Биографии Характеристики Анализ

Как решить систему неравенств с одной переменной. Урок «Решение неравенств с одной переменной и их систем

Программа для решения линейных, квадратных и дробных неравенств не просто даёт ответ задачи, она приводит подробное решение с пояснениями, т.е. отображает процесс решения для того чтобы проконтролировать знания по математике и/или алгебре.

Причём, если в процессе решения одного из неравенств нужно решить, например, квадратное уравнение, то его подробное решение также выводится (оно заключается в спойлер).

Данная программа может быть полезна учащимся старших классов при подготовке к контрольным работам, родителям для контроля решения неравенств их детьми.

Данная программа может быть полезна учащимся старших классов общеобразовательных школ при подготовке к контрольным работам и экзаменам, при проверке знаний перед ЕГЭ, родителям для контроля решения многих задач по математике и алгебре. А может быть вам слишком накладно нанимать репетитора или покупать новые учебники? Или вы просто хотите как можно быстрее сделать домашнее задание по математике или алгебре? В этом случае вы также можете воспользоваться нашими программами с подробным решением.

Таким образом вы можете проводить своё собственное обучение и/или обучение своих младших братьев или сестёр, при этом уровень образования в области решаемых задач повышается.

Правила ввода неравенств

В качестве переменной может выступать любая латинсая буква.
Например: \(x, y, z, a, b, c, o, p, q \) и т.д.

Числа можно вводить целые или дробные.
Причём, дробные числа можно вводить не только в виде десятичной, но и в виде обыкновенной дроби.

Правила ввода десятичных дробей.
В десятичных дробях дробная часть от целой может отделяться как точкой так и запятой.
Например, можно вводить десятичные дроби так: 2.5x - 3,5x^2

Правила ввода обыкновенных дробей.
В качестве числителя, знаменателя и целой части дроби может выступать только целое число.

Знаменатель не может быть отрицательным.

При вводе числовой дроби числитель отделяется от знаменателя знаком деления: /
Целая часть отделяется от дроби знаком амперсанд: &
Ввод: 3&1/3 - 5&6/5y +1/7y^2
Результат: \(3\frac{1}{3} - 5\frac{6}{5} y + \frac{1}{7}y^2 \)

При вводе выражений можно использовать скобки. В этом случае при решении неравенства выражения сначала упрощаются.
Например: 5(a+1)^2+2&3/5+a > 0,6(a-2)(a+3)

Выберите нужный знак неравенства и введите многочлены в поля ниже.

Первое неравенство системы.

Нажмите на кнопку для изменения типа первого неравенства.


> >= < <=
Решить систему неравенств

Обнаружено что не загрузились некоторые скрипты, необходимые для решения этой задачи, и программа может не работать.
Возможно у вас включен AdBlock.
В этом случае отключите его и обновите страницу.

У вас в браузере отключено выполнение JavaScript.
Чтобы решение появилось нужно включить JavaScript.
Вот инструкции, как включить JavaScript в вашем браузере .

Т.к. желающих решить задачу очень много, ваш запрос поставлен в очередь.
Через несколько секунд решение появится ниже.
Пожалуйста подождите сек...


Если вы заметили ошибку в решении , то об этом вы можете написать в Форме обратной связи .
Не забудте указать какую задачу вы решаете и что вводите в поля .



Наши игры, головоломки, эмуляторы:

Немного теории.

Системы неравенств с одним неизвестным. Числовые промежутки

С понятием системы вы познакомились в 7 классе и научились решать системы линейных уравнений с двумя неизвестными. Далее будут рассмотрены системы линейных неравенств с одним неизвестным. Множества решений систем неравенств могут записываться с помощью промежутков (интервалов, полуинтервалов, отрезков, лучей). Также вы познакомитесь обозначениями числовых промежутков.

Если в неравенствах \(4x > 2000 \) и \(5x \leq 4000 \) неизвестное число х одно и то же, то эти неравенства рассматривают совместно и говорят, что они образуют систему неравенств: $$ \left\{\begin{array}{l} 4x > 2000 \\ 5x \leq 4000 \end{array}\right. $$

Фигурная скобка показывает, что нужно найти такие значения х, при которых оба неравенства системы обращаются в верные числовые неравенства. Данная система - пример системы линейных неравенств с одним неизвестным.

Решением системы неравенств с одним неизвестным называется то значение неизвестного, при котором все неравенства системы обращаются в верные числовые неравенства. Решить систему неравенств - это значит найти все решения этой системы или установить, что их нет.

Неравенства \(x \geq -2 \) и \(x \leq 3 \) можно записать в виде двойного неравенства: \(-2 \leq x \leq 3 \).

Решениями систем неравенств с одним неизвестным являются различные числовые множества. Эти множества имеют названия. Так, на числовой оси множество чисел х, таких, что \(-2 \leq x \leq 3 \), изображается отрезком с концами в точках -2 и 3.

-2 3

Если \(a отрезком и обозначается [а; b]

Если \(a интервалом и обозначается (а; b)

Множества чисел \(x \), удовлетворяющих неравенствам \(a \leq x полуинтервалами и обозначаются соответственно [а; b) и (а; b]

Отрезки, интервалы, полуинтервалы и лучи называют числовыми промежутками .

Таким образом, числовые промежутки можно задавать в виде неравенств.

Решением неравенства с двумя неизвестными называется пара чисел (х; у), обращающая данное неравенство в верное числовое неравенство. Решить неравенство - это значит найти множество всех его решений. Так, решениями неравенства х > у будут, например, пары чисел (5; 3), (-1; -1), так как \(5 \geq 3 \) и \(-1 \geq -1\)

Решение систем неравенств

Решать линейные неравенства с одним неизвестным вы уже научились. Знаете, что такое система неравенств и решение системы. Поэтому процесс решения систем неравенств с одним неизвестным не вызовет у вас затруднений.

И все же напомним: чтобы решить систему неравенств, нужно решить каждое неравенство по отдельности, а затем найти пересечение этих решений.

Например, исходная система неравенств была приведена к виду:
$$ \left\{\begin{array}{l} x \geq -2 \\ x \leq 3 \end{array}\right. $$

Чтобы решить эту систему неравенств, отметим решение каждого неравенства на числовой оси и найдём их пересечение:

-2 3

Пересечением является отрезок [-2; 3] - это и есть решение исходной системы неравенств.


Тема урока «Решение неравенств и их систем» (математика 9 класс)

Тип урока: урок систематизации и обобщения знаний и умений

Технология урока: технология развития критического мышления, дифференцированное обучение, ИКТ-технологии

Цель урока : повторить и систематизировать знания о свойствах неравенств и методах их решения, создать условия для формирования умений применять эти знания при решении стандартных и творческих задач.

Задачи.

Образовательные:

способствовать развитию умений обучающихся обобщать полученные знания, проводить анализ, синтез, сравнения, делать необходимые выводы

организовать деятельность обучающихся по применению полученных знаний на практике

содействовать развитию умений применять полученные знания в нестандартных условиях

Развивающие:

продолжить формирование логического мышления, внимания и памяти;

совершенствовать навыки анализа, систематизации, обобщения;

создание условий, обеспечивающих формирование у учеников навыков самоконтроля;

способствовать овладению необходимыми навыками самостоятельной учебной деятельности.

Воспитательные:

воспитывать дисциплинированность и собранность, ответственность, самостоятельность, критичное отношение к себе, внимательность.

Планируемые образовательные результаты.

Личностные: ответственное отношение к учению и коммуникативная компетентность в общении и сотрудничестве со сверстниками в процессе образовательной деятельности.

Познавательные: умение определять понятия, создавать обобщения, самостоятельно выбирать основания и критерии для классификации, строить логическое рассуждение, делать выводы;

Регулятивные: умение определять потенциальные затруднения при решении учебной и познавательной задачи и находить средства для их устранения, выполнять оценку своих достижений

Коммуникативные: умение высказывать суждения с использованием математических терминов и понятий, формулировать вопросы и ответы в ходе выполнения задания, обмениваться знаниями между членами группы для принятия эффективных совместных решений.

Основные термины, понятия: линейноенеравенство, квадратное неравенство, система неравенств.

Оборудование

Проектор, ноутбук учителя, несколько нетбуков для учащихся;

Презентация;

Карточки с основными знаниями и умениями по теме урока (приложение 1);

Карточки с самостоятельной работой (приложение 2).

План урока

Ход урока

Технологические этапы. Цель.

Деятельность учителя

Деятельность учащихся

Вводно-мотивационный компонент

1.Организационный Цель: психологическая подготовка к общению.

Здравствуйте. Рада вас всех видеть.

Садитесь. Проверьте все ли у вас готово к уроку. Если все в порядке, то посмотрите на меня.

Здороваются.

Проверяют принадлежности.

Настраиваются на работу.

Личностные. Формируются ответственное отношение к учению.

2.Актуализация знаний (2 мин)

Цель: определить индивидуальные пробелы в знаниях по теме

Тема нашего урока «Решение неравенств с одной переменной и их систем». (слайд 1)

Перед вами перечень основных знаний и умений по теме. Оцените свои знания и умения. Расставьте соответствующие значки. (слайд 2)

Оценивают собственные знания и умения. (приложение 1)

Регулятивные

Самооценка своих знаний и умений

3.Мотивация

(2 мин)

Цель: обеспечить деятельность по определению целей урока.

В работе ОГЭ по математике несколько вопросов и первой, и второй части определяют умения решать неравенства. Что нам нужно повторить на уроке, чтобы успешно справиться с этими заданиями?

Рассуждают, называют вопросы для повторения.

Познавательные. Выделяют и формулируют познавательную цель.

Этап осмысления (содержательный компонент)

4.Самооценка и выбор траектории

(1-2 мин)

В зависимости от того как вы оценили свои знания и умения по теме, выберите форму работы на уроке. Вы можете работать со всем классом вместе со мной. Можете работать индивидуально на нетбуках, пользуясь моей консультацией или в парах, помогая друг другу.

Определяются с индивидуальной траекторией обучения. При необходимости меняются местами.

Регулятивные

определять потенциальные затруднения при решении учебной и познавательной задачи и находить средства для их устранения

5-7 Работа в парах или индивидуально (25 мин)

Учитель консультирует учеников, работающих самостоятельно.

Ученики, хорошо знающие тему работают индивидуально или в парах с презентацией (слайды 4-10) Выполняют задания (слайды 6,9).

Познавательные

умение определять понятия, создавать обобщения, выстраивать логическую цепь

Регулятивные умение определять действия в соответствии с учебной и познавательной задачей

Коммуникативные умение организовывать учебное сотрудничество и совместную деятельность, работать с источником информации

Личностные ответственное отношение к учению, готовность и способность к саморазвитию и самообразованию

5.Решение линейных неравенств.

(10 мин)

Какие свойства неравенств используем при их решении?

Можете ли вы отличить линейные, квадратные неравенства и их системы? (слайд 5)

Как решить линейное неравенство?

Выполните решение. (слайд 6) Учитель следит за решением у доски.

Проверьте правильность решения.

Называют свойства неравенств, после ответа или в случае затруднения учитель открывает слайд 4.

Называют отличительные признаки неравенств.

Используя свойства неравенств.

Один ученик решает у доски неравенство №1. Остальные в тетрадях, следят за решением отвечающего.

Неравенства №2 и 3 выполняют самостоятельно.

Сверяются с готовым ответом.

Познавательные

Коммуникативные

6.Решение квадратных неравенств.

(10 мин)

Как решить неравенство ?

Какое это неравенство?

Какие методы используют при решении квадратных неравенств?

Вспомним метод параболы (слайд 7) Учитель напоминает этапы решения неравенства.

Метод интервалов применяют для решения неравенств второй и более высоких степеней. (слайд 8)

Для решения квадратных неравенств вы можете выбрать метод, удобный вам.

Решите неравенства. (слайд 9).

Учитель следит за ходом решения, напоминает способы решения неполных квадратных уравнений.

Учитель консультирует индивидуально работающих учеников.

Ответ: Квадратное неравенство решаем методом параболы или методом интервалов.

Учащиеся следят за решением по презентации.

У доски ученики по очереди решают неравенства №1 и 2. Сверяются с ответом. (для решения нер-ва №2 надо вспомнить способ решения неполных квадратных уравнений).

Неравенство №3 решают самостоятельно, сверяются с ответом.

Познавательные

умение определять понятия, создавать обобщения, строить рассуждение от общих закономерностей к частным решениям

Коммуникативные умение представлять в устной и письменной форме развернутый план собственной деятельности;

7.Решение систем неравенств

(4-5 мин)

Вспомните этапы решения системы неравенств.

Решите систему (Слайд 10)

Называют этапы решения

Ученик решает у доски, сверяется с решением на слайде.

Рефлексивно-оценочный этап

8.Контроль и проверка знаний

(10 мин)

Цель: выявить качество усвоения материала.

Проверим ваши знания по теме. Решите самостоятельно задания.

Учитель проверяет результат по готовым ответам.

Выполняют самостоятельную работу по вариантам (приложение 2)

Выполнив работу, ученик сообщает об этом учителю.

Ученик определяет свою оценку по критериям (слайд 11). При успешном выполнении работы, может приступить к дополнительному заданию (слайд 11)

Познавательные. Строят логические цепи рассуждений.

9.Рефлексия (2 мин)

Цель: формируется адекватная самооценка своих возможностей и способностей, достоинств и ограничений

Есть ли улучшение результата?

Если ещё есть вопросы, дома обратитесь к учебнику (стр.120)

Оценивают собственные знания и умения на том же листочке (приложение 1).

Сравнивают с самооценкой в начале урока, делают выводы.

Регулятивные

Самооценка своих достижений

10.Домашнее задание (2 мин)

Цель: закрепление изученного материала.

Домашнее задания определите по результатам самостоятельной работы (слайд 13)

Определяют и записывают индивидуальное задание

Познавательные. Строят логические цепи рассуждений. Производят анализ и преобразование информации.

Список использованной литературы : Алгебра. Учебник для 9 класса. / Ю.Н.Макрычев, Н.Г.Миндюк, К.И.Нешков, С.Б.Суворова. - М.: Просвещение, 2014


В этой статье собрана начальная информация о системах неравенств. Здесь дано определение системы неравенств и определение решения системы неравенств. А также перечислены основные виды систем, с которыми наиболее часто приходится работать на уроках алгебры в школе, и приведены примеры.

Навигация по странице.

Что такое система неравенств?

Системы неравенств удобно определить аналогично тому, как мы вводили определение системы уравнений , то есть, по виду записи и смыслу, вложенному в нее.

Определение.

Система неравенств – это запись, представляющая собой некоторое число записанных друг под другом неравенств, объединенных слева фигурной скобкой, и обозначающая множество всех решений, являющихся одновременно решениями каждого неравенства системы.

Приведем пример системы неравенств. Возьмем два произвольных , например, 2·x−3>0 и 5−x≥4·x−11 , запишем их одно под другим
2·x−3>0 ,
5−x≥4·x−11
и объединим знаком системы – фигурной скобкой, в результате получим систему неравенств такого вида:

Аналогично дается представление о системах неравенств в школьных учебниках. Стоит отметить, что в них определения даются более узко: для неравенств с одной переменной или с двумя переменными .

Основные виды систем неравенств

Понятно, что можно составить бесконечно много различных систем неравенств. Чтобы не заблудиться в этом многообразии, их целесообразно рассматривать по группам, имеющим свои отличительные признаки. Все системы неравенств можно разбить на группы по следующим критериям:

  • по числу неравенств в системе;
  • по числу переменных, участвующих в записи;
  • по виду самих неравенств.

По числу неравенств, входящих в запись, различают системы двух, трех, четырех и т.д. неравенств. В предыдущем пункте мы привели пример системы , которая является системой двух неравенств. Покажем еще пример системы четырех неравенств .

Отдельно скажем, что нет смысла говорить о системе одного неравенства, в этом случае по сути речь идет о самом неравенстве, а не о системе.

Если смотреть на число переменных, то имеют место системы неравенств с одной, двумя, тремя и т.д. переменными (или, как еще говорят, неизвестными). Посмотрите на последнюю систему неравенств, записанную двумя абзацами выше. Это система с тремя переменными x , y и z . Обратите внимание, что ее два первых неравенства содержат не все три переменные, а лишь по одной из них. В контексте этой системы их стоит понимать как неравенства с тремя переменными вида x+0·y+0·z≥−2 и 0·x+y+0·z≤5 соответственно. Заметим, что в школе основное внимание уделяется неравенствам с одной переменной.

Осталось обговорить, какие виды неравенств участвуют в записи систем. В школе в основном рассматривают системы двух неравенств (реже – трех, еще реже - четырех и более) с одной или двумя переменными, причем сами неравенства обычно являются целыми неравенствами первой или второй степени (реже – более высоких степеней или дробно рациональными). Но не удивляйтесь, если в материалах по подготовке к ОГЭ столкнетесь с системами неравенств, содержащими иррациональные, логарифмические, показательные и другие неравенства. В качестве примера приведем систему неравенств , она взята из .

Что называется решением системы неравенств?

Введем еще одно определение, связанное с системами неравенств, - определение решения системы неравенств :

Определение.

Решением системы неравенств с одной переменной называется такое значение переменной, обращающее каждое из неравенств системы в верное , другими словами, являющееся решением каждого неравенства системы.

Поясним на примере. Возьмем систему двух неравенств с одной переменной . Возьмем значение переменной x , равное 8 , оно является решением нашей системы неравенств по определению, так как его подстановка в неравенства системы дает два верных числовых неравенства 8>7 и 2−3·8≤0 . Напротив, единица не является решением системы, так как при ее подстановке вместо переменной x первое неравенство обратится в неверное числовое неравенство 1>7 .

Аналогично можно ввести определение решения системы неравенств с двумя, тремя и большим числом переменных:

Определение.

Решением системы неравенств с двумя, тремя и т.д. переменными называется пара, тройка и т.д. значений этих переменных, которая одновременно является решением каждого неравенства системы, то есть, обращает каждое неравенство системы в верное числовое неравенство.

К примеру, пара значений x=1 , y=2 или в другой записи (1, 2) является решением системы неравенств с двумя переменными , так как 1+2<7 и 1−2<0 - верные числовые неравенства. А пара (3,5, 3) не является решением этой системы, так как второе неравенство при этих значениях переменных дает неверное числовое неравенство 3,5−3<0 .

Системы неравенств могут не иметь решений, могут иметь конечное число решений, а могут иметь и бесконечно много решений. Часто говорят о множестве решений системы неравенств. Когда система не имеет решений, то имеет место пустое множество ее решений. Когда решений конечное число, то множество решений содержит конечное число элементов, а когда решений бесконечно много, то и множество решений состоит из бесконечного числа элементов.

В некоторых источниках вводятся определения частного и общего решения системы неравенств, как, например, в учебниках Мордковича . Под частным решением системы неравенств понимают ее одно отдельно взятое решение. В свою очередь общее решение системы неравенств - это все ее частные решения. Однако в этих терминах есть смысл лишь тогда, когда требуется особо подчеркнуть, о каком решении идет речь, но обычно это и так понятно из контекста, поэтому намного чаще говорят просто «решение системы неравенств».

Из введенных в этой статье определений системы неравенств и ее решений следует, что решение системы неравенств представляет собой пересечение множеств решений всех неравенств этой системы.

Список литературы.

  1. Алгебра: учеб. для 8 кл. общеобразоват. учреждений / [Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова]; под ред. С. А. Теляковского. - 16-е изд. - М. : Просвещение, 2008. - 271 с. : ил. - ISBN 978-5-09-019243-9.
  2. Алгебра: 9 класс: учеб. для общеобразоват. учреждений / [Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова]; под ред. С. А. Теляковского. - 16-е изд. - М. : Просвещение, 2009. - 271 с. : ил. - ISBN 978-5-09-021134-5.
  3. Мордкович А. Г. Алгебра. 9 класс. В 2 ч. Ч. 1. Учебник для учащихся общеобразовательных учреждений / А. Г. Мордкович, П. В. Семенов. - 13-е изд., стер. - М.: Мнемозина, 2011. - 222 с.: ил. ISBN 978-5-346-01752-3.
  4. Мордкович А. Г. Алгебра и начала математического анализа. 11 класс. В 2 ч. Ч. 1. Учебник для учащихся общеобразовательных учреждений (профильный уровень) / А. Г. Мордкович, П. В. Семенов. - 2-е изд., стер. - М.: Мнемозина, 2008. - 287 с.: ил. ISBN 978-5-346-01027-2.
  5. ЕГЭ -2013. Математика: типовые экзаменационные варианты: 30 вариантов / под ред. А. Л. Семенова, И. В. Ященко. – М.: Издательство «Национальное образование», 2012. – 192 с. – (ЕГЭ-2013. ФИПИ – школе).

1. Понятие неравенства с одной переменной

2. Равносильные неравенства. Теоремы о равносильности неравенств

3. Решение неравенств с одной переменной

4. Графическое решение неравенств с одной переменной

5. Неравенства, содержащие переменную под знаком модуля

6. Основные выводы

Неравенства с одной переменной

Предложения 2х + 7 > 10-х, х 2 +7х < 2,(х + 2)(2х-3)> 0 называют неравенствами с одной переменной.

В общем виде это понятие определяют так:

Определение. Пусть f(х) и g(х) - два выражения с переменной х и областью определения X. Тогда неравенство вида f(х) > g(х) или f(х) < g(х) называется неравенством с одной переменной. Мно­жество X называется областью его определения.

Значение переменной x из множества X, при котором неравенство обращается в истинное числовое неравенство, называется его решени­ем. Решить неравенство - это значит найти множество его решений.

Так, решением неравенства 2 x + 7 > 10 -х, х ? R является число x = 5, так как 2·5 + 7 > 10 - 5 - истинное числовое неравенство. А множест­во его решений - это промежуток (1, ∞), который находят, выполняя преобразование неравенства: 2 x + 7 > 10- x => 3 x >3 => x >1.

Равносильные неравенства. Теоремы о равносильности неравенств

В основе решения неравенств с одной переменной лежит понятие равносильности.

Определение.Два неравенства называются равносильными, если их множества решений равны.

Например, неравенства 2 x + 7 > 10 и 2 x > 3 равносильны, так как их множества решений равны и представляют собой промежуток (2/3, ∞).

Теоремы о равносильности неравенств и следствия из них аналогич­ны соответствующим теоремам о равносильности уравнений. При их доказательстве используются свойства истинных числовых неравенств.

Теорема 3. Пусть неравенство f(х) > g(х) задано на множестве X и h (x ) - выражение, определенное на том же множестве. Тогда неравенства f(х) > g(х) и f(х)+ h(x) > g(х) + h(x) равносильны на множестве X.

Из этой теоремы вытекают следствия, которые часто используются при решении неравенств:

1) Если к обеим частям неравенства f(х) > g(х) прибавить одно и то же число d, то получим неравенство f(х) + d > g(х)+ d, равно­сильное исходному.

2) Если какое-либо слагаемое (числовое выражение или выражение с переменной) перенести из одной части неравенства в другую, поме­няв знак слагаемого на противоположный, то получим неравенство, равносильное данному.

Теорема 4. Пусть неравенство f(х) > g(х) задано на множестве X и h (х х из множества X выражение h(х) принимает положительные значения. Тогда неравенства f(х) > g(х) и f(х)· h(x) > g(х) · h(x) равносильны на множестве X.

f(х) > g(х) умножить на одно и то же положительное число d, то по­лучим неравенство f(х)·d > g(х) ·d, равносильное данному.

Теорема 5. Пусть неравенство f(х) > g(х) задано на множестве X и h (х ) - выражение, определенное на том же множестве, и для всех х их множества X выражение h (х ) принимает отрицательные значения. Тогда неравенства f(х) > g(х) и f(х)· h(x) > g(х)· h(x) равносильны на множестве X .

Из этой теоремы вытекает следствие: если обе части неравенства f(х) > g(х) умножить на одно и то же отрицательное число d и знак неравенства поменять на противоположный, то получим неравенство f(х)·d > g(х) ·d, равносильное данному.

Решение неравенств с одной переменной

Решим неравенство 5х - 5 < 2х - 16, х ? R , и обоснуем все преоб­разования, которые мы будем выполнять в процессе решения.

Решением неравенства х < 7 является промежуток (-∞, 7) и, сле­довательно, множеством решений неравенства 5х - 5 < 2х + 16 яв­ляется промежуток (-∞, 7).

Упражнения

1. Установите, какие из следующих записей являются неравенства­ми с одной переменной:

а) -12 - 7х < 3x + 8; г) 12х + 3(х - 2);

б) 15(x + 2)>4; д) 17-12·8;

в) 17-(13 + 8) < 14-9; е) 2х 2 + 3x -4> 0.

2. Является ли число 3 решением неравенства 6(2х + 7) < 15(х + 2), х ? R ? А число 4,25?

3. Равносильны ли на множестве действительных чисел следующие пары неравенств:

а) -17х < -51 и х > 3;

б) (3x -1)/4 >0 и 3х -1>0;

в) 6-5x >-4 и х <2?

4. Какие из следующих высказываний истинны:

а) -7 х < -28 => x >4;

б) x < 6 => x < 5;

в) х < 6 => х < 20?

5. Решите неравенство 3(x - 2) - 4(х + 1) < 2(х - 3) - 2 и обоснуйте все преобразования, которые будете при этом выполнять.

6. Докажите, что решением неравенства 2(х + 1) + 5 > 3 - (1 - 2х ) является любое действительное число.

7. Докажите, что не существует действительного числа, которое являлось бы решением неравенства 3(2 - х ) - 2 > 5 - 3х .

8. Одна сторона треугольника равна 5 см, а другая 8 см. Какой может быть длина третьей стороны, если периметр треугольника:

а) меньше 22 см;

б) больше 17 см?

ГРАФИЧЕСКОЕ РЕШЕНИЕ НЕРАВЕНСТВ С ОДНОЙ ПЕРЕМЕН­НОЙ. Для графического решения неравенства f (х) > g (х) нужно построить гра­фики функций

у = f (х) = g (х) и выбрать те проме­жутки оси абсцисс, на которых график функции у = f (х) расположен выше графика функции у = g (х).

Пример 17.8. Решите графически неравенство х 2 - 4 > 3х.

У - х* - 4

Решение. Построим в одной системе координат графи­ки функций

у = х 2 - 4 и у = Зх (рис. 17.5). Из рисунка видно, что графики функций у = х 2 - 4 расположен выше графика функции у = 3х при х < -1 и х > 4, т.е. множество решений исходного неравенства есть множество

(- ¥; -1) È (4; + оо).

Ответ: х Î (- оо; -1) и (4; + оо).

Графиком квадратичной функции у = ах 2 + bх + с является парабола с ветвя­ми, направленными вверх, если а > 0, и вниз, если а < 0. При этом возможны три случая: парабола пересекает ось Ох (т.е. уравнение ах 2 + + с = 0 имеет два различных корня); парабола касается оси х (т.е. уравнение ах 2 + bх + с = 0 имеет один корень); парабола не пересекает ось Ох (т.е. уравнение ах 2 + + с = 0 не имеет корней). Таким образом, возможны шесть положений параболы, служа­щей графиком функции у = ах 2 + bх + с (рис. 17.6). Используя эти иллюстрации, можно решать квадратные неравенства.

Пример 17.9. Решите неравенство: а) 2х г + 5х - 3 > 0; б) -Зх 2 - - 6 < 0.

Решение, а) Уравнение 2х 2 + 5х -3 = 0 имеет два корня: х, = -3, х 2 = 0,5. Парабола, служащая графиком функции у = 2х 2 + 5х -3, показана на рис. а. Неравенство 2х 2 + 5х -3 > 0 выполняется при тех значениях х, при которых точки параболы лежат выше оси Ох: это будет при х < х х или при х > х г> т.е. при х < -3 или при х > 0,5. Значит, множество решений исходного неравенства есть множество (- ¥; -3) и (0,5; + ¥).

б) Уравнение -Зх 2 + 2х- 6 = 0 не имеет действительных корней. Парабола, служащая графиком функции у = - 3х 2 - 2х - 6, показана на рис. 17.6 Неравенство -3х 2 - 2х - 6 < О выполняется при тех значениях х, при которых точки параболы лежат ниже оси Ох. По­скольку вся парабола лежит ниже оси Ох, то множество решений исходного неравенства есть множество R.

НЕРАВЕНСТВА, СОДЕРЖАЩИЕ ПЕРЕМЕННУЮ ПОД ЗНАКОМ МОДУЛЯ. При решении данных неравенств следует иметь в виду, что:

| f(х) | =

f(х) , если f(х) ³ 0,

- f(х) , если f(х) < 0,

При этом область допустимых значений неравенства следует разбить на ин­тервалы, на каждом из которых выражения, стоящие под знаком модуля, сохра­няют знак. Затем, раскрывая модули (с учетом знаков выражений), нужно решать неравенство на каждом интервале и полученные решения объединять в множество решений исходного неравенства.

Пример 17.10. Решите неравенство:

|х -1| + |2- х| > 3+х.

Решение. Точки х = 1 и х = 2 делят числовую ось (ОДЗ неравенства (17.9) на три интервала: х < 1, 1 £ х £.2, х > 2. Решим данное неравенство на каждом из них. Если х < 1, то х - 1 < 0 и 2 – х > 0; поэтому |х -1| = - (х - I), |2 - х | = 2 - х. Значит, неравенство (17.9) принимает вид: 1- х + 2 - х > 3 + х, т.е. х < 0. Таким образом, в этом случае решениями неравенства (17.9) являются все отрицательные числа.

Если 1 £ х £.2, то х - 1 ³ 0 и 2 – х ³ 0; поэтому | х- 1| = х - 1, |2 - х| = 2 – х. .Значит, имеет место система:

х – 1 + 2 – х > 3 + х,

Полученная система неравенств решений не имеет. Следовательно, на интервале [ 1; 2] множество решений неравенства (17.9) пусто.

Если х > 2, то х - 1 >0 и 2 – х <0; поэтому | х - 1| = х- 1, |2-х| = -(2- х). Значит, имеет место система:

х -1 + х – 2 > 3+х,

х > 6 или

Объединяя найденные решения на всех частях ОДЗ неравенства (17.9), получаем его решение - множество (-¥; 0) È (6; +оо).

Иногда полезно воспользоваться геометрической интерпретацией модуля действительного числа, согласно которой | а | означает расстояние точки а коор­динатной прямой от начала отсчета О, а | а - b | означает расстояние между точка­ми а и b на координатной прямой. Кроме того, можно использовать метод возве­дения в квадрат обеих частей неравенства.

Теорема 17.5. Если выражения f (х) и g (х) при любых х принимают толь­ко неотрицательные значения, то неравенства f (х) > g (х) и f (х) ² > g (х) ² равносильны.

58. Основные выводы § 12

В данном параграфе мы определили следующие понятия:

Числовое выражение;

Значение числового выражения;

Выражение, не имеющее смысла;

Выражение с переменной (переменными);

Область определения выражения;

Тождественно равные выражения;

Тождество;

Тождественное преобразование выражения;

Числовое равенство;

Числовое неравенство;

Уравнение с одной переменной;

Корень уравнения;

Что значит решить уравнение;

Равносильные уравнения;

Неравенство с одной переменной;

Решение неравенства;

Что значит решить неравенство;

Равносильные неравенства.

Кроме того, мы рассмотрели теоремы о равносильности уравнений и неравенств, являющиеся основой их решения.

Знание определений всех названных выше понятий и теорем о рав­носильности уравнений и неравенств - необходимое условие методи­чески грамотного изучения с младшими школьниками алгебраическо­го материала.

Муниципальное бюджетное общеобразовательное учреждение

«Средняя общеобразовательная школа №26

с углубленным изучением отдельных предметов»

города Нижнекамска Республики Татарстан

Конспект урока по математике
в 8 классе

Решение неравенств с одной переменной

и их систем

подготовила

учитель математики

первой квалификационной категории

Кунгурова Гульназ Рафаэловна

Нижнекамск 2014

План- конспект урока

Учитель: Кунгурова Г.Р.

Предмет: математика

Тема: «Решение линейных неравенств с одной переменной и их систем».

Класс: 8Б

Дата проведения: 10.04.2014

Тип урока: урок обобщения и систематизации изученного материала.

Цель урока: закрепление практических умений и навыков решения неравенств с одной переменной и их систем, неравенств, содержащих переменную под знаком модуля.

Задачи урока:

    Обучающие:

    обобщение и систематизация знаний учащихся о способах решения неравенств с одной переменной;

    расширение вида неравенств: двойные неравенства, неравенства, содержащие переменную под знаком модуля, системы неравенств;

    установление межпредметной связи между математикой, русским языком, химией.

Развивающие:

Воспитательные:

    воспитание самостоятельности, аккуратности, умения работать в коллективе

Основные методы, применяемые на уроке : коммуникативный, объяснительно-иллюстративный, репродуктивный, метод программированного контроля.

Оборудование:

компьютер

    компьютерная презентация

    моноблоки (выполнение индивидуального онлайн-теста)

    раздаточный материал (разноуровневые индивидуальные задания);

    листы самоконтроля;

План урока:

1. Организационный момент.

4. Самостоятельная работа

5. Рефлексия

6. Итоги урока.

Ход урока:

1. Организационный момент.

(Учитель сообщает учащимся цели и задачи урока.).

Сегодня перед нами стоит очень важная задача. Мы должны подвести итог по данной теме. Вновь нужно будет очень тщательно проработать теоретические вопросы, заняться вычислениями, рассмотреть практическое применение данной темы в нашей повседневной жизни. И нельзя никогда забывать о том, как же мы рассуждаем, анализируем, строим логические цепочки. Наша речь всегда должна быть грамотной правильной.

У каждого из вас на столе имеется лист самоконтроля. На протяжении всего урока не забывайте отмечать знаком «+» свой вклад в этот урок.

Учитель задает домашнее задание, прокомментировав его:

1026(а,б), №1019(в,г); дополнительно - №1046(а)

2. Актуализация знаний, умений, навыков

1) Прежде чем начнем выполнять практические задания, обратимся к теории.

Учитель озвучивает начало определения, а ученики должны завершить формулировку

а) Неравенством с одной переменной называется неравенство вида ах>в, ах<в;

б) Решить неравенство - значит найти все его решения или доказать, что решений нет;

в) Решением неравенства с одной переменной называется значение переменной, обращающее его в верное неравенство;

г) Неравенства называются равносильными, если у них совпадают множества решений. Если у них нет решений, то они тоже называются равносильными

2) На доске неравенства с одной переменной, расположенные в один столбик. А рядом в другой столбик вписаны их решения в виде числовых промежутков. Задача учащихся - установить соответствие межу неравенствами и соответствующими промежутками.

Установить соответствие между неравенствами и числовыми промежутками:

1. 3x > 6 а) (-∞ ; - 0,2]

2. -5х ≥ 1 б) (- ∞ ; 15)

3. 4х > 3 в) (2; + ∞)

4. 0,2х < 3 г) (0,75; + ∞)

3) Практическая работа в тетради с самопроверкой.

На доске учащимся написано линейное неравенство с одной переменной. Выполнив которое один из учеников озвучивает свои решение и исправляются допущенные ошибки)

Решите неравенство:

4 (2х - 1) - 3(х + 6) > х;

8х - 4 - 3х - 18 > х;

8х - 3х – х > 4+18 ;

4х > 22 ;

х > 5,5 .

Ответ. (5,5 ; + )

3. Практическое применение неравенств в повседневной жизни (химический опыт)

Неравенства в нашей повседневной жизни могут стать хорошими помощниками. И кроме того конечно же существует неразрывная связь между школьными предметами. Математика идет плечо в плечо не только с русским языком, но и с химией.

(На каждой парте эталонная шкала для водородного показателя pH , в пределах от 0 до 12)

Если показатель 0 ≤ pH < 7, то среда кислая;

если показатель pH = 7, то среда нейтральная;

если показатель 7< pH ≤ 12, то среда щелочная

Учитель наливает в различные пробирки 3 бесцветных раствора. Из курса химии ученикам предлагается вспомнить виды среды раствора (кислая, нейтральная, щелочная). Далее опытным путем, привлекая учащихся, определяется среда каждого из трех растворов. Для этого в каждый раствор опускается универсальный индикатор. Происходит следующее: каждый индикатор окрашивается в соответствующий цвет. И по цветовой гамме, благодаря эталонной щкале, учащиеся устанавливают среду каждого из предложенных растворов.

Вывод:

1 индикатор окрасился в красный цвет, показатель 0 ≤ pH < 7, значит среда первого раствора кислая, т.е. имеем кислоту в 1пробирке

2 индикатор окрасился в зеленый цвет, показатель pH = 7 , значит среда второго раствора нейтральная, т. е. у нас была вода во 2 пробирке

3 индикатор окрасился в синий цвет, показатель 7< pH ≤ 12 , значит среда третьего раствора щелочная, значит в 3 пробирке была щелочь

Зная границы показателя pH можно определить уровень кислотности почвы, мыла, многих косметических средств.

Продолжение актуализации знаний, умений, навыков.

1) Вновь учитель начинает формулировки определений, а учащиеся должны завершить их

Продолжить определения:

а) Решить систему линейных неравенств – значит найти все её решения или доказать, что их нет

б) Решением системы неравенств с одной переменной называется значение переменной, при котором верно каждое из неравенств

в) Чтобы решить систему неравенств с одной переменной нужно найти решение каждого неравенства, и найти пересечение этих промежутков

Учитель вновь напоминает ученикам о том, что умение решать линейные неравенства с одной переменной и их систем является основой, базой для более сложных неравенств, которые предстоит изучить в более старших классах. Закладывается фундамент знаний, прочность которого предстоит подтвердить на ОГЭ по математике после 9 класса.

Ученики письменно в тетради решают системы линейных неравенств с одной переменной. (2 ученика выполняют эти задания на доске, поясняют свое решение, озвучивают свойства неравенств, использованные при решении систем).

1012(д). Решите систему линейных неравенств

0,3 х+1 < 0,4х-2;

1,5 х-3 > 1,3х-1. Ответ. (30; +∞).

1028(г). Решите двойное неравенство и укажите все целые числа, которые являются его решением

1 < (4-2х)/3 < 2 . Ответ. Целое число: 0

2) Решение неравенств, содержащих переменную под знаком модуля.

Практика показывает, что неравенства, содержащие переменную под знаком модуля,вызывают у учащихся тревогу, неуверенность в себе. И часто за такие неравенства ученики просто не берутся. А причиной тому служит некачественно заложенный фундамент. Учитель настраивает учащихся на то, чтобы они своевременно поработали над собой, усвоили последовательно все шаги для успешного выполнения этих неравенств.

Проводится устная работа. (Фронтальный опрос)

Решение неравенств, содержащих переменную под знаком модуля:

1. Модулем числа х называется расстояние от начала отсчета до точки с координатой х.

| 35 | = 35,

| - 17 | = 17,

| 0 | = 0

2. Решить неравенства:

а) | х | < 3 . Ответ. (-3 ; 3)

б) | х | > 2 . Ответ. (- ∞; -2) U (2; +∞)

На экран подробно выводится ход решения данных неравенств и проговаривается алгоритм решения неравенств, содержащих переменную под знаком модуля.

4. Самостоятельная работа

С целью контроля степени усвоения данной темы 4 ученика занимают места за моноблоками и проходят тематическое онлайн-тестирование. Время тестирования 15 минут. После выполнения осуществляется самопроверка как в баллах, так и процентном соотношении.

Остальные учащиеся за партами выполняют повариантно самостоятельную работу

Самостоятельная работа (время выполнения 13мин)

Вариант 1

Вариант 2

1. Решите неравенства:

а) 6+х < 3 - 2х;

б) 0,8(х-3) - 3,2 ≤ 0,3(2 - х).

3(х+1) - (х-2) < х,

2 > 5х - (2х-1) .

-6 < 5х - 1 < 5

4*. (Дополнительно)

Решите неравенство:

| 2- 2х | ≤ 1

1. Решите неравенства:

а) 4+х < 1 - 2х;

б) 0,2(3х - 4) - 1,6 ≥ 0,3(4-3х).

2. Решите систему неравенств:

2(х+3) - (х - 8) < 4,

6х > 3(х+1) -1.

3. Решите двойное неравенство:

-1 < 3х - 1 < 2

4*. (Дополнительно)

Решите неравенство:

| 6х-1 | ≤ 1

После выполнения самостоятельной работы учащиеся сдают тетради на проверку. Учащиеся, работавшие за моноблоками, тоже сдают тетради на проверку учителю.

5. Рефлексия

Учитель напоминает учащимся о листах самоконтроля, на которых они должны были в течение всего урока, на различных его этапах, оценивать свою работу знаком «+».

Но основную оценку своей деятельности учащимся предстоит поставить только сейчас, после озвучивания одной древней притчы.

Притча.

Шел мудрец, а навстречу ему – 3 человека. Они под горячим солнцем для строительства храма везли тележки с камнями.

Мудрец остановил их и спросил:

- Что вы делали целый день?

- Возил проклятые камни, - ответил первый.

- Я добросовестно выполнял свою работу, - ответил второй.

- А я принимал участие в строительстве храма,- гордо ответил третий.

В листы самоконтроля, в пункте №3 учащиеся должны вписать фразу, которая соответствовала бы их действиям на этом уроке.

Лист самоконтроля __________________________________________

п/ п

Этапы урока

Оценка учебной деятельности

Устная работа на уроке

Практическая часть:

Решение неравенств с одной переменной;

решение систем неравенств;

решение двойных неравенств;

решение неравенств со знаком модуля

Рефлексия

В пунктах 1 и 2 верные ответы на уроке отмечать знаком «+» ;

в пункте 3 оценить свою работу на уроке согласно инструкции

6. Итоги урока.

Учитель подводя итоги урока отмечает успешные моменты и проблемы, над которыми предстоит провести дополнительную работу.

Учащимся предлагается оценить свою работу согласно листам самоконтроля, и еще по одной отметке получают ученики по результатам самостоятельной работы.

В конце урока нучитель обращает внимание учащихся на слова французского ученого Блеза Паскаля: «Величие человека- в его способности мыслить».

Список литературы:

1 . Алгебра. 8 класс. Ю.Н.Макарычев, Н.Г. Миндюк, К.Е. Нешков, И.Е.Феоктистов.-М.:

Мнемозина, 2012

2. Алгебра.8 класс. Дидактические материалы. Методические рекомендации / И.Е.Феоктистов.

2-е издание., стер.-М.: Мнемозина, 2011

3. Контрольно-измерительные материалы.Алгебра: 8класс / Составитель Л.И. Мартышова.-

М.: ВАКО, 2010

Интернет-ресурсы: