Биографии Характеристики Анализ

Расчетно графические работы. Полезные мелочи: дополнения к правилам оформления РГР

ЗАДАНИЯ ДЛЯ РАСЧЕТНО-ГРАФИЧЕСКИХ И КУРСОВЫХ РАБОТ

1. Студент обязан взять из таблицы, прилагаемой к условию задачи, данные в соответствии с номером варианта выданным преподавателем.

вариант – (21)(24)(11)(06)

буквы -абвг

Из каждого вертикального столбца таблицы исходных данных, обозначенного внизу определенной буквой, надо взять только одно число, стоящее в той горизонтальной строке, номер которой совпадает с номером буквы в шифре. Например, вертикальные столбцы табл.1 в задании на растяжение-сжатие обозначены внизу буквами «в», «г», «б», «а», «а»,. В этом случае при указанном выше номере варианта 21241106 студент должен взять из столбцов «а» строку номер 21 (b =1 м, F =12 кН), из столбца «б» - строку номер 24 (a =4 м), из столбца «в» - строку номер 11 (схема №11) и из столбца «г» - строку 06 (Д=0,06 м).

Работы, выполненные не по своему варианту, не засчитываются.

2. Не следует приступать к выполнению расчетно-графических работ, не изучив соответствующего раздела курса и не решив самостоятельно рекомендованных задач. Если студент слабо усвоил основные положения теории и не до конца разобрался в приведенных примерах, то при выполнении работ могут возникнуть большие затруднения. Несамостоятельно выполненное задание не дает возможности преподавателю-рецензенту вовремя заметить недостатки в работе студента. В результате студент не приобретает необходимых знаний и оказывается неподготовленным к экзамену.

4. В заголовке расчетно-графической работы должны быть четко написаны: номер контрольной работы, название дисциплины, фамилия, имя и отчество студента (полностью), название факультета и специальности, учебный шифр.

5. Каждую расчетно-графическую работу следует выполнять на листах формата А4 , чернилами (не красными), четким почерком, с полями.

6. Перед решением каждой задачи надо выписать полностью ее условие с числовыми данными, составить аккуратный эскиз в масштабе и указать на нем в числах все величины, необходимые для расчета.

7. Решение должно сопровождаться краткими, последовательными и грамотными без сокращения слов объяснениями и чертежами, на которых все входящие в расчет величины должны быть показаны в числах. Надо избегать многословных пояснений и пересказа учебника: студент должен знать, что язык техники - формула и чертеж. При пользовании формулами или данными, отсутствующими в учебнике, необходимо кратко и точно указывать источник (автор, название, издание, страница, номер формулы).

8. Необходимо указать размерность всех величин и подчеркнуть окончательные результаты.

9. Не следует вычислять большое число значащих цифр, вычисления должны соответствовать необходимой точности. Нет необходимости длину деревянного бруса в стропилах вычислять с точностью до миллиметра, но было бы ошибкой округлять до целых миллиметров диаметр вала, на который будет насажен шариковый подшипник.

10. В возвращенной расчетно-графической работе студент должен исправить все отмеченные ошибки и выполнить все данные ему указания. В случае требования рецензента следует в кратчайший срок послать ему выполненные на отдельных листах исправления, которые должны быть вложены в соответствующие места рецензированной работы. Отдельно от работы исправления не рассматриваются.

11. В описании порядка решения задач пункты, отмеченные значком *, являются необязательными и выполняются по желанию студента.

Общие справочные данные для решения всех задач

Характеристики материала

Сталь

Бронза

Алюминий

Чугун

Дерево

Модуль упругости Е , МПа

2 ∙ 10 5

1 ∙ 10 5

0,7 ∙ 10 5

1,2 ∙ 10 5

1 ∙ 10 4

Предел текучести , МПа

Предел прочности на растяжение-сжатие , МПа

180/600

100/45

Коэффициент Пуассона μ

0,25

0,34

0,25

0,45

Коэффициент температурного расширения α , 1/град

12 ∙ 10 -6

22 ∙ 10 -6

24 ∙ 10 -6

11 ∙ 10 -6

4 ∙ 10 -6

1. При вычислении допускаемых напряжений при растяжении-сжатии нормируемый коэффициент запаса прочности n необходимо принять:

Для пластичных материалов 1,5;

Для хрупких материалов 3 (коэффициенты запаса при растяжении-сжатии рекомендуется считать одинаковыми);

Для дерева при растяжении 10, при сжатии 4,5.

2. Допускаемые напряжения при сдвиге [τ ] следует принять:

Для дерева 2 МПа;

Для пластичных материалов по соответствующимтеориям прочности.

3. Допускаемые напряжения при изгибе рекомендуется считать равными допускаемым напряжениям при растяжении-сжатии.

4. Допускаемые напряжения при изгибе рекомендуется считать равными допускаемым напряжениям при растяжении-сжатии.

5. При проверке жесткости балок допускаемый прогиб следует принимать:

Для шарнирно-опертых балок l /200;

Для консольных балок l /100,

где l – длина пролета (консоли) балки.

6. Принятые для решения учебных задач справочные данные являются примерными и не отражают всего разнообразия видов материалов и их характеристик.

Тема

Задания на расчет стержней и стержневых систем при центральном растяжении-сжатии

Задания по теории напряженного состояния

Задания по геометрическим характеристикам плоских сечений

Задания на расчет балок, работающих на поперечный изгиб

МЕТОДИЧЕСКИЕ УКАЗАНИЯ

для выполнения

РАСЧЕТНО-ГРАФИЧЕСКОЙ РАБОТЫ

Составил: ст. преподаватель

кафедры «ПА»

Н.Г.Васильева

Кумертау – 2015г.

Microsoft Word ,



Приложение.

Нумерация листов РГР должна быть сквозной. Первым листом является титульный лист.

Оформление заголовков

Заголовки должны четко и кратко отражать содержание разделов, подразделов, при необходимости пунктов.

Заголовки следует писать с абзаца строчными буквами (кроме первой прописной) без точки в конце, не подчеркивая.

Заголовки разделов и подразделов выделяют «полужирным» шрифтом.

Переносы слов в заголовках не допускаются.

Расстояние между заголовками раздела, подраздела и текстом должно быть равно 15 мм.

Расстояние между заголовками раздела и подраздела – 10 мм.

Разделы «Введение», «Заключение», «Список источников» не нумеруются , но включаются в содержание документа.

Оформление иллюстраций

Иллюстрации могут располагаться по тексту РГР или в приложении. Иллюстрации следует нумеровать арабскими цифрами сквозной нумерацией.

На все рисунки документа должны быть приведены ссылки в тексте. При ссылках на иллюстрации следует писать «…в соответствии с рисунком 1….» или «…..на рисунке 1…..».

Слово «Рисунок» и наименование помещают после пояснительных данных и располагают следующим образом: «Рисунок 1 – Детали приборов».

Опечатки, описки и графические неточности, обнаруженные в процессе выполнения, допускается исправлять подчисткой или закрашиванием белой краской и нанесением в том же месте исправленного текста машинописным способом или черными чернилами, помарки и следы неполностью удаленного прежнего текста не допускаются.

РГР вкладывается в файл и сдается методисту на кафедру не позднее установленного срока на бумажном носителе.

Задание № 1 для РГР

Задание № 1 : При выполнении РГР студент должен по номеру варианта определить свой вопрос и представить подробный, развернутый ответ.

1. Технологическое оборудование и принципы построения автоматизированного производства.

2. Размерные, временные и информационные связи в интегрированном производстве.

3. Размерные связи процесса изготовления деталей.

4. Анализ установочных размерных связей при изготовлении деталей.

5. Размерные связи при автоматической установке заготовки на станок.

6. Размерные связи при стыковки транспортных тележек.

7. Операционные размерные связи в автоматизированном производстве.

8. Основные понятия технологичности.

9. Требования к конструкции изделий, предназначенных для автоматической сборки.

10. Показатели технологичности и их определения.

11. Значение и объем сборочных работ.

12. Основные организационные формы сборки.

13. Методы сборки изделий.

14. Способы и средства транспортирования.

15. Самотечные и полусамотечные транспортные системы.

16. Магазинные загрузочные устройства.

17. Бункерные загрузочные устройства поштучной выдачи предметов обработки.

18. Бункерные загрузочные устройства выдачи предметов обработки порциями (партиями).

19. Бункерные загрузочные устройства непрерывной выдачи предметов обработки.

20. Ориентирующие устройства.

21. Автооператоры и промышленные роботы.

22. Выбор типа и компоновки автоматического сборочного оборудования

23. Однопозиционные сборочные станки

24. Многопозиционные сборочные станки

25. Роторные цепные и многоярусные автоматы.

26. Автоматические линии сборки.

27. Гибкие производственные системы сборки.

28. Преимущества гибких производственных систем.

29. Трудности гибкой автоматизации и меры по их преодолению.

30. Современные направления совершенствования режущих инструментов для автоматизированного производства.

31. Разновидности устройств АСИ многоцелевых станков.

32. Способы идентификации режущих инструментов.

33. Автоматический контроль состояния режущих инструментов.

34. Методы и средства контроля качества изделий в ГПС

35. Способы измерения параметров детали с помощью измерительной головки.

36. Автоматизированные системы удаления отходов.

Задание № 2 для РГР

Построение циклограммы работы роботизированного технологического комплекса

Задание № 2 : При выполнении РГР студент должен по последней цифре шифра зачетки определить свой вариант задания и представить подробное решение.

Теоретическая часть

При разработке циклограмм работы автоматических машин (систем машин) обычно решаются следующие задачи:

1. Проектируется четкая последовательность действий и необходимых команд управления для всех исполнительных механизмов машины, на основании которой затем составляется управляющая программа (УП). Для РТК, например, по циклограмме его работы составляется УП для промышленного робота (ПР), который координирует работу остального оборудования;

2. Разработанная последовательность действий оптимизируется с целью сокращения общей длительности цикла и отсутствия простаивания основного технологического оборудования РТК.

Если при разработке циклограммы определяются времена выполнения отдельных действий (тактов цикла), то такие циклограммы используются для расчета длительности всего цикла и отдельных его фрагментов, расчета производительности РТК.

Известны различные формы представления циклограмм: табличные, круговые и пр. Наибольшее распространение получили циклограммы в форме таблицы. Перед построением циклограммы определяется состав оборудования АОЯ и уточняется перечень исполнительных механизмов по каждому оборудованию. Также определяются возможные состояния каждого исполнительного механизма. В данной работе следует учитывать только то оборудование и исполнительные механизмы, которые совершают механические действия (пульты управления, электрошкафы, гидростанции и пр. не учитывать). Для станка следует выбирать те исполнительные механизмы, которые непосредственно участвуют в процессе загрузки-разгрузки детали. Собственно процесс обработки детали по управляющей программе будем считать проходящим между включением и выключением шпинделя и подробно в циклограмме не рассматриваем.

Тогда циклограмма будет включать в себя следующие столбцы:

Оборудование;

Исполнительные механизмы, выполняющие отдельные элементы цикла;

Возможные состояния исполнительных механизмов в цикле;

Необходимое число тактов цикла.

Число строк определяется числом состояний всех исполнительных механизмов. Первоначально выбирается какое-либо состояние всех исполнительных механизмов в качестве исходного. Для выбора исходного состояния можно выбрать любой момент цикла загрузки-разгрузки (например, момент начала загрузки детали).

Циклограмму необходимо составить так, чтобы в конце цикла все исполнительные механизмы вернулись в исходное состояние. Далее следует в текстовом виде описать планируемую последовательность срабатывания всех необходимых исполнительных механизмов. При этом необходимо стремиться к максимальному сокращению времени цикла за счет объединения движений в одном

такте (одновременное выполнение движений).

Однако такое объединение следует осуществлять технически грамотно. Например, нельзя объединять в один такт зажим приспособления станка и разжим схвата ПР (схват может начать срабатывать раньше приспособления и деталь потеряет ориентацию).

Время выполнения каждого движения может быть определено по формулам:

Или

или

где α i β i - углы поворота механизмов;

l i h i - линейные перемещения механизмов;

ω i v i - соответственно паспортные скорости углового и линейного перемещения механизмов по соответствующей координате.

Затем начинается собственно заполнение табличной циклограммы . Как правило большинство исполнительных механизмов имеет два состояния (открыто - закрыто, выдвинуто - задвинуто, включено - выключено ). В этом случае должны выполняться правила последовательности переключения состояний и четности (количество нахождения исполнительного механизма в одном состоянии должно равняться количеству нахождения его во втором состоянии, т.е. сумма должна делиться на два, иначе исполнительный механизм за цикл не вернется в исходное состояние).

Пример выполнения работы

Схема роботизированного технологического комплекса (РТК) приведена на рис. 1. В состав РТК входят:

Токарно- патронный полуавтомат 16К20Ф3;

Промышленный робот М20П.40.01;

Тактовый стол.

Рисунок 1 – Компоновка АОЯ

Для выполнения заданного цикла обработки детали необходимы следующие движения (переходы):

Зажим заготовки в патроне;

Отвод руки ПР;

Обработка детали;

Разгрузка детали из патрона станка на тактовый стол, перемещение тактового стола на 1 шаг (на одну позицию).

В формировании заданного цикла участвуют следующие механизмы:

станка

Зажим детали (патрон);

Вращение детали (обработка);

промышленного робота

Подъем руки;

Выдвижение руки;

Зажим схвата;

Поворот схвата относительно вертикальной оси;

тактового стола

Перемещение детали (заготовки) на один шаг (на одну позицию).

исходное положение оборудования и его механизмов :

Патрон станка зажат, ограждение открыто;

Суппорт в нулевой (исходной) позиции, в резцовой головке установлен необходимый комплект инструментов для обработки заданной детали, т.е. для выполнения заданного цикла обработки линии центров станка, выше уровня расположения заготовок на тактовом столе;

Схват робота разжат, ось детали, первоначально зажимаемой в схвате - горизонтальная; рука втянута и повернута к станку.

В соответствии с составленной последовательностью движений механизмов оборудования за цикл построена циклограмма функционирования АОЯ и алгоритм.

Принцип работы: после выключения станка ПР забирает обработанную деталь устанавливает в исходную ячейку на тактовом столе. Происходит перемещение стола на одну позицию. ПР забирает деталь с тактового стола устанавливает в зоне обработки. Станок включается для выполнения технологических операций. Время всех перемещений принять равным 1с.



Рисунок 2 – Алгоритм функционирования АОЯ

№ варианта Компоновка РТК
1 – промышленный робот М20Ц.40.01 2 – токарно-револьверный станок с ЧПУ 1В340Ф30 3 – магазин накопитель 4 – устройство управления ПР 5 – ограждение 6 – устройство ЧПУ станка 7 – электрошкаф 8 – гидростанция
1 – промышленный робот 2М4Ц.20ГП-3 2 – токарный многорезцовый станок 1Н713 3 – тара (кассетного типа) 4 – устройство управления ПР 5 – гидростанция
1 – промышленный робот ПР4 2 – токарный многорезцовый полуавтомат 1716Ф3 3 – тактовый стол 4 – тара 5 – пульт управления ПР 6 – устройство для удаления стружки
1 – промышленный робот М10П62.01 2 – токарный станок с ЧПУ 16К20Ф3 3 – тактовый стол 4 – устройство ЧПУ ПР 5 – устройство ЧПУ станка 6 – электрошкаф
1 – промышленный робот МП 2 – токарный полуавтомат 1713 3 – тактовый стол
1 – промышленный робот УМ160Ф2.81.02 2 – токарный станок с ЧПУ 1П752МФ3 3 – поворотное устройство 4 – устройство ЧПУ станка 5 – устройство ЧПУ ПР 6 – тара для стружки 7 – загрузочная позиция склада 8 – гидростанция

1 – промышленный робот напольного типа 2 – токарный многорезцовый станок 3 – горизонтальное загрузочное устройство 4 - накопитель
1 – промышленный робот УМ1 2 – токарный полуавтомат агрегатного типа АТ250П 3 – магазин периодического действия 4 – пульт управления 5 – ограждение

1 – ПР Ритм-01-08 2 – станок токарно-винторезный с ЧПУ 3 – вибробункер 4 – устройство ЧПУ станка 5 - устройство ЧПУ ПР 6 - тара

1 – промышленный робот напольного типа 2 – станок с ЧПУ 3 – загрузочное устройство 4 – устройство управления ПР 5 - тара

Задание № 3 для РГР

Теоретическая часть

Магазин емкость для размещения однородных штучных заготовок и выдачи их с требуемой производительностью. Состав магазина: накопитель, отсекатель, питатель.

Основные типы конструкций МЗУ приведены на рис. 1.

Рисунок 1- Магазинные загрузочные устройства для заготовок, закладываемых штабелем в один ряд.

МЗУ рассчитываются на производительность и отсутствие заклинивания.

Исходные данные

Вариант задания – 0. Эскиз детали приведен на рис. 5.

Рисунок 5 – Эскиз ориентируемой детали

Производительность станка – автомата Qa = 90 шт./мин.

Материал детали - сталь.

Частота колебаний лотка f Л = 50 Гц.

Периодичность загрузки бункера Т= 20 мин.

Обеспечение автоматической ориентации детали .

Специальных устройств для систематизации потока деталей не требуется так как предполагаемые конструкции ориентаторов одновременно будут выполнять и эту функцию. Для обеспечения ориентации детали в пространстве определим все возможные различные устойчивые положения детали на лотке и выберем одно – требуемое. Возможные устойчивые различимые положения детали на лотке приведены на рис. 10.

а – донышком вперед,

б – донышком назад,

в – ось детали образует с направлением лотка угол не равный 0º,

г – стоя на торце (ось детали вертикальна)

Рисунок 6 - Возможные различимые устойчивые положения детали на лотке (вид сверху)

Выбираем следующую схему ориентации: В ВБЗУ обеспечиваются два устойчивых положения – а и б . Во вторичном ориентирующем устройстве для всего потока обеспечивается положение а .

Для устранения положений в ширину лотка (с учетом буртика) предусматриваем 8 мм. Для перевода детали из положения г в а или б предусматривается уступ (рис. 7).

Рисунок 7 – Форма ориентирующего уступа

Для обеспечения устойчивого положения детали а или б лотку придается полукруглая форма (рис. 8).

Рисунок 8 – Поперечное сечение оринтирующего устройства ВБЗУ

1 – пружина

2 – рычаг

4 – подводящий лоток

5 – отводящий лоток

Рисунок 9 – Схема вторичного ориентирующего устройства

Расчет ВБЗУ

Расчет режима работы ВБЗУ.

Включает определение средней производительности Q СР , средней скорости движения изделия по лотку V СР , коэффициента заполнения лотка k З .

Средняя производительность ВБЗУ

Средняя скорость движения изделия по лотку (мм/с):

Коэффициент заполнения лотка изделиями определяется по формул:

k З =Р(l 0 ) ·C П = 0, 919·1=0, 919

Коэффициент плотности потока изделий рассчитывается как:

При пассивном ориентировании симметричных валиков и втулок по цилиндрической поверхности (при l И > d ):

Расчет конструктивных размеров чаши.

Включает определение диаметра D , высоты Н , шага лотка t, объема V Д загружаемой партии. Примем цилиндрическую форму чаши (рис. 12).

Для цилиндрической чаши наружный диаметр определяют по формуле:

D=D В +2·Δ,

Внутренний диаметр чаши определяется из выражения:

где V Д – наружный объем загружаемого изделия, мм 3 , V Д = 396мм 3 ;

Т – период времени между заполнениями чаши, мин, Т = 20 мин;

n – число заходов вибродорожек, n = 1 ;

z – число каналов на каждой вибродорожке, z=1 ;

Н Р – высота заполнения чаши изделиями, мм.

Высота заполнения чаши изделиями находится из выражения:

H P ≈ 2, 5·(t+δ)= 2, (11+2) = 32, 5 мм,

Шаг t спирали вибродорожки определяют из условия:

t =k·d+δ= 1, 5·6 +2=11 мм,

где d – диаметр изделия, лежащего на лотке, d = 6 мм;

при l И /d >1,5 коэффициент принимается равным k = 1,5.

Тогда наружный диаметр чаши

D=D В + 2·Δ=290+2·2=294 мм.

Округляем до ближайшего стандартного диаметра в большую сторону D=320 мм.

Рисунок 12 - Конструкция цилиндрической чаши ВБЗУ

Полная высота чаши определяется как H=H P +(1, 0…1, 5)·t =32, 5 +(1, 5·11) =49 мм.

Угол подъема спирали лотка:

Ширина вибродорожки:

Ширина лотка с буртиком

B O =B+ 3=7, 17+3=10, 7 мм

Принимаем толщину дна чаши H Д ≈ 2 мм. Угол конуса чаши выбираем в диапазоне γ 0 =150º .

Расчет параметров движения изделия и колебательной системы .

Включает определение частоты вынужденных колебаний лотка; амплитуды; приведенной массы; жесткости пружинных стержней; размеров пружинных стержней (длины l , диаметра d или сечения b хh ).

Определяем требуемый угол наклона подвесок α, исходя из обеспечения необходимой скорости перемещения заготовок по формуле:

α=arctg 2,25=66 0

Определяем амплитуду колебания лотка Х Н (в см), при которой обеспечивается скорость V ТР , по формуле:

ω=2·π·f Л = 2·3, 14·50=314.

Конструктивно подвески можно выполнять круглыми или плоскими (набранными из пластин). Выбираем плоские пружины. Необходимо определить их длину, ширину и толщину. Параметры пружин определяем из условия, что подвеска представляет собой балку, закрепленную жестко с двух сторон.

Расчетная схема пружин показана на рис. 4.

При плоских пружинах длину l и ширину b задают конструктивно, а толщину (в см), можно определить по формуле:

где а – толщина пружин подвески, см;

l – длина пружины, принимаем l=15 см;

b – ширина пружины, принимаем b = 2 см;

n – число подвесок, принимаем n = 4 ;

i – число пружин в подвеске, принимаем i = 3 ;

G – вес колеблющихся частей и загруженных в бункер заготовок, ориентировочно принимаем G = 15 кг;

φ – собственная частота колебаний системы, 1/с:

φ=1, f Л = 1, 1·50=55 1/с.

Напряжение изгиба (кгс/см 2) при максимальном прогибе для плоских пружин определяем по формуле:

Размах колебаний лотка (в см) определяется графически при амплитуде колебания Х Н по формуле:

Если в приводе вибрационного загрузочного устройства со спиральным лотком у каждой подвески установлен один электромагнит перпендикулярно ее плоскости, то его усилие (в кгс) можно при плоских подвесках определить по следующей формуле:

На основании вышеприведенных расчетов и обобщенной схемы АЗУ принимаем следующий схемный вариант проектируемого автоматического загрузочного устройства. В ВБЗУ осуществляется предварительная пространственная ориентация деталей выдача их с производительностью Q = 120 шт/мин. В ВОУ осуществляется окончательная пространственная ориентация деталей. Затем поток деталей разделяется делителем потока на два потока, каждый из которых направляется в МЗУ- дублеры. Эти МЗУ расположены с противоположных сторон относительно станка-автомата и обеспечивают его правильно ориентированными деталями с заданной производительностью.

Схема управления следит с помощью датчиков переполнения (Д1– Д4) за загрузкой МЗУ и направляющих лотков и, при необходимости, временно отключает ВБЗУ. Общая схема АЗУ

Рисунок 13 - Общая схема АЗУ

Задание

Таблица П1 – Исходные данные для выполнения работы

Таблица П2 - Значение коэффициента трения

Таблица П3 – Чертеж деталей к вариантам

№ варианта Чертеж детали










Список литературы

1.. Автоматизация машиностроения: Учеб. для втузов/ Н.М.Капустин, Н.П.Дьяконова, П.М.Кузнецов; Под ред. Н.М.Капустина. – М.: Высш. шк., 2003. – 223с.: ил.

2. Калабухов А.Н., Полякова Л.Ю. Технологические основы разработки гибких роботизированных производственных модулей: Учебное пособие для студентов технических вузов/Кумертауский филиал УГАТУ. – Кумертау, 2006 – 398 с.

3. Власов и др. Транспортные и загрузочные устройства и робототехника: Учебник для техникумов пециальности « Монтаж и эксплуатация металлообрабатывающих станков и автмоатических линий». – М.: Машиностроение, 1988. – 144 с.: ил.

4. А. Н. Трусов. Проектирование и расчет автоматического загрузочного устройства.Методические указания к лабораторным работам № 2, 3, 4 по дисциплине «Автоматизация технологических процессов и производств» для студентов специальности 220301 «Автоматизация технологических процессов и производств (в машиностроении)» всех форм обучения.

5. А.Н.Трусов. Построение циклограмм работы автоматически обрабатывающих ячеек. Методические указания к лабораторной работе по дисциплине «Автоматизация технологических процессов и производств» для студентов специальности 220301 «Автоматизация технологических процессов и производств (в машиностроении)» всех форм обучения.

6. СТО УГАТУ 016-2008. Графические и текстовые конструкторские документы. Общие требования к построению, изложению и оформлению. – Взамен СТП УГАТУ 002-98; введен. 2008-01-01. – Уфа: УГАТУ, 2008.

7..ГОСТ 2.104-2006 ЕСКД. Основные надписи. – Взамен ГОСТ 2.104-68; введен. 2006-09-01.-М.: Стандартинформ,2007.

Приложение А

(обязательное)

Образец титульного листа

Министерство образования и науки РФ

Филиал Федерального государственного бюджетного образовательного учреждения высшего образования

«Уфимский государственный авиационный технический университет»

в г.Кумертау

Кафедра «ТПЛАа»

РАСЧЕТНО-ГРАФИЧЕСКАЯ РАБОТА

по дисциплине

«Автоматизация технологических процессов и производств»

Вариант ХХ

Выполнил: ст. гр. КТО-ХХ

А.А. Сидоров

Проверил: ст. преподаватель

Н.Г.Васильева

Кумертау – 201_г


Приложение Б

(обязательное)

МЕТОДИЧЕСКИЕ УКАЗАНИЯ

для выполнения

РАСЧЕТНО-ГРАФИЧЕСКОЙ РАБОТЫ

по дисциплине «Автоматизация производственных процессов»

для студентов по специальности 15.03.05

«Конструкторско-технологическое обеспечение машиностроительных производств»

Составил: ст. преподаватель

кафедры «ПА»

Н.Г.Васильева

Кумертау – 2015г.

Порядок оформления расчетно-графической работы

Расчетно-графическая работа (РГР) выполняется на одной стороне листа формата А4 с применением печатающих графических устройств вывода ЭВМ. Для оформления РГР необходимо использовать текстовый редактор Microsoft Word , шрифт - Times New Roman, размер шрифта 14 пт, через одинарный интервал с абзацным отступом 1,25 см. Выравнивание текста - по ширине.

РГР должна содержать следующие разделы:

Титульный лист (ПРИЛОЖЕНИЕ А);

Введение - снабжается рамкой с основной надписью по ГОСТ 2.104-68, форма 2а, не более 1-2 стр. (ПРИЛОЖЕНИЕ Б);

Развернутый ответ на вопрос, выбранный в соответствии с номером варианта по журналу из задания 1;

Подробное описание с необходимым иллюстративным материалом технологии выполнения задания 2,3 выбранного в соответствии с номером варианта по журналу или по последней цифре шифра зачетки;

Заключение, не более 1-2 стр.;

Список источников (не менее 5);

Приложение.

Расположение текста на листе:

1) Расстояние от рамки формы до границ текста в начале и в конце строк не менее 3 мм;

2) Расстояние от верхней или нижней строки текста до верхней или нижней рамки должно быть не менее 10 мм;

3) Абзацы в тексте начинаются отступом 12,5 мм.

Студенты-технари, начиная с первого курса, получают от преподавателей сложное и важное задание на расчетно-графическую работу. Выполнение ргр требует определенных знаний и навыков, внимательности и усидчивости, а также достаточного количества времени, которого у современного студента не так уж и много.

Расчетно-графическая работа

Если невыполнение обычной контрольной работы преподаватель может простить студенту, то отсутствие решения ргр может негативно отразиться на успеваемости и существенно испортить впечатление об учащемся. Именно поэтому, выполнение расчетно-графической работы является обязательным и очень важным абсолютно для каждого. Кто-то кропотливо, проводя ночи с учебниками и тетрадями, выполняет все сам, – верно или нет, – узнает уже по факту. Кто-то обращается к студентам старших курсов за помощью, что, кстати, тоже рискованно, ведь нет никакой гарантии, что решение расчетно-графической работы предоставят правильное, без каких-либо недочетов. А кто-то выбирает более безопасный и максимально выгодный путь решения данного вопроса – заказывает работу у профессионалов.

Заказать ргр

Сегодня в Сети можно увидеть массу объявлений типа «ргр недорого» или «термех быстро и качественно», но где гарантия, что это не просто слова? Переходя на тот или иной сайт необходимо отправлять коды подтверждения, что сегодня очень рискованно. Некоторые авторы и агентства требуют 100% предоплаты, а в результате вы получаете «кота в мешке» и минимум гарантий, что работу исправят в кротчайшие сроки при возникновении претензий преподавателя.

Безопасным и надежным помощником современных студентов выступает сайт «ВсеСдал!». Доказательством тому служат тысячи заказов ежемесячно по различным предметам – от истории Древнего Египта до технической механики. Исполнители, зарегистрированные на сайте, проходят жесткий отбор, что позволяет оградить вас от недобросовестных и некомпетентных авторов.

Если вам нужна курсовая по экономике, эссе по истории или чертеж по геометрии – вы смело можете разместить заказ на сайте. Всего несколько часов и исполнитель, который выполнит вашу работу в срок, найдется.

Цены на сайте в 2-3 раза меньше, чем на других ресурсах. Обусловлено это тем, что вы напрямую общаетесь с автором, не переплачивая менеджерам, которые работают в агентствах. Общение напрямую дает еще ряд преимуществ:
Не возникает недопонимание по поводу задания – вы сами детально рассказываете, что и как должно выглядеть.
Если у исполнителя возникают вопросы или у вас дополнительные требования, времени на это уходит как минимум в 2-3 раза меньше, ведь общение через третьих лиц исключается.
Если вам требуется консультация по вопросам, касающихся работы, непосредственно тот, кто делал для вас задание, проконсультирует в кротчайшие сроки в режиме онлайн.
И, наконец, если работа автора вас полностью устроила, вы можете и дальше продолжать с ним выгодное сотрудничество – как постоянный клиент можете договориться о скидках на следующие заказы.

На каждый вид работы предусмотрен гарантийный срок, только по истечении которого исполнитель получает денежные средства. Если по какой-то причине автор не справится с работой, что бывает достаточно редко, 100% оплаты возвращаются на ваш счет.

С биржей готовых работ «ВсеСдал!» учеба больше не в тягость, а хвосты и неуды останутся в прошлом!

Исходные данные.

общая схема замкнутого теодолитного хода, на которой даны измеренные правые по ходу углы и горизонтальные проложения линий (рис.30);

– исходный дирекционный угол линии от пт. 103 – пт. 102 вычислить индивидуально каждому по формуле (17) в соответствии с порядковым номером по журналу преподавателя и номером группы студента., а координаты исходного пункта пт. 103 вычисляют по формуле (16) в соответствии только с номером группы.

Плановое обоснование в виде замкнутого теодолитного хода, включая пункт 102 и точки съемочного обоснования 1-2-3 (рис. 30).

Х 103 = 135,61 + 100,00 (N гр 10) ,
Y 103 = 933,70 + 100,00 ( N гр 10). (1 6 )
Дирекционный угол для стороны 103 – 102 рассчитывается по формуле:

= 334 0 06 + N 0 вар + N гр, (17 )

Порядок выполнения работы

1. Вычисление координат точек планового съемочного обосн о ва ния (теодолитного хода).

Выписать в ведомость вычисления координат со схемы (рис. 30) горизонтальные утлы и длины сторон теодолитного хода. Вычислить значения координат исходного пункта и дирекционного угла исходной стороны по данным, приведенным соответственно в формулах (16) и (17). Для нулевого варианта значение дирекционного угла равно 334°06′.

1.1. Произвести увязку измеренных углов, для этого подсчитать угловую невязку и распределить угловую погрешность по углам замкнутого полигона:

б) определить теоретическую сумму углов замкнутого полигона по формуле

теор =180 0 (n-2) (18)
где nчисло углов теодолитного хода;

в) найти угловую невязку по формуле

f = пр теор (19)

г) вычислить допустимую угловую невязку по формуле

f доп = 1 n (20)
где 1′ = 2 t , t = 30 точность теодолита 2Т30;

д) если невязка в углах не превышает допустимой величины, вы-

численной по формуле, её распределить с обратным знаком поровну во все углы полигона. Поправки выписать с их знаками над значениями соответствующих измеренных углов. Сумма поправок должна равняться невязке с обратным знаком. Учитывая поправки, вычислить исправленные углы. Их сумма должна быть равна

теоретической сумме углов:

испр = теор

1.2. Вычислить дирекционные углы и румбы замкнутого теодо-литного хода. По начальному дирекционному углу 103-102 и исправ-ленным внутренним углам найти дирекционные углы всех остальных сторон хода. Подсчет ведут последовательно с включением всех исправленных углов хода по формуле

посл = пред + 180 0 – правый (21)

Дирекционный угол последующей линии посл , равен дире к цион- ному углу предыдущей пред плюс 180° и минус внутре н ний, правый

по ходу угол правый . Если пред + 180 0 окажется меньше угла то к этой сумме прибавляют 360°.

Контролем правильности вычисления дирекционных углов является получение исходного (начального) дирекционного угла.

1.3. По найденным дирекционным углам найти румбы сторон замкнутого полигона.

Между румбами r , расположенными в разных четвертях, и ди-
рекционными углами линий существует зависимость, которая показана на рисунках 3а, 3б и дана в таблице 9 (см. стр. 17).

В качестве исходных данных привязочного хода служат: дирекционный угол стороны 103-102, её длина – 250,00 м и измеренный левый угол между исходной и стороной полигона 102 -1 – 124 0 50 1 . Для изм е реных левых углов дирекционный угол последующей линии р а вен:

посл = пред 180 0 + левый . (22)

В нашем нулевом варианте получим:

102-1 = 103 -102 180 0 + левый 103 -102 – 1 ,

102-1 = 334 0 06 1 – 180 0 +124 0 50 1 = 278 0 56 1 .

1.4. Вычислить приращения координат. Приращения координат X и Y найти по формулам:

X = d * cos r; (2 3 )

Y = d * sin r, (2 4 )

где d – горизонтальное положение стороны теодолитного хода;

r румб стороны.

Результаты вычислений записать в ведомость координат (табл. 18), округлив до 0,01 м. Знаки приращений координат выставить по на-званию r , в зависимости от того, в какой четверти он находится.

1.5. Увязка приращений координат.

Теоретическая сумма приращений координат замкнутого хода раздельно по каждой из осей Х и Y равна нулю:

X теор = 0; (25)

Y теор = 0.

Однако вследствие неизбежных погрешностей при измерении углов и длин линий при полевых съемках сумма приращений координат равна не нулю, а некоторым величинам f X и f Y погрешностям (невязкам) в приращении координат:

X пр = f X ;

Y пр = f Y . (26)

Из-за погрешностей f X и f Y замкнутый полигон, построенный в системе координат, получается разомкнутым на величину f абс , назы-
ваемую абсолютной линейной погрешностью в периметре полигона,
вычисляемую по формуле

f абс = ( f 2 X + f 2 Y ) (27 )

Чтобы оценить точность линейных и угловых измерений по теодо-литному ходу, следует вычислить относительную погрешность:

f отн = f абс / P = 1/(P / f абс ) (28)

Необходимо полученную относительную погрешность сравнить с допустимой.

f отн 1/2000.

При допустимой погрешности вычисленные приращения коорди-нат исправить (увязать). При этом найти поправки к приращениям координат по осям X , Y . Поправки ввести в вычисленные приращения пропорционально длинам сторон с обратным знаком. Поправки вы-писать над соответствующими приращениями. Значения вычислен-ных поправок округлить до сантиметров. Сумма поправок в прира-щениях по каждой оси должна равняться невязке по соответствую-щей оси, взятой с обратным знаком. Для вычисления поправок поль-зуются формулами:

X = – f X d i / P ; X = – f Y d i / P ; (29)

где X , X поправки в приращения координат; f X , f Y – невязки по осям X , Y ; Р периметр полигона; d i – горизонтальное проложение линии.

Найденные поправки прибавить к вычисленным приращениям координат со знаком, обратным знаку невязки, и получить исправ-ленные приращения.

X испр = X i + Xi ; Y испр = Y i + Y i . (30)
Сумма исправленных приращений координат в замкнутом поли-
гоне должна быть равна 0:

X испр = 0 ; Y испр = 0 ;

1.6. Имея координату пт. 102, последовательно найти координаты остальных точек полигона.

В результате последовательного вычисления координат всех то-чек замкнутого полигона должны получиться координаты пт. 102 по формулам:

X посл = X пред + X испр ; Y посл = Y пред + Y испр (31)

Контроль вычислений – получение координат X и Y исходной точки пт. 102.

Пример вычисления координат точек съёмочного обоснования приведен в ведомости вычисления координат (табл. 18).

2. Создание высотного обоснования .

Высотное съемочное обоснование создано проложением хода технического нивелирования по точкам теодолитного хода.

Техническое нивелирование было выполнено методом из середины, результаты измерений по красной и черной сторонам реек записаны в журнале нивелирования (табл. 19), в котором производятся все после-дующие вычисления высот точек планового обоснования.

Высота исходного пункта каждым студентом вычисляется индивидуально с учетом порядкового номера по журналу преподавателя по формуле:

H пт.102 = 100,000*(N гр – 10) + N вар + N гр , (32)

где N вар номер варианта по журналу преподавателя, м; N гр – номер группы 11, 12, 13, …, мм.

Например (группа 12, номер в журнале 5):

H пт.102 = 100,000*2 + 5 +12 = 20 5 ,017 м

Таблица 19

Журнал технического нивелирования

№ стан-ции №точек Отсчет по рейке Разность отсчетов Среднее превышение h, мм Исправ-ленное превышение h, мм Высота Н,м
Задняя Передняя
102 2958 205,017
1 7818 +2717 -1
1 0241 +2719 +2718 +2717
5099 207,734
1 1940
2 .6800 +1821 -2
2 0119 +1825 +1823 +1821
4975 209,555
2 0682
3 ^ 5546 -2261 -2
3 2943 -2257 -2259 -2261
7803 207,294
3 0131
4 4987 -2273 -2
2404 -2277 -2275 -2277
102 7264 205,017
з 30862 п 30848 14 h пр = + 7 h испр = 0
h теор = 0
з – п = 14мм f h = +7
f h доп = 50 1,2 = 55мм

При выполнении технического нивелирования допустимую не-вязку можно вычислить по формуле f h доп = 50 L , где L длина хода, км.

3. Составление плана .

3.1. Построение координатной сетки .

Составить план в масштабе 1:2000. На листе ватмана формата АЗ построить координатную сетку со сторонами квадратов 10 см так, чтобы полигон разместился симметрично относительно краёв листа бумаги. Контроль за правильностью построения сетки координат осуществляется путём измерения сторон и диагоналей квадратов и сравнении результатов с истинными. Допускаются расхождения в пределах 0,2 мм. Вычертить сетку тонкими линиями остро отточенным карандашом. Подписать выхода линий координатной сетки кратно 200м.

3.2. Нанесение точек съемочного обоснования на план.

Все точки хода последовательно нанести по координатам с помо-щью масштабной линейки и измерителя. Контроль за пр а вильностью нанесения точек по координатам осуществляется п у тём сравнения сто рон на плане с соответствующими длинами горизонтальных проложе ний (табл. 18). Расхождения не должны превышать 0,3 мм. Нанесенные точки оформить наколом и круглешком вокруг него диаметром 2 мм, подписать в числителе номер точки, в знаменателе – высоту с округлением до 0,01 м.

3.3. Определение расстояний и превышений в треугол ь нике при угловой засечке с базисной линии.

Расстояния S 2 – 4 и S 3 – 4 определяются из соотношений сторон и синусов противолежащих углов:

sin (111 0) / S 2-3 = sin (26 0) / S 2-4 , отсюда S 2-4 = S 2-3 * sin (26 0) / sin (111 0),

аналогично для S 3-4 = S 2-3 * sin (43 0) / sin (111 0). В нулевом варианте стороны соответственно равны: S 2 – 4 = 152,59, S 3 – 4 = 237,38

Измеренный угол на точке 2 определяется для каждого студе н та по формуле 43 0 + 10 * N , где N порядковый номер в журнале преподавателя.

Превышения h 2-4 и h 3-4 (Рис. 31) определяются по формуле:

т.к. измерения здесь на «землю» (табл.20), а для точек уреза воды, где наблюдения велись по рейке на уровень высоты инструмента

Для направления 2-4 в данном примере h 2-4 = -1,93 м, а для направления 3-4 h 3-4 = + 0,36 м.

Контролем вычисления будет допустимое расхождение (10 см) отметок (высот) точки 4, полученные раздельно от опорных точек 2 и 3. В этом примере Н 4 = 101,61 м по стороне 2-4 и Н 4 = 101,64 м по стороне 3-4.

Контролем вычисления отметок уреза воды озера также является допустимое расхождение значений их высот, т.к. отметки

(высоты) уреза воды у озера должны теоретически быть равны.

3.4. Нанесение ситу а ции на план .

Способ построения контуров на плане соответствует способу их съёмки на местности (рис. 32, 33, 34, 35). При нанесении ситуации полярным способом пользуются геодезическим транспортиром для откладывания угла, например, от опорного направления 102-1 и масштабной линейкой и измерителем для откладывания линии d от станции 102 до пикета 2. План оформить в карандаше, руководствуясь при черчении «Условными знаками для выпуска планов масштаба 1:2000», с соблюдением их размеров и начертания.

СТАНЦИЯ 102 Табл и ца 20

Наведение на высоту инстр у мента 1,35 м

Откладывая углы от опорных линий 2-1 и 3-2 получаем в пересечении отложенных направлений местоположение объекта съёмки.

Таб лица 21

Высота инструмента i . Наведение на основание пре д мета.

Точка стоя н ки То ч ка н а вед. Угол гориз Точка стоя н ки То ч ка н а вед Угол гориз Угол
Ст. 1 i = 1,45 Ст.2 0°00′ Ст.2 i =1,40 Ст.3 0°00′
Дер е во 14 ° ЗО’ Скв 43 ° ЗО’ 1 ° 15
Ст. 2 i = 1,35 Ст.1 0°00′ Ст. 3 i =1,40 Ст.2 0°00′
Дер е во 31 7 °00′ Скв 334 °00 1 5′

3.5 . Интерполирование г о ризонталей.

Соединить точки планово-высотного обоснования, точку 4 и точки уреза воды при помощи линейки и простого карандаша на плане согласно схеме (рис.36),по полученным направлениям выполнить интерполирование горизонталей графическим методом. Для этого построить палетку на кальке (рис.37), проведя 5-7 параллельных линий через 2 см. Необходимо правильно оцифровать линии палетки снизу вверх, для этого из журнала нивелирования выбирается минимальное значение высоты (в данном примере урез воды 99,8). Следовательно, оцифровка палетки снизу начнётся с отметки 99,00, далее 100,00; затем 101,00 и так далее с нарастающим итогом через 1,00 м.

Палетку накладывают на план так, чтобы точка (в примере точка уреза озера) заняла на палетке положение, соответствующее своей высоте 99,8, и в таком положении палетку удерживают в этой точке иглой измерителя. Затем поворачивают палетку вокруг точки озера так, чтобы точка съёмочного обоснования 1 заняла на палетке положение, соответствующее своей высоте – 102,7. Перекалывая точки пересечения линии «1 – озеро» на плане с линиями на палетке, получают точки, через которые и должны пройти соответствуюшие горизонтали 100, 101, 102. Таким образом поступают по всем линиям интерполяции. Затем необходимо провести горизонтали, соединяя смежные точки с одинаковыми высотами плавными линиями. Горизонтали, кратные 5 м, необходимо утолстить и оцифровать. Бергштрихами показать направление скатов.

3.6 . Вычисление площадей контуров угодий аналитическим

спо собом и планиме т ром.

Определить общую площадь полигона, пользуясь математическими формулами, и принять ее за площадь теоретическую.

2 P = y k (x k -1 x k +1 ) (33)

Удвоенная площадь полигона равна сумме произ ведений ка ж дой ординаты на разность абсцисс предыдущей и последующей т о чек или равносильно можно вычислить по другой форм у ле:

2 P = x k (y k + 1 y k -1 ) (34)

У двоенная площадь полигона равна сумме произведений каждой абсциссы на разность ординат последующей и предыдущей точек . Произведений столько, сколько вершин в полигоне.

Практическую площадь полигона измерить планиметром, опре-делив площадь угодий, находящихся внутри полигона, практическую площадь сравнить с теоретической и определить невязку, невязку оценить, т.е. сравнить ее с допустимой. Если невязка окажется допус-тимой, распределить ее на площади угодий и увязать их. Результаты свести в табл. 22.

На рис. 38 приведен образец оформления плана, на котором в лю-бом свободном месте необходимо изобразить в виде таблицы экспли-кацию угодий, на ней отобразить название контуров, имеющихся на плане, площади всех имеющихся угодий и условные знаки, которыми показаны угодья на плане.

Таблица 22

Ведомость вычисления площадей.

Цена деления планиметра 0,00098

№ контура Название контура Отсчет по основномумеханизму Разность отсчетов Средняя разность отсчетов Площадь, га Поправка Увязаннаяплощадь Площадь вкрапленногоконтура Площадь угодий, га
1 Вырублен-ный лес 7215 711713
7926 712 0,71 – 0,01 0,70 0,70
8639
2 Луг 0516 368370
0884 369 0,37 0,37 0,37
1254
3 Озеро 2584 193195
2777 194 0,19 0,19 0,19
2972
4 Выгон сдорогой 5761 18311829
7592 1830 1.83. – 0,01, 1.82 0,18 1,64
9421 _ .
5 Пашня сполевым 2711 53455334 .
8056 5334 5,34 -0,02 5,32 0,02 5,30
3390
теор = 8,40
практ = 8,44
f прак = 0,04
f доп =P/200 f доп =0,042

4. Решение инженерных задач по топографическому плану .

4 . 1 Построение продольного профиля.

В результате проведенных действий, описанных выше, на листе ватмана мы получим план в масштабе 1:2000, на котором нужно за-проектировать ось водопровода, прокладывая её от пункта триангу-ляции 102 в направлении п. 2 с одним углом поворота в точке А, как показано на рис. 38.

На миллиметровой бумаге формата А4 построить продольный профиль в масштабах: горизонтальный – 1:2000, вертикальный -1:200, как показано на рис. 39. Увеличенный рисунок 39 дан в приложении №1.

Рис. 38. Образец оформления плана и проектная линия оси канала

– вычертить сетку профиля (рис. 39), где предусмотреть графы для внесения в них полевых и проектных данных;

– в заданном масштабе отложить пикеты, находящиеся друг от друга на расстоянии 100 м. Заполнить графы пикетов и расстояний. Записываются расстояния между соседними точками;

– с плана снимаются и выписываются в графу «отметки земли»: высоты точки 2 и пт. 102, определяются высоты пикетов, располо-женных между горизонталями, как показано на рис. 38, и отметки го-ризонталей;

– от линии условного горизонта в заданном вертикальном мас-штабе отложить высоты всех точек и соединить их между собой.

Определение высоты пикета между горизонталями.

Пусть высоты двух соседних горизонталей равны И а и Н н . Требу-ется определить высоту Н р точки Р, лежащей между этими горизон-талями (см.рис. 11 стр. 24).

Рис. 39. Образец оформления продольного профиля.

Через точку Р проводят прямую, примерно перпендикулярную этим горизонталям, до пересечения с ними в точках а и в. Измеряют отрезки на плане ав, аР, вР (см. Рис 11 на стр 24).

Высоту точки Р находят по формуле (9).

4.2. Проектирование канала.

Нанесение проектной линии водопровода на профиль. При про-ектировании рекомендуется придерживаться предлагаемой последовательности выполнения работ и заданных параметров:

  • глубина водопровода должна быть в пределах 0,40-1,50 м;
  • ширина водопровода а = 1,0 м;
  • уклоны по дну водопровода выдерживать в пределах 0,01-0,005.

Определить по профилю проектные высоты концов участка. По ним рассчитать проектный уклон по формуле

i = (Н кон – Н нач ) D (35)

где Н кон - проектная отметка конечной точки; Н нач проектная отметка начальной точки; D расстояние между точками. В данном примере:

i = ( 102,1 – 98,8) 387,4 = 0,0085.

Информация по уклонам заносится в графу уклонов (рис. 39).

Вычислить проектные отметки всех точек профиля. За начало
счета высот точек проектной линии принимать проектную отметку ее
начала и дальше с нарастающим итогом. Проектные отметки вычис-
ляются по формуле

Н N +1 = Н N + i * d , (36)

где Н N +1 – отметка последующей точки; Н N – отметка начальной точки проектной линии; i – уклон данной линии; d – расстояние нарастающим итогом от начала до точки, отметка которой определяется. Например, проектная отметка Н ПК1 первого пикета равна:

Н ПК1 = 98,80 + 0,0085 * 100 = 99,65 м

Произведение i * d есть превышение h между соответствующими точками. Знак превышения равен знаку уклона. Рассчитанные про-ектные высоты занести красным в графу проектных отметок (рис. 39), значения выписать до сотых долей метра.

Затем вычислить рабочие отметки h i по формуле

h i = Н факт – Н пр (37)

где Н пр проектная отметка точки; Н факт – фактическая отметка точки. Так для пикета ПК1 получим h ПК 1 = 100,30 – 99,65 = 0,65 м.

Их значения выписать в графу «рабочие отметки» (рис. 39) до со-тых долей метров.

4.3. Вычисление объемов земляных работ.

В таблицу вычисления объемов земляных работ (рис. 39) выписы-вают в соответствующие колонки: пикетаж; основание прямоугольника

с = а + в, где а – ширина водопровода, равная 1 м; в = 2 h , расстояние между соседними поперечными сечениями; объем земляных работ по каждой секции и суммарный по формуле:

V = P j СР * d j , (38)

где P j СР – среднее поперечное сечение секции j выемки грунта;

d j длина j секции.

Профиль оформить по образцу, красным цветом оформить пректную линию и проектные высоты.

4.4 . Расчет геодезических данных для вычисления угла

поворота трассы и выноса в натуру оси водо провода

способом полярных коо р динат.

Необходимо подготовить геодезические данные для выноса в натуру:

  • угол для выноса линии 102-А , который равен разности дирекционных углов направлений линий 102–А и 102-1;
  • угол поворота трассы ПОВ , который равен разности дирекционных углов направлений линий А -2 и 102–А;
  • Значения длин линий 102 – А и А 2 .

А также необходимые для этого вспомогательные данные: румбы линий 102–А и А -2 , дирекционные углы линий 102–А, А -2 и 102-1 (r 102- A , .102 –А , .102 –1 ) , линий А -2 и 102–А (r 102- A , r 2- A , .102 –А , 2-А , .102 –1 ) . Р ешить обратную геодезическую задачу по стороне 102–A и стороне А-2 . Для этого координаты точки А снять графически с плана. В примере координаты точки А равны:

X А = 467,5 м; Y А = 622,5 м.

Решение задачи произвести по формулам:

X = X К – X Н, для первой линии102-А:

X А-102 = X А – X 102 = 107,0 м,

для А-2 второй линии X 2-А = X 2 – X А = 159,54 ,

аналогично по ординате:

Y = Y К – Y Н, для первой Y А-102 = Y А – Y 102 = -202,0 м,

для второй Y 2-А = Y 2 – Y А = – 41,69 м.

Румбы вычисляются по значениям приращений координат:

arctg = Y / X, arctg 102- А -202,0 /107 = 62 0 05,3 1 ,

где с учётом знаков приращений румб r 102- A = СЗ 62 0 05,3 1 ;

arctg А -2 – 41,69 /159,54 = 14 0 38,7 1 , румб r 2- A = СЗ 14 0 38,7 1 .

Горизонтальное проложение вычисляется по формуле:

d = (X 2 + Y 2), соответственно для линий d 102-А и d 2-А получим:

d 102-А = (X 102-А 2 + Y 102-А 2 ) = 228,59 м,

d 2-А = (X 2-А 2 + Y 2-А 2 ) = 164,90 м.

Так как углы наклона проектных линий не превышают 2 0 , поэтому измеряемые на местности длины линии практически будут равны их горизонтальным проложениям.

Дирекционный угол направления 102-А равен:

102-А = 360 0 62 0 05,3 1 = 297 0 54,7 1 ,

угол для выноса линии102-А равен разности направлений линий 102–А и 102-1 (последнее берётся из таблицы 18, см стр. 59) равен:

= 102 – А .102 1 = 297 0 54,7 1 – 278 0 56 1 = 18 0 58,7 1 .

Угол поворота трассы получим для этого примера как разность дирекционных углов направлений А-2 и 102-А:

2-А = 360 0 14 0 38,7 1 = 345 0 21,3 1 , тогда угол поворота трассы ПОВ равен:

К = А -2 .102 -А = 345 0 21,3 1 297 0 54,7 1 = 47 0 26,6 1

На листе бумаги формата А4 составить разбивочный чертеж, на который занести необходимые геодезические данные для выноса точки А (угла поворота трассы водопровода).

4.5. Определение основных элементов и детальная разбивка

гор и зонтальной круговой кривой.

Исходными данными для расчета задания являются значение радиуса круговой кривой R , величина угла поворота трассы К и пикетажное значение вершины угла поворота трассы. Названные исходные данные выдаются индивидуально для каждого студента: значение радиуса кривой для каждого студента определяется в метрах по формуле R = 100 . (5 . (N гр -10) + N вар , а угол поворота

К определяется аналитически (см. выше п.4.4).

В методических указаниях рассматривается конкретный случай расчета и разбивки круговой кривой при R = 120 м;

К = 47 0 26,6 1 ; ВУ =ПК 3 + 28,59 .

4. 5.1. Основные элементы кривой и р асчё т пикетажных

знач е ний главных точек кривых

Основными элементами кривой являются: угол поворота

К , радиус кривой R , тангенс T – расстояние от вершины у г ла пов о рота ВУ до точек начала НК или конца кривой КК , длина кривой – K и домер Д – линейная разность между суммой двух тангенсов и длиной кривой, которые определяются по следующим формулам (39, 40, 41, 42) :

T = R . tg ( К 2), (39 )

где значение радиуса кривой для каждого студента определяется в метрах по формуле R = 100 . (5 . (N гр -10) + N вар , а угол поворота К определяется аналитически (см. стр). Значения кривой K и биссектрисы Б и домера Д определятся по следующим формулам:

K = R . k . 180; (40 )

Б = R (1 cos ( К 2) – 1); (41 )

Д = 2 T R . (42 )

Главными точками круговой кривой являются точки начала кривой НК, ее середина СК и конец кривой КК (см. рис.40).

Пикетажные значения главных точек кривых вычисляются по формулам:

НК = ВУ – Т, (43)

где ВУ – пикетажное значение вершины угла поворота;

КК = НК + К; (44)

СК = НК + К/2. (45)

Для контроля вычислений пикетажные значения СК и КК находятся дополнительно по формулам:

КК = ВУ + Т – Д; (46)

CК = ВУ – Д/2. (47)

Допустимое расхождение между пикетажными значениями точки конца круговой кривой и середины кривой, вычисленными по обеим формулам, не должно превышать 2 см (за счёт округлений).

Расчет пикетажных значений главных точек первой кривой приведен ниже. При расчетах необходимо в значениях основных элементов кривых выделять сотни метров (если они имеются). Например, вместо ВУ = 228,59 м, следует писать ПК2 + 28,59 м.

Расчет производится по следующей схеме:

Основная формула

ПИКЕТАЖНЫЕ ЗНАЧЕНИЯ ГЛАВНЫХ ТОЧЕК КРИВОЙ

ВУ ПК 2 + 28,59

– Т – 52,73

НК ПК 1 + 75,86

+ К + 99,37

КК ПК 2 + 75,23

Рис. 40 Образец оформления работы

Контрольная формула

ВУ ПК 2 + 28,59

+ Т + 52,73

– Д – 6,09

КК ПК 2 + 75,23

Расхождение пикетажных значений конца круговой кривой, вычисленных по основной и контрольной формулам, не должно превышать 2 см.

Пикетажное значение середины кривой вычислим дважды:

НК ПК 1 + 75,86 ВУ ПК 2 + 28,59

+ К 2 + 49,68 – Д 2 – 3,05

СК ПК 2 + 25,54 СК ПК 2 + 25,54

4.5.2. Вычисление координат для детальной разбивки

кр и вой.

Детальная разбивка кривой преследует цель получения на местности точек, расположенных через равный интервал l по длине кривой. Величина интервала разбивки кривой принимается равной 10 м – при радиусе кривой от 100 до 500 м.

В задании детальную разбивку кривой предусматривается выполнять способом прямоугольных координат. В этом способе за ось Х принимают направлении от точек начала или конца кривой (НК или КК) к вершине угла поворота ВУ, за ось У – перпендикулярное к оси Х направление в сторону внутреннего угла сопряжения трассы.

Координаты X N и Y N рассчитываются по формулам

X N = R . sin(N . i ); (48 )

Y N = R(1 – cos(N . i )); (49 )

i = 180 . l i . R ; (50 )

где R – радиус разбиваемой кривой;

N – порядковый номер точки, см. рис..

здесь i центральный угол, заключающий дугу l i .

Так как детальную разбивку кривых производят с обоих тангенсов, вычисление координат следует ограничивать линейной величиной тангенса кривой. Для нашего примера: R = 120 м, l =10 м, Т = 52,73 м, поэтому выбор координат ограничиваем для N · l = 40 м, так как точка разбивки при Т = 50 м будет практически рядом с концом биссектрисы.

Вычисленные координаты точек детальной разбивки кривой для рассматриваемого случая представлены в табл. 23. Таблица 23

Координаты детальной разбивки круговой кривой

способом прямоугольных координат

На листе ватмана формата А4 (рис. 40 Образец оформления работы) построить угол поворота, значение которого определены ранее. Отложить тангенсы в масштабе 1:500. Первый тангенс рекомендуется провести параллельно левому краю листа. Остальные элементы вычерчиваются в соответствии с расчетными данными.

Построение чертежа детальной разбивки круговой кривой способом прямоугольных координат. Пользуясь вычисленными значениями X и Y, построение детальной разбивки кривой осуществляют следующим образом. От точек начала НК и конца кривой КК на тангенсах по направлению к вершине угла поворота последовательно откладывают величины абсцисс X N в масштабе 1:500. В полученных точках строят перпендикуляры, по которым последовательно откладывают соответствующие ординаты Y N в масштабе. Концы ординат отмечают точками, которые будут обрисовывать положение кривой. При этом расстояния между точк а ми по дл и не кривой должны быть равны интервалу разбивки (для рассматриваемого случая 10 м), что является контролем произво д ства детальной разбивки. Разбивка кривой приведена на рис 36. Альтернативный вариант оформления работы можно выполнить по компьютерной технологии в Microsoft Word. При этом необходимо выдерживать построения кривой строго в масштабе 1:500 в формате А4. Для этого все значения преобразуются в мм плана м 1:500.

« Составление внешнеторгового контракта и расчет

таможенных платежей»

Расчетно-графическая работа (РГР) предусмотрена учебным планом для студентов очной формы обучения.

В РГР предусматривается проработка студентом условий внешнеторгового контракта. Контракты могут быть как на экспорт, так и на импорт товара.

На выполнение РГР студенту выдается индивидуальное задание, состоящее из следующих условий: наименование товара, его цена и базисные условия поставки. Все эти условия включаются в контракт, но кроме них требуется определить еще ряд пунктов контракта.

Для написания этого раздела РГР студент должен по лекционным материалам и по данным методическим указаниям (раздел 5) ознакомиться с содержанием внешнеторгового контракта. При написании работы студент должен дать обоснование каждого из 16 перечисленных пунктов исходя из особенностей данного товара, срока контракта, выбранного контрагента, его географического положения, валюты и т. д..

Требуется по каждому пункту выбрать какой-либо из вариантов его формулировки, подходящий к виду экспортируемой или импортируемой продукции и не противоречащий базисным условиям поставки, и обосновать применение именно этого варианта.

В частности, требуется определить количество товара, способ установления его качества. Установить дату или период поставки, способ фиксации цены, возможность применения и условия предоставления скидок к цене товара.

Базисные условия поставки предусмотрены в выданном задании, но студенту при выполнении работы требуется по ИНКОТЕРМС–2000 сформулировать обязанности стороны, для которой он составляет контракт, т.е. если контракт на экспорт, то следует описать обязательства продавца, а если импортный – обязанности покупателя.

Затем определяется порядок платежа, по которому следует выбрать валюту платежа, его срок, способ, форму расчетов и обосновать свой выбор.

Фирму-экспортера (или импортера) и её контрагента следует придумать самостоятельно.

На основе разработанных условий студент составляет внешнеторговый контракт и рассчитывает таможенные платежи: сбор за таможенное оформление, таможенную пошлину, акциз, налог на добавленную стоимость. Методика расчета перечисленных платежей приведена в разделах 6.1 – 6.4. методических указаний.

В заключительной части РГР студент должен определить, сколько составляют таможенные платежи в сумме и на единицу товара, сколько составит стоимость товара после внесения всех таможенных платежей и на сколько процентов или во сколько раз увеличивается стоимость товара после этих платежей.

Состав и объем пояснительной записки расчетно-графической работы:

1. Задание на выполнение РГР.

2. Проработка условий внешнеторгового контракта.

3. Составленный внешнеторговый контракт.

4. Расчет таможенных платежей.

5. Определение стоимости единицы товара с учетом уплаченных таможенных платежей и расчет увеличения стоимости товара после их уплаты.

Общий объем ПЗ составляет 8 - 10 страниц. Оформление должно соответствовать правилам.

Контрольная работа предусмотрена учебным планом для студентов очно-заочной и заочной формы обучения.

Кроме того, по условиям контрольной работы, на уплату таможенных платежей предоставлена рассрочка под залог товара, который на это время оформляется на склад временного хранения (СВХ). Студент должен рассчитать проценты за рассрочку (см. раздел 6.5) и определить суммы, вносимые в погашение рассрочки с учетом процентов.

Итогом контрольной работы является расчет суммы всех платежей и стоимости единицы товара с учетом таможенных платежей и процентов за рассрочку.

На выполнение контрольной работы студенту выдается индивидуальное задание, состоящее из следующих условий: наименование товара, его цена, базисные условия поставки, платежи, на которые предоставлена рассрочка, срок рассрочки, условия внесения платежей.

В состав контрольной работы входят:

1. Задание на выполнение контрольной работы.