, получившее известность как «быстрое преобразование Фурье». Оно позволяет экономить время проведения расчетов за счет уменьшения числа умножений при анализе кривой. Метод «быстрое преобразование Фурье» основан на делении кривой на большое число равномерных выборочных значений. Соответственно количество умножений снижается вдвое при таком же снижении количества точек.

Применение преобразования Фурье

Данный процесс используется в различных областях науки: в физике, обработке сигналов, комбинаторике, теории вероятности, криптографии, статистике, океанологии, оптике, акустике, геометрии и других. Богатые возможности его применения основаны на ряде полезных особенностей, которые получили название "свойства преобразования Фурье". Рассмотрим их.

1. Преобразование функции является линейным оператором и с соответствующей нормализацией является унитарным. Данное свойство известно как теорема Парсеваля, или в общем случае теорема Планшереля, или дуализм Понтрягина.

2. Преобразование является обратимым. Причем обратный результат имеет практически аналогичную форму, как и при прямом решении.

3. Синусоидальные базовые выражения являются собственными дифференцированными функциями. Это означает, что такое представление изменяет с постоянным коэффициентом в обычные алгебраические.

4. Согласно теореме «свертки», данный процесс превращает сложную операцию в элементарное умножение.

5. Дискретное преобразование Фурье может быть быстро рассчитано на компьютере с использованием «быстрого» метода.

Разновидности преобразования Фурье

1. Наиболее часто данный термин используется для обозначения непрерывного преобразования, предоставляющего любое квадратично интегрируемое выражение в виде суммы комплексных показательных выражений с конкретными угловыми частотами и амплитудами. Данный вид имеет несколько различных форм, которые могут отличаться постоянными коэффициентами. Непрерывный метод включает в себя таблицу преобразований, которую можно найти в математических справочниках. Обобщенным случаем является дробное преобразование, посредством которого данный процесс можно возвести в необходимую вещественную степень.

2. Непрерывный способ является обобщением ранней методики рядов Фурье, определенных для различных периодических функций или выражений, которые существуют в ограниченной области и представляют их как ряды синусоид.

3. Дискретное преобразование Фурье. Этот метод используется в компьютерной технике для проведения научных расчетов и для цифровой обработки сигналов. Для проведения данного вида расчетов требуется иметь функции, определяющие на дискретном множестве отдельные точки, периодические или ограниченные области вместо непрерывных интегралов Фурье. Преобразование сигнала в таком случае представлено как сумма синусоид. При этом использование «быстрого» метода позволяет применять дискретные решения для любых практических задач.

4. Оконное преобразование Фурье является обобщенным видом классического метода. В отличие от стандартного решения, когда используется который взят в полном диапазоне существования данной переменной, здесь особый интерес представляет всего лишь локальное распределение частоты при условии сохранения изначальной переменной (время).

5. Двумерное преобразование Фурье. Данный метод используется для работы с двумерными массивами данных. В таком случае сначала преобразование производится в одном направлении, а затем - в другом.

Заключение

Сегодня метод Фурье прочно закрепился в различных областях науки. Например, в 1962 году была открыта форма двойной ДНК-спирали с использованием анализа Фурье в сочетании с Последние фокусировались на кристаллах волокон ДНК, в результате изображение, которое получалось при дифракции излучения, фиксировались на пленке. Данная картинка дала информацию о значении амплитуды при использовании преобразования Фурье к данной кристаллической структуре. Данные о фазе получили путем сопоставления дифракционной карты ДНК с картами, которые получены при анализе подобных химических структур. В результате биологи восстановили кристаллическую структуру - исходную функцию.

Преобразования Фурье играют огромную роль в изучении космического пространства, физики полупроводниковых материалов и плазмы, микроволновой акустике, океанографии, радиолокации, сейсмологии и медицинских обследованиях.

Эти преобразования являются функциональными, так как они преобразовывают некоторую функцию переменного в совершенно иную функцию переменного , и наоборот.

Преобразования Фурье имеют вид:

Интегральное уравнение (4.34) называется прямым, а уравнение (4.35) - обратным преобразованием Фурье. Сокращенная форма записи этих уравнений

Интеграл Фурье (прямое преобразование Фурье) позволяет разложить непериодическую функцию обладающую свойством абсолютной интегрируемости в заданных пределах, в бесконечный ряд гармоник, образующих непрерывный спектр частот в интервале от до с бесконечно малым интервалом частот между смежными гармониками (т. е. в пределе

Метод преобразования Фурье непригоден при ненулевых начальных (или граничных) условиях. Этот метод может применяться лишь тогда, когда искомые функции имеют изображение Фурье, т. е. для абсолютно интегрируемых функций времени, удовлетворяющих неравенству

Наиболее часто встречающимися в теории регулирования функциями являются единичная ступенчатая функция (1.44) и произведение синусоидальной функции на единичную функцию (1.51). Преобразование Фурье неприменимо ни к одной из этих функций, так как не удовлетворяется условие (4.38).

Указанные недостатки ограничивают использование метода преобразования Фурье.

Чтобы применить интеграл Фурье, необходимо выбрать функцию, Достаточно близкую к исследуемой, например, к ступенчатой функции при конечных значениях но в то же время удовлетворяющую условию (4.38). Такую функцию можно получить, умножив

ступенчатую функцию на где с - достаточно малая положительная величина. Вновь полученная вспомогательная функция

Устремляя с к нулю и делая предельный переход, можно от вспомогательной функции перейти к основной Кроме того, если ограничиться функциями , тождественно равными нулю при то для большого класса функций будет справедливо условие (4.38) и можно найти частотный спектр функции, используя выражение (4.34). Вместо введем новое обозначение так как эта величина теперь зависит и от с:

Положив с находим

Эта формула совпадает с прямым преобразованием Лапласа (4.9).

Отсюда следует, что преобразование Фурье можно рассматривать как частный случай преобразования Лапласа.

Изложенные выше методы преобразований позволяют сделать следующие заключения:

1) интегро-дифференциальные уравнения заменяются алгебраическими уравнениями;

2) отпадает операция определения постоянных интегрирования, так как начальные условия учитываются с самого начала при нахождении изображения искомой величины;

3) операция определения корней характеристического уравнения полностью сохраняется.

Наиболее удобным для решения практических задач является метод преобразования Лапласа. В несколько измененной форме он может быть применен к исследованию дискретных САУ (см. гл. 7).

Рассмотрим использование метода преобразований Лапласа для решения дифференциального уравнения вида

Преобразуем это дифференциальное уравнение, используя прямое преобразование Лапласа (4.9) и теоремы 1 и 2. В результате получим алгебраическое уравнение, записанное для изображений:

где - сумма всех членов, содержащих начальные условия.

Отсюда находится изображение искомой функции

При нулевых начальных условиях выражения (4.41) и (4.42) упрощаются:

Зная изображение искомой функции можно найти оригинал например, по таблицам изображений.

Если изображение искомой величины представляет собой рациональную алгебраическую дробь, то ее стараются записать в виде суммы простых дробей с постоянными коэффициентами. Обратное преобразование для каждой из этих простых дробей может быть получено из таблиц, а окончательное выражение оригинала представлено как сумма отдельных найденных значений. Для определения оригинала можно также воспользоваться теоремой разложения.

Если изображение Лапласа представляет собой рациональную алгебраическую дробь вида

Рассмотрим основные свойства преобразования Фурье.

Линейность . Рассмотрим функции и
, имеющие спектры
и
:

(12)

Тогда спектр их линейной комбинации будет:

Задержка во времени . Считаем, что известен спектр
сигнала

(14)

Рассчитаем спектр сигнала, сдвинутого во времени:
. Обозначим аргумент функции новой переменной
, тогда
и

Получили, что задержка сигнала на время приводит к умножению спектра на
.

Изменение масштаба. Считаем, что известен спектр
сигнала
, как через
выражается спектр сигнала
. Вводим новую переменную
, делаем замену переменной интегрирования
.

(16)

Умножение на
. Как и в предыдущем случае, считаем, что известен спектр
сигнала
. Найдем спектр этого сигнала, умноженного на
.

Таким образом, умножение сигнала на
приводит к смещению спектра на.

Спектр производной. В данном случае ключевым моментом является абсолютная интегрируемость функции. Из того, что интеграл от модуля функции должен быть ограничен, следует, что на бесконечности функция должна стремиться к нулю. Интеграл от производной функции берётся по частям, получившиеся внеинтегральные слагаемые равны нулю, так как на бесконечности функция стремится к нулю.

(18)

Спектр интеграла. Найдем спектр сигнала
. Причём будем считать, что
, то есть у сигнала отсутствует постоянная составляющая. Это требование необходимо, чтобы внеинтегральные слагаемые были равны нулю, когда интеграл берётся по частям.

(19)

Теорема о свёртке. Известно, что
и
спектры функций
и
соответственно. Требуется выразить спектр свертки
через
и
. Для этого в интеграле Фурье от свёртки у одной из функций выполним замену переменой
, тогда в показателе экспоненты можно сделать замену
. В результате такой замены двукратный интеграл будет равен произведению двух интегралов Фурье.

(20)

Преобразование Фурье свёртки двух сигналов даёт произведение спектров этих сигналов.

Произведение сигналов. Известно, что
и
– спектры функций
и
соответственно. Требуется выразить спектр произведения
через спектры
и
. Подставим в интеграл Фурье вместо одного из сигналов, например
, его выражение через обратное преобразование Фурье, а потом поменяем порядок интегрирования.

(21)

Спектр произведения сигналов есть свёртка спектров этих сигналов.

Спектр дискретного сигнала

Особое внимание стоит уделить дискретным сигналам, так как именно такие сигналы используются в цифровой обработке. Дискретный сигнал в отличие от непрерывного является последовательностью чисел, соответствующих значениям непрерывного сигнала в определённые моменты времени. Условно дискретный сигнал можно рассматривать как непрерывный сигнал, который в определённые моменты времени принимает какие-то значения, а в остальное время равен нулю. Таким образом, например, дискретный
сигнал может быть задан как произведение непрерывного сигнала
на последовательность периодически повторяющихся прямоугольных импульсов
– тактирующих импульсов (рис.1).

Рис. 1. Дискретизация сигнала.

(22)

Прямоугольные импульсы имеют длительность , период повторения:

(23)

Амплитуда импульса выбрана таким образом, чтобы интеграл импульса по периоду равнялся . При этом тактирующие импульсы безразмерны. Разложим последовательность таких импульсов в тригонометрический ряд:

(24)

Чтобы получить мгновенные отсчёты сигнала
, надо устремить длительность импульсов к нулю:
. Такой тактирующий сигнал назовём идеальным. При этом коэффициенты разложения
в ряд Фурье все будут равны 1.

(25)

Точно такой же вид имеет разложение в ряд Фурье функции:

(26)

Коэффициенты разложения в тригонометрический ряд тактирующего сигнала
:

(27)

Тогда дискретный сигнал будет иметь вид:

При вычислении преобразования Фурье дискретного сигнала меняем местами операцию суммировании и интегрирования, а потом используем свойство δ -функции:

Спектр дискретного сигнала является периодической функцией. Рассмотрим экспоненту в отельном слагаемом
как функцию частоты. Её период повторения равен. Самый большой период повторения у слагаемых с номерами
, и это, соответственно, будет периодом повторения всего спектра. То есть спектр дискретного сигнала имеет период повторения, равный частоте квантования
.

Получим ещё одно представление
. В силу того, что
является произведением функций
и
, спектр дискретного сигнала
вычисляется как свёртка спектров непрерывного сигнала
и спектра тактирующего сигнала
.

(30)

Вычислим
, используя (25). Так как
периодическая функция, её спектр дискретный.

Таким образом, свёртка (30)

Из выражения (32) следует, что спектр дискретного сигнала представляет собой периодически повторяющуюся функцию
.

Сам факт того, что в результате дискретизации в спектре сигнала происходят качественные изменения, говорит о том, что исходный сигнал может быть искажён, так как он полностью определяется своим спектром. Однако с другой стороны периодическое повторение одного и того же спектра само по себе не вносит ничего нового в спектр, поэтому при определённых условиях, зная значения сигнала в отдельные моменты времени, можно найти какое значение этот сигнал принимал в любой другой момент времени, то есть получить исходный непрерывный сигнал. В этом состоит смысл теоремы Котельникова, которая накладывает условие на выбор частоты квантования в соответствии с максимальной частотой в спектре сигнала.

Если это условие нарушено, то после оцифровки сигнала произойдёт наложение периодически повторяющегося спектра (рис. 2). Получившийся в результате наложения спектр будет соответствовать другому сигналу.

Рис. 2. Перекрывание спектров.

Этот ряд может быть также записан в виде:

(2),
где , k-я комплексная амплитуда.

Связь между коэффициентами (1) и (3) выражается следующими формулами:

Отметим, что все эти три представления ряда Фурье совершенно равнозначны. Иногда при работе с рядами Фурье бывает удобнее использовать вместо синусов и косинусов экспоненты мнимого аргумента, то есть использовать преобразование Фурье в комплексной форме. Но нам удобно использовать формулу (1), где ряд Фурье представлен в виде суммы косинусоид с соответствующими амплитудами и фазами. В любом случае неправильно говорить, что результатом преобразования Фурье действительного сигнала будут комплексные амплитуды гармоник. Как правильно говорится в Вики «Преобразование Фурье (?) - операция, сопоставляющая одной функции вещественной переменной другую функцию, также вещественной переменной.»

Итого:
Математической основой спектрального анализа сигналов является преобразование Фурье.

Преобразование Фурье позволяет представить непрерывную функцию f(x) (сигнал), определенную на отрезке {0, T} в виде суммы бесконечного числа (бесконечного ряда) тригонометрических функций (синусоид и\или косинусоид) с определёнными амплитудами и фазами, также рассматриваемых на отрезке {0, T}. Такой ряд называется рядом Фурье.

Отметим еще некоторые моменты, понимание которых требуется для правильного применения преобразования Фурье к анализу сигналов. Если рассмотреть ряд Фурье (сумму синусоид) на всей оси Х, то можно увидеть, что вне отрезка {0, T} функция представленная рядом Фурье будет будет периодически повторять нашу функцию.

Например, на графике рис.7 исходная функция определена на отрезке {-T\2, +T\2}, а ряд Фурье представляет периодическую функцию, определенную на всей оси х.

Это происходит потому, что синусоиды сами являются периодическими функциями, соответственно и их сумма будет периодической функцией.


рис.7 Представление непериодической исходной функции рядом Фурье

Таким образом:

Наша исходная функция - непрерывная, непериодическая, определена на некотором отрезке длиной T.
Спектр этой функции - дискретный, то есть представлен в виде бесконечного ряда гармонических составляющих - ряда Фурье.
По факту, рядом Фурье определяется некоторая периодическая функция, совпадающая с нашей на отрезке {0, T}, но для нас эта периодичность не существенна.

Периоды гармонических составляющих кратны величине отрезка {0, T}, на котором определена исходная функция f(x). Другими словами, периоды гармоник кратны длительности измерения сигнала. Например, период первой гармоники ряда Фурье равен интервалу Т, на котором определена функция f(x). Период второй гармоники ряда Фурье равен интервалу Т/2. И так далее (см. рис. 8).


рис.8 Периоды (частоты) гармонических составляющих ряда Фурье (здесь Т=2?)

Соответственно, частоты гармонических составляющих кратны величине 1/Т. То есть частоты гармонических составляющих Fk равны Fk= к\Т, где к пробегает значения от 0 до?, например к=0 F0=0; к=1 F1=1\T; к=2 F2=2\T; к=3 F3=3\T;… Fk= к\Т (при нулевой частоте - постоянная составляющая).

Пусть наша исходная функция, представляет собой сигнал, записанный в течение Т=1 сек. Тогда период первой гармоники будет равен длительности нашего сигнала Т1=Т=1 сек и частота гармоники равна 1 Гц. Период второй гармоники будет равен длительности сигнала, деленной на 2 (Т2=Т/2=0,5 сек) и частота равна 2 Гц. Для третьей гармоники Т3=Т/3 сек и частота равна 3 Гц. И так далее.

Шаг между гармониками в этом случае равен 1 Гц.

Таким образом сигнал длительностью 1 сек можно разложить на гармонические составляющие (получить спектр) с разрешением по частоте 1 Гц.
Чтобы увеличить разрешение в 2 раза до 0,5 Гц - надо увеличить длительность измерения в 2 раза - до 2 сек. Сигнал длительностью 10 сек можно разложить на гармонические составляющие (получить спектр) с разрешением по частоте 0,1 Гц. Других способов увеличить разрешение по частоте нет.

Существует способ искусственного увеличения длительности сигнала путем добавления нулей к массиву отсчетов. Но реальную разрешающую способность по частоте он не увеличивает.

3. Дискретные сигналы и дискретное преобразование Фурье

С развитием цифровой техники изменились и способы хранения данных измерений (сигналов). Если раньше сигнал мог записываться на магнитофон и храниться на ленте в аналоговом виде, то сейчас сигналы оцифровываются и хранятся в файлах в памяти компьютера в виде набора чисел (отсчетов).

Обычная схема измерения и оцифровки сигнала выглядит следующим образом.


рис.9 Схема измерительного канала

Сигнал с измерительного преобразователя поступает на АЦП в течение периода времени Т. Полученные за время Т отсчеты сигнала (выборка) передаются в компьютер и сохраняются в памяти.


рис.10 Оцифрованный сигнал - N отсчетов полученных за время Т

Какие требования выдвигаются к параметрам оцифровки сигнала? Устройство, преобразующее входной аналоговый сигнал в дискретный код (цифровой сигнал) называется аналого-цифровой преобразователь (АЦП, англ. Analog-to-digital converter, ADC) (Wiki).

Одним из основных параметров АЦП является максимальная частота дискретизации (или частота семплирования, англ. sample rate) - частота взятия отсчетов непрерывного во времени сигнала при его дискретизации. Измеряется в герцах. ((Wiki))

Согласно теореме Котельникова, если непрерывный сигнал имеет спектр, ограниченный частотой Fмакс, то он может быть полностью и однозначно восстановлен по его дискретным отсчетам, взятым через интервалы времени , т.е. с частотой Fd ? 2*Fмакс, где Fd - частота дискретизации; Fмакс - максимальная частота спектра сигнала. Другими слова частота оцифровки сигнала (частота дискретизации АЦП) должна как минимум в 2 раза превышать максимальную частоту сигнала, который мы хотим измерить.

А что будет, если мы будем брать отсчеты с меньшей частотой, чем требуется по теореме Котельникова?

В этом случае возникает эффект «алиасинга» (он же стробоскопический эффект, муаровый эффект), при котором сигнал высокой частоты после оцифровки превращается в сигнал низкой частоты, которого на самом деле не существует. На рис. 5 красная синусоида высокой частоты - это реальный сигнал. Синяя синусоида более низкой частоты - фиктивный сигнал, возникающий вследствие того, за время взятия отсчета успевает пройти больше, чем пол-периода высокочастотного сигнала.


Рис. 11. Появление ложного сигнала низкой частоты при недостаточно высокой частоте дискретизации

Чтобы избежать эффекта алиасинга перед АЦП ставят специальный антиалиасинговый фильтр - ФНЧ (фильтр нижних частот), который пропускает частоты ниже половины частоты дискретизации АЦП, а более высокие частоты зарезает.

Для того, чтобы вычислить спектр сигнала по его дискретным отсчетам используется дискретное преобразование Фурье (ДПФ). Отметим еще раз, что спектр дискретного сигнала «по определению» ограничен частотой Fмакс, меньшей половине частоты дискретизации Fd. Поэтому спектр дискретного сигнала может быть представлен суммой конечного числа гармоник, в отличие от бесконечной суммы для ряда Фурье непрерывного сигнала, спектр которого может быть неограничен. Согласно теореме Котельникова максимальная частота гармоники должна быть такой, чтобы на нее приходилось как минимум два отсчета, поэтому число гармоник равно половине числа отсчетов дискретного сигнала. То есть если в выборке имется N отсчетов, то число гармоник в спектре будет равно N/2.

Рассмотрим теперь дискретное преобразование Фурье (ДПФ).

Сравнивая с рядом Фурье

Видим, что они совпадают, за исключением того, что время в ДПФ имеет дискретный характер и число гармоник ограничено величиной N/2 - половиной числа отсчетов.

Формулы ДПФ записываются в безразмерных целых переменных k, s, где k – номера отсчетов сигнала, s – номера спектральных составляющих.
Величина s показывает количество полных колебаний гармоники на периоде Т (длительности измерения сигнала). Дискретное преобразование Фурье используется для нахождения амплитуд и фаз гармоник численным методом, т.е. «на компьютере»

Возвращаясь к результатам, полученным в начале. Как уже было сказано выше, при разложении в ряд Фурье непериодической функции (нашего сигнала), полученный ряд Фурье фактически соответствует периодической функции с периодом Т. (рис.12).


рис.12 Периодическая функция f(x) с периодом Т0, с периодом измерения Т>T0

Как видно на рис.12 функция f(x) периодическая с периодом Т0. Однако из-за того, что длительность измерительной выборки Т не совпадает с периодом функции Т0, функция, получаемая как ряд Фурье, имеет разрыв в точке Т. В результате спектр данной функции будет содержать большое количество высокочастотных гармоник. Если бы длительность измерительной выборки Т совпадала с периодом функции Т0, то в полученном после преобразования Фурье спектре присутствовала бы только первая гармоника (синусоида с периодом равным длительности выборки), поскольку функция f(x) представляет собой синусоиду.

Другими словами, программа ДПФ «не знает», что наш сигнал представляет собой «кусок синусоиды», а пытается представить в виде ряда периодическую функцию, которая имеет разрыв из-за нестыковки отдельных кусков синусоиды.

В результате в спектре появляются гармоники, которые должны в сумме изобразить форму функции, включая этот разрыв.

Таким образом, чтобы получить «правильный» спектр сигнала, являющегося суммой нескольких синусоид с разными периодами, необходимо чтобы на периоде измерения сигнала укладывалось целое число периодов каждой синусоиды. На практике это условие можно выполнить при достаточно большой длительности измерения сигнала.


Рис.13 Пример функции и спектра сигнала кинематической погрешности редуктора

При меньшей длительности картина будет выглядеть «хуже»:


Рис.14 Пример функции и спектра сигнала вибрации ротора

На практике бывает сложно понять, где «реальные составляющие», а где «артефакты», вызванные некратностью периодов составляющих и длительности выборки сигнала или «скачками и разрывами» формы сигнала. Конечно слова «реальные составляющие» и «артефакты» не зря взяты в кавычки. Наличие на графике спектра множества гармоник не означает, что наш сигнал в реальности из них «состоит». Это все равно что считать, будто число 7 «состоит» из чисел 3 и 4. Число 7 можно представить в виде суммы чисел 3 и 4 - это правильно.

Так и наш сигнал… а вернее даже не «наш сигнал», а периодическую функцию, составленную путем повторения нашего сигнала (выборки) можно представить в виде суммы гармоник (синусоид) с определенными амплитудами и фазами. Но во многих важных для практики случаях (см. рисунки выше) действительно можно связать полученные в спектре гармоники и с реальными процессами, имеющими циклический характер и вносящими значительный вклад в форму сигнала.

Некоторые итоги

1. Реальный измеренный сигнал, длительностью T сек, оцифрованный АЦП, то есть представленный набором дискретных отсчетов (N штук), имеет дискретный непериодический спектр, представленный набором гармоник (N/2 штук).

2. Сигнал представлен набором действительных значений и его спектр представлен набором действительных значений. Частоты гармоник положительны. То, что математикам бывает удобнее представить спектр в комплексной форме с использованием отрицательных частот не значит, что «так правильно» и «так всегда надо делать».

3. Сигнал, измеренный на отрезке времени Т определен только на отрезке времени Т. Что было до того, как мы начали измерять сигнал, и что будет после того - науке это неизвестно. И в нашем случае - неинтересно. ДПФ ограниченного во времени сигнала дает его «настоящий» спектр, в том смысле, что при определенных условиях позволяет вычислить амплитуду и частоту его составляющих.

Использованные материалы и другие полезные материалы.