Биографии Характеристики Анализ

Вечная батарейка карпена. Топливный элемент или вечная батарейка

Сегодня расскажу как сделать элемент питания, который сможет прослужить примерно пол года.







Сегодня расскажу как сделать элемент питания, который сможет прослужить примерно пол года или можете воспользоваться альтернативой, вот например солнечная батарея на 12 вольт производства Chinaland Solar Energy.

Нам понадобится :

  • корпус, это будет стеклянная банка, пластмассовая не подойдёт;

  • какой-то кусок серебра, в данном случае это ложка, она будет служить сердечником и так же будет участвовать в химической реакции;

  • медный провод, это может быть старая обмотка от каких-то старых электро-приборов;

  • пищевая плёнка, она будет служить для изоляции между слоями обмотки.

Для раствора, в котором будет всё это происходить :

  • уксус яблочный 6%, чайная ложка;

  • глицерин, он продаётся в любой аптеке, стоит десять рублей, четыре пузырька;

  • обычная поваренная соль мелкая, чайная ложка.

Для начала обмотаем ложку пищевой плёнкой, чтобы не было прямого контакта с медным проводом. Я обмотал ложку плёнкой, как видите верхний и нижний конец ложки оголены , это для того, чтобы было взаимодействие с раствором, теперь начнём обматывать проводом. Оставляем кусочек подлинней, это будет один из контактов и наматываем первый слой. Я намотал один слой, как видите витки не вплотную друг к другу , между ними должно быть пространство для изоляции. Теперь нужно снова намотать пищевую плёнку, я намотал второй слой, плёнку нужно мотать как можно свободнее, чтобы не затруднять поступление раствора между проводами и теперь нужно намотать второй слой провода и так далее, плёнку, затем провод и так пока не надоест.

Я намотал семь слоёв, как видите проволока намотана довольно свободно, но на результат это сильно повлиять не должно, конечно можно сделать это более тщательно и тогда напряжение будет немного выше, но в целом пойдёт и так.

Теперь приступим к приготовлению раствора :

  • насыпаем чайную ложку соли в стеклянную банку;

  • чайную ложку яблочного уксуса, немного помешаем;

  • четыре пузырька глицерина.

Раствор готов, соль растворилась, теперь можно погружать катушку. , на дисплее ноль, нужно подождать. Прошло семь часов, химическая реакция идёт полным ходом, жидкость немного потемнела и помутнела, посмотрим, что покажет вольтметр, он показывает вольта, будем ждать ещё. Прошло два дня, батарея набрала полную силу, посмотрим что покажет вольтметр: вольта. Батареей можно пользоваться, только зафиксировать катушку, чтобы не болталась и плотно закрыть крышку. Такая батарея отслужит приблизительно пол года, срок службы ограничен количеством серебра, которое находится внутри, в данном случае это ложка весом восемь грамм, её по моим расчётам должно хватить года на пол. Срок службы абсолютно не зависит от того, будет подсоединён какой-то потребитель или нет, то есть можно присоединить какую-то маленькую лампочку, фонарик и пол года можно не выключать, то есть пол года отработает вместе с ним, ну и тоже самое, если вы ничего подсоединять не будете, то через пол года всё равно срок службы подойдёт к концу, потому, что серебро растворится полностью и батарея функционировать перестанет. Такую батарею в магазине вы не встретите, прежде всего это связано с дороговизной изготовления и конечно же с ограниченным сроком хранения.

Вечная батарейка своими руками

Экология познания. Наука и техника: С каждым годом совершенствуется мобильная электроника, становясь все распространенее и доступнее: КПК, ноутбуки, мобильные и цифровые аппараты, фоторамки и пр. Все они все время пополняются

Топливный элемент своими руками дома

С каждым годом совершенствуется мобильная электроника, становясь все распространенее и доступнее: КПК, ноутбуки, мобильные и цифровые аппараты, фоторамки и пр. Все они все время пополняются новыми функциями, большими мониторами, беспроводной связью, более сильными процессорами, при этом, уменьшаясь в размерах. Технологии питания, в отличие от полупроводниковой техники, семимильными шагами не идут.

Имеющихся батарей и аккумуляторов для питания достижений индустрии становится недостаточно, поэтому вопрос альтернативных источников стоит очень остро. Топливные элементы на сегодняшний день являются наиболее перспективным направлением. Принцип их работы открт был еще в 1839 году Уильямом Гроуом, который электричество генерировал изменив электролиз воды.

Что такое топливные элементы?

Видео: Документальный фильм, топливные элементы для транспорта: прошлое, настоящее, будущее

Топливные элементы интересны производителям автомобилей, интересуются ими и создатели космических кораблей. В 1965 году они даже были испытаны Америкой на запущенном в космос корабле «Джемини-5», а позже и на «Аполлонах». Миллионы долларов вкладываются в исследования топливных элементов и сегодня, когда существуют проблемы, связанные с загрязнением окружающей среды, усиливающимися выбросомами парниковых газов, образующихся при сгорании органического топлива, запасы которого тоже не бесконечны.

Топливный элемент, часто называемый электрохимическим генератором, работает нижеописанным образом.

Являясь, как аккумуляторы и батарейки гальваническим элементом, но с тем отличием, что хранятся в нем активные вещества отдельно. На электроды они поступают по мере использования. На отрицательном электроде сгорает природное топливо или любое вещество из него полученное, которое может быть газообразным (водород, например, и окись углерода) или жидким, как спирты. На электроде положительном, как правило, реагирует кислород.

Но простой на вид принцип действия, в реальность воплотить не просто.

Топливный элемент своими руками

К сожалению у нас нет фотографий, как должен выглядить этот топливный элекмнт, надеямся на вашу фантазию.

Маломощный топливный элемент своими руками можно изготовить даже в условиях школьной лаборатории. Необходимо запастись старым противогазом, несколькими кусками оргстекла, щелочью и водным раствором этилового спирта (проще, водкой), которое будет служить для топливного элемента «горючим».


Прежде всего, необходим корпус для топливного элемента, изготовить который лучше из оргстекла, толщиной не менее пяти миллиметров. Внутренние перегородки (внутри пять отсеков) можно сделать немного тоньше – 3 см. Для склеивания оргстекла используют клей такого состава: в ста граммах хлороформа или дихлорэтана растворяют шесть грамм стружки из оргстекла (проводят работу под вытяжкой).

В наружной стенке теперь необходимо просверлить отверстие, в которое вставить нужно через резиновую пробку сливную стеклянную трубочку диаметром 5-6 сантиметров.

Все знают, что в таблице Менделеева в левом нижнем углу стоят наиболее активные металлы, а металлоиды высокой активности находятся в таблице в верхнем правом углу, т.е. способность отдавать электроны, усиливается сверху вниз и справа налево. Элементы, способные при определенных условиях проявлять себя как металлы или металлоиды, находятся в центре таблицы.

Теперь во второе и четвертое отделение насыпаем из противогаза активированный уголь (между первой перегородкой и второй, а также третьей и четвертой), который выполнять будет роль электродов. Чтобы через отверстия уголь не высыпался его можно поместить в капроновую ткань (подойдут женские капроновые чулки).

Топливо циркулировать будет в первой камере, в пятой должен быть поставщик кислорода – воздух. Между электродами будет находиться электролит, а для того, чтобы он не смог просочиться в воздушную камеру, нужно перед засыпкой в четвертую камеру угля для воздушного электролита, пропитать его раствором парафина в бензине (соотношение 2 грамма парафина на пол стакана бензина). На слой угля положить нужно (слегка вдавив) медные пластинки, к которым припаяны провода. Через них ток отводиться будет от электродов.

Осталось только зарядить элемент. Для этого и нужна водка, которую разбавить с водой нужно в 1:1. Затем осторожно добавить триста-триста пятьдесят граммов едкого калия. Для электролита в 200 граммах воды растворяют 70 граммов едкого калия.

Топливный элемент готов к испытанию. Теперь нужно одновременно налить в первую камеру – топливо, а в третью – электролит. Присоединенный к электродам вольтметр должен показать от 07 вольт до 0,9. Чтобы обеспечить непрерывную работу элементу, нужно отводить отработавшее топливо (сливать в стакан) и подливать новое (через резиновую трубку). Скорость подачи регулируется сжиманием трубки. Так выглядит в лабораторных условиях работа топливного элемента, мощность которого, понятна мала.

Чтобы мощность была большей, ученые давно занимаются этой проблемой. На активной стали разработки находятся метанольный и этанольный топливные элементы. Но, к сожалению, пока на практику их выхода нет.

Почему топливный элемент выбран в качестве альтернативного источника питания


Альтернативным источником питания выбран топливный элемент, поскольку конечным продуктом сгорания водорода в нем является вода. Проблема касается только в нахождении недорогого и эффективного способа получения водорода. Колоссальные средства, вложенные в развитие генераторов водорода и топливных элементов, не могут не принести свои плоды, поэтому технологический прорыв и реальное их использование в повседневной жизни, только вопрос времени.

Уже сегодня монстры автомобилестроения: «Дженерал Моторс», «Хонда», «Драймлер Коайслер», « Баллард», демонстрируют автобусы и авто, которые работают на топливных элементах, мощность которых достигает 50кВт. Но, проблемы, связанные с их безопасностью, надежностью, стоимостью - еще не решены. Как говорилось уже, в отличие от традиционных источников питания – аккумуляторов и батарей, в этом случае окислитель и горючее подаются извне, а топливный элемент лишь является посредником в происходящей реакции по сжиганию топлива и превращению в электричество выделяющейся энергии. Протекает «сжигание» только в том случае, если элемент ток отдает в нагрузку, подобно дизельному электрогенератору, но без генератора и дизеля, а также без шума, дыма и перегрева. При этом, КПД намного выше, поскольку отсутствуют промежуточные механизмы.

Большие надежды возлагаются на применение нанотехнологий и наноматериалов, которые помогут миниатюризировать топливные элементы, при этом увеличить их мощность. Появились сообщения, что созданы сверх-эффективные катализаторы, а также конструкции топливных элементов, не имеющих мембран. В них вместе с окислителем подается в элемент топливо (метан, например). Интересны решения, где в качестве окислителя используется кислород, растворенного в воде воздуха, а в качестве топлива – органические примеси, скапливающиеся в загрязненных водах. Это, так называемые, биотопливные элементы.

Топливные элементы, по прогнозам специалистов, на массовый рынок могут выйти уже в ближайшие годы. опубликовано

Присоединяйтесь к нам в

Невозможность создания вечного двигателя постулируют как первый, так и второй законы термодинамики. Тем не менее очередь из желающих поднять самого себя за волосы не иссякала никогда.

Несмотря на то, что с 1775 года Парижская академия наук не рассматривает проекты вечного двигателя, многие из воплощений идеи perpetuum mobile принесли ощутимую практическую пользу. Например, батарея румынского инженера Николае Василеска-Карпена (Nicolae Vasilescu-Karpen), который изобрел это устройство в 1950 году. Его батарея работает по сей день, то есть уже 65 лет, и хранится в Национальном техническом музее Румынии.

Почему это происходит – не могут ответить до сих пор. Ученые склоняются к тому, что в батарее кроется какой-то хитроумный секрет и она является банальной мистификацией. Впрочем, очень талантливой.

Давайте узнаем подробности …

Хотя устройство этой батарейки было запатентовано очень давно, ученые до сих пор не знают, или не сошлись во мнении, каким именно образом и на каких принципах работает это устройство, имеющее научное название - термоэлектрическая батарея, работающая при постоянной температуре. Именно поэтому существование этой батарейки считается в научных кругах антинаучным фактом, ибо вечный двигатель с точки зрения современной науки существовать не может. Единственный работающий экземпляр «батарейки Карпена» находится сейчас в кабинете директора Национального технического музея.

Опытный образец состоит из двух гальванических элементов, приводящих в движение гальванометрический двигатель, и выключателя, который на каждые пол-оборота двигателя замыкает цепь, а затем ее размыкает. Время обращения двигателя тщательно подобрано таким образом, что его достаточно для того, чтобы гальванический элемент полностью перезарядился, сменив, при этом, свою полярность. Но единственной целью применения электродвигателя и пластин выключателя является непрерывная демонстрация работоспособности «батарейки Карпена» в течение длительного времени, сейчас, конечно, это можно сделать другими, более наглядными способами.

По задумке автора изобретения, задача мотора и пластинки состояла только в том, чтобы продемонстрировать, что батарейки фактически продолжают постоянно генерировать электроэнергию. Больше мотор и пластинка ни для чего не нужны (а сейчас и подавно, так как любой простейший измерительный прибор позволит без проблем определить какие угодно параметры на выходе батареек, зафиксировав тем самым факт выработки электричества).

В 2006 году, 27-го февраля, в музей прибыли журналисты румынской газеты ZIUA (День) для того, чтобы взять интервью у директора Дьяконеску. Он снял прибор с полки и позволил журналистам замерить параметры изобретения на выходе с помощью обычного цифрового универсального измерительного прибора. Батарейки показали 1 вольт – так же, как и 1950-ом году.

Журналисты признали, что «устройство батареи Карпена отличается от устройства обычной термоэлектрической батареи, которое изучается в рамках физики в 7-ом классе обычной средней школы».

Отмечается, что один из электродов устройства Карпена сделан из золота, а второй из платины. Между ними залита серная кислота высокой степени очистки, в качестве электролита.

Дьяконеску подчеркнул, что, что если увеличить размеры прибора, то, соответственно, можно получать больше энергии на выходе».

Сообщается, что батарея Карпена в свое время была неоднократно представлена вниманию научного сообщества – на научных конференциях в Париже, Бухаресте и Болоньи. Тогда очень живо обсуждался принцип ее работы. Исследователи из Университета в Брашове и Политехнического университета в Бухаресте (Румыния) проводили целые научные исследования изобретения, но так и не пришли к однозначному выводу, почему устройство все еще работает. В свое время за изобретение отчаянно боролась французская сторона, но румынским ученым удалось отстоять его, оставив прибор в своей стране. И вот спустя годы «адская машинка» продолжает работать, поневоле наводя на мысль о том, что вечный двигатель – уже не фантастика.

Большинство ученых сходятся во мнении, что прибор работает, используя, все-таки, принцип трансформации тепловой энергии в механическую работу, но Дьяконеску не поддерживает их мнение. Он считает (и его поддерживают все, кто изучал теоретические работы Василеску-Карпена), что батарея, которую сконструировал ученый, бросает вызов второму закону термодинамики (накладывающий ограничение на направление процессов передачи тепла между телами). Поэтому многие считают это изобретение тем самым вечным двигателем второго рода, существование которого считается невозможным согласно тому же второму закону термодинамики.

Если Василеску-Карпен был прав и его принципы верны, это перевернет привычный взгляд на многие физические законы с ног на голову, а, это, в свою очередь, приведет к выводам и открытиям, которые даже сложно прогнозировать. Впрочем, неизвестно, когда это случится, а если и случится, то явно не потому, что кто-то сделает открытие, изучая прибор Карпена. Похоже, что музей не скоро получит необходимую сумму, чтобы организовать изучение или даже безопасную демонстрацию такого редкого изобретения. Может быть, тому причиной вовсе не научная ценность прибора, а электроды, сделанные из золота и платины? Кто знает! Пока изобретение продолжает пылиться на полке в кабинете директора музея…

Возникает вопрос – если такой бесперебойный и автономный источник питания действительно существует и находится не где-нибудь, а в музее, то почему возле него не «роятся» толпы посетителей и журналистов? Не говоря уже об ученых, которым в первую очередь следовало бы заинтересоваться этим воистину эпохальным открытием. Руководство музея объясняет все просто – изобретение не может участвовать в экспозиции и демонстрироваться ученым и посетителям, так как у музея нет денег на обеспечение должной охраны такого, поистине бесценного, образчика науки.

А пока научный и околонаучный мир бьется над секретом «вечного двигателя» Карпена, ученые из Исследовательской лаборатории ВВС США утверждают, что им открылась технология, благодаря которой вскоре будут созданы, в частности, аккумуляторные батарейки для лэптопа, работающие без подзарядки… 30 лет! Быть может, эта технология стала каким-то невероятным образом известна и Василеску-Карпену, который реализовал ее в своем загадочном приборе?

Вряд ли, утверждают специалисты. Дело в том, что американцы намекают на новейшую технологию, которая подразумевает использование полупроводниковых материалов и радиоизотопов. Речь идет о так называемых бета-гальванических аккумуляторах. Именно они будут играть роль источника энергии. При расщеплении радиоизотопов будет возникать бета-излучение и образовываться электроэнергия. Не пугайтесь – процесс абсолютно безопасен для человека, как утверждают изобретатели. Ну что же, пока румыны ревностно охраняют изобретение своего соплеменника на музейной полке, мир не стоит на месте и создает новые, более компактные, мощные и безопасные источники энергии, которые, хочется верить, войдут скоро в каждый дом.

xsi: ну да, ну да, секретный секрет… термопары palmface. Журналисты бл***ь.

MP3-плеерам на батарейках свойственно обрывать музыку в самый неподходящий момент, и возмущенно попискивать: мол, батарейка-то разрядилась! Порой в ответ на это остается только развести руками: последняя... "Вечная" батарейка АА под кодовым названием Charge Battery ("Заряди Батарейку"), разработанная корейскими изобретателями, может решить эту проблему: для того, чтобы вернуть ее к жизни, нужно будет всего лишь ее покрутить.


По крайней мере, так утверждают авторы этого концепта, Yeon Kyeong Hwang и Mieong Ho Kang . Внутри предложенной ими батарейки находится довольно простое устройство, преобразующее механическую энергию в химическую (с тем, чтобы последняя стала уже электрической). С некоторой силой покрутив верхнюю часть батарейки относительно нижней, пользователь приводит в действие тугую пружину, которая постепенно реализует потенциальную энергию - в общем, все как в знакомых нам с детства заводных игрушках.


О том, какие вещества разработчики предполагают использовать в своей батарейке, пока ничего не известно: очевидно, это коммерческая тайна. Также неизвестно, сколько времени нужно будет крутить Charge Battery , чтобы добиться ее воскрешения. К сожалению, такая неопределенность лишает нас возможности полноценно сравнить данное изобретение с ее предшественником - заводной батарейкой АА, созданной Qian Jiang . В последней была ручка, при 20-минутном вращении которой заряд батарейки полностью восстанавливался.


Конечно, 20 минут - это многовато. Остается только надеяться, что эта цифра может быть уменьшена за счет увеличения упругости завода. И, пожалуй, MP3-плееру не понадобится так уж много оборотов: ведь обычно эти девайсы не слишком требовательны. Однако достойным конкурентом Charge Battery могут стать такие разработки прошлого, как батарейка, заряжающаяся от вибрации, или "вечная батарейка" с маленьким ядерным реактором. А пока что остается пожелать владельцам MP3-плееров обзавестись батарейками большой емкости или многозарядными аккумуляторами (как, например, эта