Біографії Характеристики Аналіз

Як знайти суму арифметичної прогресії приклади. Значення заданого члена

Арифметичною прогресієюназивають послідовність чисел (членів прогресії)

У якій кожен наступний член відрізняється від попереднього на постійне доданок, яке ще називають кроком чи різницею прогресії.

Таким чином, задаючи крок прогресії та її перший член можна знайти будь-який її елемент за формулою

Властивості арифметичної прогресії

1) Кожен член арифметичної прогресії, починаючи з другого номера, є середнім арифметичним від попереднього та наступного члена прогресії

Зворотне твердження також є вірним. Якщо середнє арифметичне сусідніх непарних (парних) членів прогресії дорівнює члену, який стоїть між ними, то дана послідовність чисел є арифметичною прогресією. За цим твердженням дуже просто перевірити будь-яку послідовність.

Також за якістю арифметичної прогресії, наведену вище формулу можна узагальнити до наступної

У цьому легко переконатися, якщо розписати доданки праворуч від знака рівності

Її часто застосовують на практиці для спрощення обчислень у завданнях.

2) Сума n перших членів арифметичної прогресії обчислюється за такою формулою

Запам'ятайте добре формулу суми арифметичної прогресії, вона незамінна при обчисленнях і часто зустрічається в простих життєвих ситуаціях.

3) Якщо потрібно знайти не всю суму, а частину послідовності починаючи з k-го її члена, то Вам знадобиться наступна формула суми

4) Практичний інтерес представляє відшукання суми n членів арифметичної прогресії починаючи з k-го номера. Для цього використовуйте формулу

На цьому теоретичний матеріал закінчується і переходимо до вирішення поширених на практиці завдань.

Приклад 1. Знайти сороковий член арифметичної прогресії 4; 7;

Рішення:

Згідно з умовою маємо

Визначимо крок прогресії

За відомою формулою знаходимо сороковий член прогресії

Приклад2. Арифметична прогресія задана третім та сьомим її членом. Знайти перший член прогресії та суму десяти.

Рішення:

Розпишемо задані елементи прогресії за формулами

Від другого рівняння віднімемо перше, в результаті знайдемо крок прогресії

Знайдене значення підставляємо у будь-яке з рівнянь для відшукання першого члена арифметичної прогресії

Обчислюємо суму перших десяти членів прогресії

Не застосовуючи складних обчислень ми знайшли всі шукані величини.

Приклад 3. Арифметичну прогресію задано знаменником та одним із її членів. Знайти перший член прогресії, суму 50 її членів, починаючи з 50 і суму 100 перших.

Рішення:

Запишемо формулу сотого елемента прогресії

і знайдемо перший

На основі першого знаходимо 50 член прогресії

Знаходимо суму частини прогресії

та суму перших 100

Сума прогресії дорівнює 250.

приклад 4.

Знайти число членів арифметичної прогресії, якщо:

а3-а1 = 8, а2 + а4 = 14, Sn = 111.

Рішення:

Запишемо рівняння через перший член та крок прогресії та визначимо їх

Отримані значення підставляємо у формулу суми для визначення кількості членів у сумі

Виконуємо спрощення

і розв'язуємо квадратне рівняння

Зі знайдених двох значень умові задачі підходить лише число 8 . Таким чином, сума перших восьми членів прогресії становить 111.

Приклад 5.

Вирішити рівняння

1+3+5+...+х=307.

Рішення: Це рівняння є сумою арифметичної прогресії. Випишемо перший її член та знайдемо різницю прогресії

Калькулятор онлайн.
Вирішення арифметичної прогресії.
Дано: a n, d, n
Знайти: a 1

Ця математична програма знаходить \(a_1\) арифметичної прогресії, виходячи із заданих користувачем чисел \(a_n, d\) та \(n\).
Числа (a_n) і (d) можна задати не тільки цілі, але і дробові. Причому, дробове число можна ввести у вигляді десяткового дробу (\(2,5 \)) і у вигляді звичайного дробу (\(-5\frac(2)(7) \)).

Програма не тільки дає відповідь на завдання, а й відображає процес знаходження рішення.

Цей калькулятор онлайн може бути корисним учням старших класів загальноосвітніх шкіл при підготовці до контрольних робіт та іспитів, під час перевірки знань перед ЄДІ, батькам для контролю вирішення багатьох завдань з математики та алгебри. А може вам занадто накладно наймати репетитора чи купувати нові підручники? Або ви просто хочете якнайшвидше зробити домашнє завдання з математики чи алгебри? У цьому випадку ви можете скористатися нашими програмами з докладним рішенням.

Таким чином ви можете проводити своє власне навчання та/або навчання своїх молодших братів або сестер, при цьому рівень освіти в галузі розв'язуваних завдань підвищується.

Якщо ви не знайомі з правилами введення чисел, рекомендуємо ознайомитися з ними.

Правила введення чисел

Числа (a_n) і (d) можна задати не тільки цілі, але і дробові.
Число (n) може бути тільки цілим позитивним.

Правила введення десяткових дробів.
Ціла і дрібна частина в десяткових дробах може розділятися як точкою так і комою.
Наприклад, можна вводити десяткові дроби так 2.5 або 2,5

Правила введення звичайних дробів.
Як чисельник, знаменник і цілої частини дробу може виступати тільки ціле число.

Знаменник може бути негативним.

При введенні числового дробу чисельник відокремлюється від знаменника знаком розподілу: /
Введення:
Результат: \(-\frac(2)(3) \)

Ціла частина відокремлюється від дробу знаком амперсанд: &
Введення:
Результат: \(-1\frac(2)(3) \)

Введіть числа a n, d, n


Знайти a 1

Виявлено, що не завантажилися деякі скрипти, необхідні для вирішення цього завдання, і програма може не працювати.
Можливо у вас увімкнено AdBlock.
У цьому випадку вимкніть його та оновіть сторінку.

У браузері вимкнено виконання JavaScript.
Щоб рішення з'явилося, потрібно включити JavaScript.
Ось інструкції, як включити JavaScript у вашому браузері.

Т.к. охочих вирішити завдання дуже багато, ваш запит поставлено в чергу.
За кілька секунд рішення з'явиться нижче.
Будь ласка зачекайте сік...


Якщо ви помітили помилку у рішенні, то про це ви можете написати у Формі зворотного зв'язку.
Не забудьте вказати яке завданняви вирішуєте і що вводьте у поля.



Наші ігри, головоломки, емулятори:

Трохи теорії.

Числова послідовність

У повсякденній практиці часто використовують нумерацію різних предметів, щоб вказати порядок їх розташування. Наприклад, будинки на кожній вулиці нумеруються. У бібліотеці нумеруються читацькі абонементи і розташовуються в порядку присвоєних номерів у спеціальних картотеках.

У ощадному банку за номером особового рахунку вкладника можна легко знайти цей рахунок та подивитися, який вклад на ньому лежить. Нехай на рахунку № 1 лежить внесок а1 рублів, на рахунку № 2 лежить внесок а2 рублів і т. д. Виходить числова послідовність
a 1 , a 2 , a 3 , ..., a N
де N – число всіх рахунків. Тут кожному натуральному числу n від 1 до N поставлено у відповідність число a n.

В математиці також вивчаються нескінченні числові послідовності:
a 1, a 2, a 3, ..., a n, ....
Число a 1 називають першим членом послідовності, число a 2 - другим членом послідовності, число a 3 - третім членом послідовностіі т.д.
Число a n називають n-м (енним) членом послідовності, а натуральне число n – його номером.

Наприклад, у послідовності квадратів натуральних чисел 1, 4, 9, 16, 25, ..., n 2 , (n + 1) 2 ... а 1 = 1 - перший член послідовності; а n = n 2 є n членом послідовності; a n+1 = (n + 1) 2 є (n + 1)-м (ен плюс першим) членом послідовності. Часто послідовність можна задати формулою її n-го члена. Наприклад, формулою \(a_n=\frac(1)(n), \; n \in \mathbb(N) \) задана послідовність \(1, \; \frac(1)(2) , \; \frac( 1)(3) , \;\frac(1)(4) , \dots,\frac(1)(n) , \dots \)

Арифметична прогресія

Тривалість року приблизно дорівнює 365 діб. Точніше значення дорівнює \(365\frac(1)(4) \) діб, тому кожні чотири роки накопичується похибка, що дорівнює одній добі.

Для обліку цієї похибки до кожного четвертого року додається доба, і подовжений рік називають високосним.

Наприклад, у третьому тисячолітті високосними роками є роки 2004, 2008, 2012, 2016, ….

У цій послідовності кожен її член, починаючи з другого, дорівнює попередньому, складеному з тим самим числом 4. Такі послідовності називають арифметичними прогресіями.

Визначення.
Числова послідовність a 1 , a 2 , a 3 , ..., a n , ... називається арифметичною прогресієюякщо для всіх натуральних n виконується рівність
\(a_(n+1) = a_n+d, \)
де d – деяке число.

З цієї формули випливає, що n+1 - an = d. Число d називають різницею арифметичної прогресії.

За визначенням арифметичної прогресії маємо:
\(a_(n+1)=a_n+d, \quad a_(n-1)=a_n-d, \)
звідки
\(a_n= \frac(a_(n-1) +a_(n+1))(2) \), де \(n>1 \)

Таким чином, кожен член арифметичної прогресії, починаючи з другого, дорівнює середньому арифметичному двох сусідніх із ним членів. Цим пояснюється назва «арифметична» прогресія.

Зазначимо, що якщо a 1 і d задані, інші члени арифметичної прогресії можна обчислити за рекурентною формулою a n+1 = a n + d. У такий спосіб неважко обчислити кілька перших членів прогресії, однак, наприклад, для a 100 вже знадобиться багато обчислень. Зазвичай при цьому використовується формула n-го члена. За визначенням арифметичної прогресії
\(a_2=a_1+d, \)
\(a_3=a_2+d=a_1+2d, \)
\(a_4=a_3+d=a_1+3d \)
і т.д.
Взагалі,
\(a_n=a_1+(n-1)d, \)
оскільки n-й член арифметичної прогресії виходить із першого члена додаванням (n-1) разів числа d.
Цю формулу називають формулою n-го члена арифметичної прогресії.

Сума n перших членів арифметичної прогресії

Знайдемо суму всіх натуральних чисел від 1 до 100.
Запишемо цю суму двома способами:
S = l + 2 + 3 + ... + 99 + 100,
S = 100+99+98+...+2+1.
Складемо почленно ці рівності:
2S = 101 + 101 + 101 + ... + 101 + 101.
У цій сумі 100 доданків
Отже, 2S = 101*100, звідки S=101*50=5050.

Розглянемо тепер довільну арифметичну прогресію
a 1, a 2, a 3, ..., a n, ...
Нехай S n - сума n перших членів цієї прогресії:
S n = a 1, a 2, a 3, ..., a n
Тоді сума n перших членів арифметичної прогресії дорівнює
\(S_n = n \cdot \frac(a_1+a_n)(2) \)

Оскільки \(a_n=a_1+(n-1)d \), то замінивши у цій формулі a n отримаємо ще одну формулу для знаходження суми n перших членів арифметичної прогресії:
\(S_n = n \cdot \frac(2a_1+(n-1)d)(2) \)

Книги (підручники) Реферати ЄДІ та ОДЕ тести онлайн Ігри, головоломки Побудова графіків функцій Орфографічний словник російської мови Словник молодіжного сленгу

Наприклад, послідовність (2); \ (5 \); \ (8 \); \ (11 \); \(14\)... є арифметичною прогресією, тому що кожен наступний елемент відрізняється від попереднього на три (може бути отриманий з попереднього додаванням трійки):

У цій прогресії різниця (d) позитивна (рівна (3)), і тому кожен наступний член більший за попередній. Такі прогресії називаються зростаючими.

Однак (d) може бути і негативним числом. Наприклад, в арифметичній прогресії \(16\); \ (10 ​​\); \ (4 \); \(-2\); \ (-8 \) ... Різниця прогресії \ (d \) дорівнює мінус шести.

І в цьому випадку кожен наступний елемент буде меншим, ніж попередній. Ці прогресії називаються спадаючими.

Позначення арифметичної прогресії

Прогресію позначають маленькою латинською літерою.

Числа, що утворюють прогресію, називають її членами(або елементами).

Їх позначають тією ж літерою як і арифметичну прогресію, але з числовим індексом, рівним номеру елемента по порядку.

Наприклад, арифметична прогресія (a_n = \ left \ (2; 5; 8; 11; 14 ... \ right \) \) складається з елементів \ (a_1 = 2 \); \ (a_2 = 5 \); \ (a_3 = 8 \) і так далі.

Іншими словами, для прогресії (a_n = \ left \ (2; 5; 8; 11; 14 ... \ right \) \)

Розв'язання задач на арифметичну прогресію

У принципі, викладеної вище інформації вже достатньо, щоб вирішувати практично будь-яке завдання на арифметичну прогресію (у тому числі з тих, що пропонують на ОДЕ).

Приклад (ОДЕ). Арифметична прогресія задана умовами (b_1 = 7; d = 4). Знайдіть (b_5).
Рішення:

Відповідь: \ (b_5 = 23 \)

Приклад (ОДЕ). Дано перші три члени арифметичної прогресії: \(62; 49; 36…\) Знайдіть значення першого негативного члена цієї прогресії.
Рішення:

Нам дано перші елементи послідовності та відомо, що вона – арифметична прогресія. Тобто, кожен елемент відрізняється від сусіднього на те саме число. Дізнаємось на яке, віднімаючи з наступного елемента попередній: \(d=49-62=-13\).

Тепер ми можемо відновити нашу прогресію до потрібного (першого негативного) елемента.

Готово. Можна писати відповідь.

Відповідь: \(-3\)

Приклад (ОДЕ). Дано кілька елементів арифметичної прогресії, що йдуть поспіль: \(…5; x; 10; 12,5...\) Знайдіть значення елемента, позначеного буквою \(x\).
Рішення:


Щоб знайти (x), нам потрібно знати наскільки наступний елемент відрізняється від попереднього, інакше кажучи - різницю прогресії. Знайдемо її з двох відомих сусідніх елементів: (d = 12,5-10 = 2,5).

Нині ж без проблем знаходимо шукане: \(x=5+2,5=7,5\).


Готово. Можна писати відповідь.

Відповідь: \(7,5\).

Приклад (ОДЕ). Арифметична прогресія задана такими умовами: (a_1=-11); \(a_(n+1)=a_n+5\) Знайдіть суму перших шести членів цієї прогресії.
Рішення:

Нам потрібно знайти суму перших шістьох членів прогресії. Але ми не знаємо їх значень, нам дано лише перший елемент. Тому спочатку обчислюємо значення по черзі, використовуючи дане нам:

\ (n = 1 \); \(a_(1+1)=a_1+5=-11+5=-6\)
\ (n = 2 \); \(a_(2+1)=a_2+5=-6+5=-1\)
\ (n = 3 \); \(a_(3+1)=a_3+5=-1+5=4\)
А обчисливши потрібні нам шість елементів – знаходимо їхню суму.

\(S_6=a_1+a_2+a_3+a_4+a_5+a_6=\)
\(=(-11)+(-6)+(-1)+4+9+14=9\)

Шукану суму знайдено.

Відповідь: \ (S_6 = 9 \).

Приклад (ОДЕ). В арифметичній прогресії \(a_(12)=23\); \ (a_ (16) = 51 \). Знайдіть різницю цієї прогресії.
Рішення:

Відповідь: \ (d = 7 \).

Важливі формули арифметичної прогресії

Як бачите, багато завдань з арифметичної прогресії можна вирішувати, просто зрозумівши головне – те, що арифметична прогресія є ланцюжок чисел, і кожен наступний елемент у цьому ланцюжку виходить додаванням до попереднього одного і того ж числа (різниці прогресії).

Однак часом трапляються ситуації, коли вирішувати «в лоб» дуже незручно. Наприклад, уявіть, що в першому прикладі нам потрібно знайти не п'ятий елемент \(b_5\), а триста вісімдесят шостий \(b_(386)\). Це що ж, нам (385) разів додавати четвірку? Або уявіть, що у передостанньому прикладі треба знайти суму перших сімдесяти трьох елементів. Вважати замучаєшся ...

Тому в таких випадках «у лоб» не вирішують, а використовують спеціальні формули, виведені для арифметичної прогресії. І головні їх це формула енного члена прогресії і формула суми (n) перших членів.

Формула \(n\)-го члена: \(a_n=a_1+(n-1)d\), де \(a_1\) - перший член прогресії;
\ (n \) - Номер шуканого елемента;
\(a_n\) - член прогресії з номером \(n\).


Ця формула дозволяє нам швидко знайти хоч триста, хоч мільйонний елемент, знаючи лише перший і різницю прогресії.

приклад. Арифметична прогресія задана умовами: (b_1=-159); (d = 8,2). Знайдіть \(b_(246)\).
Рішення:

Відповідь: \ (b_ (246) = 1850).

Формула суми n перших членів: \(S_n=\frac(a_1+a_n)(2) \cdot n\), де



\(a_n\) – останній підсумований член;


Приклад (ОДЕ). Арифметична прогресія задана умовами (a_n = 3,4n-0,6 \). Знайдіть суму перших (25) членів цієї прогресії.
Рішення:

\(S_(25)=\)\(\frac(a_1+a_(25))(2 )\) \(\cdot 25\)

Щоб обчислити суму перших двадцяти п'яти елементів, нам потрібно знати значення першого та двадцять п'ятого члена.
Наша прогресія задана формулою енного члена в залежності від його номера (детальніше дивись). Давайте обчислимо перший елемент, підставивши замість (n) одиницю.

\(n = 1; \) \ (a_1 = 3,4 · 1-0,6 = 2,8 \)

Тепер знайдемо двадцять п'ятий член, підставивши замість двадцять п'ять.

\ (n = 25; \) \ (a_ (25) = 3,4 · 25-0,6 = 84,4 \)

Ну, а зараз без проблем обчислюємо потрібну суму.

\(S_(25)=\)\(\frac(a_1+a_(25))(2)\) \(\cdot 25=\)
\(=\) \(\frac(2,8+84,4)(2)\) \(\cdot 25 =\)\(1090\)

Відповідь готова.

Відповідь: \ (S_ (25) = 1090 \).

Для суми перших членів можна отримати ще одну формулу: потрібно просто в (S_(25)=\)\(\frac(a_1+a_(25))(2)\) \(\cdot 25\ ) замість \(a_n\) підставити формулу для нього \(a_n=a_1+(n-1)d\). Отримаємо:

Формула суми n перших членів: \(S_n=\)\(\frac(2a_1+(n-1)d)(2)\) \(\cdot n\), де

\ (S_n \) - Шукана сума \ (n \) перших елементів;
\(a_1\) – перший сумований член;
(d) - різниця прогресії;
\(n\) – кількість елементів у сумі.

приклад. Знайдіть суму перших (33)-їх членів арифметичної прогресії: (17); \ (15,5 \); \ (14 \) ...
Рішення:

Відповідь: \ (S_ (33) = -231 \).

Більш складні завдання на арифметичну прогресію

Тепер у вас є вся необхідна інформація для вирішення практично будь-якого завдання на арифметичну прогресію. Завершимо тему розглядом завдань, у яких треба не просто застосовувати формули, але й трохи думати (в математиці це корисно ☺)

Приклад (ОДЕ). Знайдіть суму всіх негативних членів прогресії: (-19,3); \ (-19 \); \ (-18,7 \) ...
Рішення:

\(S_n=\)\(\frac(2a_1+(n-1)d)(2)\) \(\cdot n\)

Завдання дуже схоже на попереднє. Починаємо вирішувати також: спочатку знайдемо (d).

\(d=a_2-a_1=-19-(-19,3)=0,3\)

Тепер би підставити (d) у формулу для суми… і ось тут спливає маленький нюанс – ми не знаємо (n). Інакше кажучи, не знаємо, скільки членів потрібно буде скласти. Як це з'ясувати? Давайте думати. Ми припинимо складати елементи тоді, коли дійдемо першого позитивного елемента. Тобто потрібно дізнатися номер цього елемента. Як? Запишемо формулу обчислення будь-якого елемента арифметичної прогресії: (a_n=a_1+(n-1)d) для нашого випадку.

\(a_n=a_1+(n-1)d\)

\(a_n=-19,3+(n-1)·0,3\)

Нам потрібно, щоб (a_n) став більше нуля. З'ясуємо, за якого \(n\) це станеться.

\(-19,3+(n-1)·0,3>0\)

\((n-1)·0,3>19,3\) \(|:0,3\)

Ділимо обидві частини нерівності на (0,3).

\(n-1>\)\(\frac(19,3)(0,3)\)

Переносимо мінус одиницю, не забуваючи міняти знаки

\(n>\)\(\frac(19,3)(0,3)\) \(+1\)

Обчислюємо…

\(n>65,333…\)

…і з'ясовується, що перший позитивний елемент матиме номер (66). Відповідно, останній негативний має \(n=65\). Про всяк випадок, перевіримо це.

\(n=65;\) \(a_(65)=-19,3+(65-1)·0,3=-0,1\)
\(n=66;\) \(a_(66)=-19,3+(66-1)·0,3=0,2\)

Таким чином, нам потрібно скласти перші (65) елементів.

\(S_(65)=\) \(\frac(2 \cdot (-19,3)+(65-1)0,3)(2)\)\(\cdot 65\)
\(S_(65)=\)\((-38,6+19,2)(2)\)\(\cdot 65=-630,5\)

Відповідь готова.

Відповідь: \ (S_ (65) = -630,5 \).

Приклад (ОДЕ). Арифметична прогресія задана умовами: (a_1=-33); \(a_(n+1)=a_n+4\). Знайдіть суму від \(26\)-го до \(42\) елемента включно.
Рішення:

\(a_1=-33;\) \(a_(n+1)=a_n+4\)

У цьому завдання також потрібно знайти суму елементів, але починаючи не з першого, а з (26)-го. Для такої нагоди у нас формули немає. Як вирішувати?
Легко - щоб отримати суму з \(26\)-го до \(42\)-ой, треба спочатку знайти суму з \(1\)-ого ​​по \(42\)-ой, а потім відняти від неї суму з першого до (25)-ого ​​(см картинку).


Для нашої прогресії \(a_1=-33\), а різниця \(d=4\) (адже саме четвірку ми додаємо до попереднього елементу, щоб визначити наступний). Знаючи це, знайдемо суму перших (42)-ух елементів.

\(S_(42)=\) \(\frac(2 \cdot (-33)+(42-1)4)(2)\)\(\cdot 42=\)
\(=\)\(\frac(-66+164)(2)\) \(\cdot 42=2058\)

Тепер суму перших (25) елементів.

\(S_(25)=\) \(\frac(2 \cdot (-33)+(25-1)4)(2)\)\(\cdot 25=\)
\(=\)\(\frac(-66+96)(2)\) \(\cdot 25=375\)

Ну і нарешті обчислюємо відповідь.

\ (S = S_ (42)-S_ (25) = 2058-375 = 1683 \)

Відповідь: (S = 1683).

Для арифметичної прогресії існує ще кілька формул, які ми не розглядали в цій статті через їхню малу практичну корисність. Однак ви легко можете знайти їх .

Перш ніж ми почнемо вирішувати завдання на арифметичну прогресіюРозглянемо, що таке числова послідовність, оскільки арифметична прогресія - це окремий випадок числової послідовності.

Числова послідовність - це числова множина, кожен елемент якої має свій порядковий номер. Елементи цієї множини називаються членами послідовності. Порядковий номер елемента послідовності позначається індексом:

Перший елемент послідовності;

П'ятий елемент послідовності;

- "енний" елемент послідовності, тобто. елемент, "стоячий у черзі" під номером n.

Між значенням елемента послідовності та його порядковим номером існує залежність. Отже ми можемо розглядати послідовність як функцію, аргументом якої є порядковий номер елемента послідовності. Тобто можна сказати, що послідовність – це функція від натурального аргументу:

Послідовність можна задати трьома способами:

1 . Послідовність можна поставити за допомогою таблиці.У цьому випадку ми просто задаємо значення кожного члена послідовності.

Наприклад, Хтось вирішив зайнятися особистим тайм-менеджментом, і для початку порахувати протягом тижня, скільки часу він проводить у ВКонтакті. Записуючи час у таблицю, він отримає послідовність, що складається із семи елементів:

У першому рядку таблиці вказано номер дня тижня, у другому – час у хвилинах. Ми бачимо, що в понеділок хтось провів ВКонтакте 125 хвилин, тобто в четвер - 248 хвилин, а тобто в п'ятницю всього 15 хвилин.

2 . Послідовність можна поставити за допомогою формули n-го члена.

І тут залежність значення елемента послідовності з його номера виражається безпосередньо як формули.

Наприклад, якщо , то

Щоб знайти значення елемента послідовності із заданим номером, ми номер елемента підставляємо формулу n-го члена.

Те саме ми робимо, якщо потрібно знайти значення функції, якщо відомо значення аргументу. Ми значення аргументу підставляємо замість рівняння функції:

Якщо, наприклад, , то

Ще раз зауважу, що у послідовності, на відміну довільної числової функції, аргументом може лише натуральне число.

3 . Послідовність можна встановити за допомогою формули, що виражає залежність значення члена послідовності з номером n від значення попередніх членів. У цьому випадку нам недостатньо знати лише номер члена послідовності, щоб знайти його значення. Нам потрібно встановити перший член або кілька перших членів послідовності.

Наприклад, розглянемо послідовність ,

Ми можемо знаходити значення членів послідовності один за іншим, починаючи з третього:

Тобто щоразу, щоб знайти значення n-го члена послідовності, ми повертаємося до двох попередніх. Такий спосіб завдання послідовності називається рекурентнимвід латинського слова recurro- Повертатися.

Тепер ми можемо надати визначення арифметичної прогресії. Арифметична прогресія - це простий окремий випадок числової послідовності.

Арифметичною прогресією називається числова послідовність, кожен член якої, починаючи з другого, дорівнює попередньому, складеному з одним і тим самим числом.


Число називається різницею арифметичної прогресії. Різниця арифметичної прогресії може бути позитивною, негативною або рівною нулю.

Якщо title="(!LANG:d>0"">, то каждый член арифметической прогрессии больше предыдущего, и прогрессия является !} зростаючою.

Наприклад, 2; 5; 8; 11;...

Якщо , то кожен член арифметичної прогресії менший за попередній, і прогресія є спадаючою.

Наприклад, 2; -1; -4; -7;...

Якщо , то всі члени прогресії дорівнюють одному й тому ж числу, і прогресія є стаціонарний.

Наприклад, 2;2;2;2;...

Основна властивість арифметичної прогресії:

Подивимося на малюнок.

Ми бачимо, що

, і в той же час

Склавши ці дві рівності, отримаємо:

.

Розділимо обидві частини рівності на 2:

Отже, кожен член арифметичної прогресії, починаючи з другого, дорівнює середньому арифметичному двох сусідніх:

Більше того, оскільки

, і в той же час

, то

, і, отже,

Кожен член арифметичної прогресії, починаючи з title="(!LANG:k>l">, равен среднему арифметическому двух равноотстоящих. !}

Формула го члена.

Ми бачимо, що для членів арифметичної прогресії виконуються співвідношення:

і наостанок,

Ми отримали формулу n-го члена.

ВАЖЛИВО!Будь-який член арифметичної прогресії можна виразити через і. Знаючи перший член і різницю арифметичної прогресії можна знайти її член.

Сума n членів арифметичної прогресії.

У довільній арифметичній прогресії суми членів, рівновіддалених від крайніх рівні між собою:

Розглянемо арифметичну прогресію, у якій n членів. Нехай сума n членів цієї прогресії дорівнює.

Розташуємо члени прогресії спочатку в порядку зростання номерів, а потім в порядку зменшення:

Складемо попарно:

Сума у ​​кожній дужці дорівнює , число пар дорівнює n.

Отримуємо:

Отже, суму n членів арифметичної прогресії можна знайти за формулами:

Розглянемо вирішення завдань на арифметичну прогресію.

1 . Послідовність задана формулою n-го члена: . Доведіть, що ця послідовність є арифметичною прогресією.

Доведемо, що різниця між двома сусідніми членами послідовності дорівнює одному й тому ж числу.

Ми отримали, що різниця двох сусідніх членів послідовності не залежить від їхнього номера і є константою. Отже, за визначенням, ця послідовність є арифметичною прогресією.

2 . Дана арифметична прогресія -31; -27;

а) Знайдіть 31 член прогресії.

б) Визначте, чи входить до цієї прогресії число 41.

а)Ми бачимо, що ;

Запишемо формулу n-го члена нашої прогресії.

У загальному випадку

У нашому випадку тому

Отримуємо:

б)Припустимо, що число 41 є членом послідовності. Знайдемо його номер. Для цього вирішимо рівняння:

Ми отримали натуральне значення n, отже так, число 41 є членом прогресії. Якби знайдене значення n було б натуральним числом, ми відповіли б, що число 41 НЕ є членом прогресії.

3 . а) Між числами 2 і 8 вставте 4 числа так, щоб вони разом із даними числами становили арифметичну прогресію.

б) Знайдіть суму членів отриманої прогресії.

а)Вставимо між числами 2 та 8 чотири числа:

Ми отримали арифметичну прогресію, у якій 6 членів.

Знайдемо різницю цієї прогресії. Для цього скористаємося формулою n-го члена:

Тепер легко знайти значення чисел:

3,2; 4,4; 5,6; 6,8

б)

Відповідь: а) так; б) 30

4. Вантажівка перевозить партію щебеню масою 240 тонн, щодня збільшуючи норму перевезення на те саме число тонн. Відомо, що за перший день було перевезено дві тонни щебеню. Визначте скільки тонн щебеню було перевезено на дванадцятий день, якщо вся робота була виконана за 15 днів.

За умовою завдання кількість щебеню, який перевозить вантажівка, щодня збільшується на те саме число. Отже, ми маємо справу з арифметичною прогресією.

Сформулюємо це завдання термінах арифметичної прогресії.

За день було перевезено 2 тонни щебеню: a_1=2.

Вся робота була виконана за 15 днів: .

Вантажівка перевозить партію щебеню масою 240 тонн:

Нам потрібно знайти.

Спочатку знайдемо різницю прогресії. Скористаємося формулою суми n членів прогресії.

У нашому випадку:

Якщо кожному натуральному числу n поставити у відповідність дійсне число a n , то кажуть, що поставлено числову послідовність :

a 1 , a 2 , a 3 , . . . , a n , . . . .

Отже, числова послідовність – функція натурального аргументу.

Число a 1 називають першим членом послідовності , число a 2 другим членом послідовності , число a 3 третім і так далі. Число a n називають n-м членом послідовності , а натуральне число nйого номером .

Із двох сусідніх членів a n і a n +1 послідовності член a n +1 називають наступним (по відношенню до a n ), а a n попереднім (по відношенню до a n +1 ).

Щоб встановити послідовність, потрібно вказати спосіб, що дозволяє знайти член послідовності з будь-яким номером.

Часто послідовність задають за допомогою формули n-го члена тобто формули, яка дозволяє визначити член послідовності за його номером.

Наприклад,

послідовність позитивних непарних чисел можна задати формулою

a n= 2n - 1,

а послідовність чергуються 1 і -1 формулою

b n = (-1)n +1 .

Послідовність можна визначити рекурентною формулою, тобто формулою, яка виражає будь-який член послідовності, починаючи з деякого через попередні (один або кілька) члени.

Наприклад,

якщо a 1 = 1 , а a n +1 = a n + 5

a 1 = 1,

a 2 = a 1 + 5 = 1 + 5 = 6,

a 3 = a 2 + 5 = 6 + 5 = 11,

a 4 = a 3 + 5 = 11 + 5 = 16,

a 5 = a 4 + 5 = 16 + 5 = 21.

Якщо а 1= 1, а 2 = 1, a n +2 = a n + a n +1 , то перші сім членів числової послідовності встановлюємо так:

a 1 = 1,

a 2 = 1,

a 3 = a 1 + a 2 = 1 + 1 = 2,

a 4 = a 2 + a 3 = 1 + 2 = 3,

a 5 = a 3 + a 4 = 2 + 3 = 5,

a 6 = a 4 + a 5 = 3 + 5 = 8,

a 7 = a 5 + a 6 = 5 + 8 = 13.

Послідовності можуть бути кінцевими і нескінченними .

Послідовність називається кінцевою якщо вона має кінцеве число членів. Послідовність називається нескінченною якщо вона має нескінченно багато членів.

Наприклад,

послідовність двоцифрових натуральних чисел:

10, 11, 12, 13, . . . , 98, 99

кінцева.

Послідовність простих чисел:

2, 3, 5, 7, 11, 13, . . .

нескінченна.

Послідовність називають зростаючою якщо кожен її член, починаючи з другого, більше ніж попередній.

Послідовність називають спадаючою якщо кожен її член, починаючи з другого, менше ніж попередній.

Наприклад,

2, 4, 6, 8, . . . , 2n, . . . - Зростаюча послідовність;

1, 1 / 2 , 1 / 3 , 1 / 4 , . . . , 1 /n, . . . - спадна послідовність.

Послідовність, елементи якої зі збільшенням номера не зменшуються, або, навпаки, не зростають, називається монотонною послідовністю .

Монотонними послідовностями, зокрема, є зростаючі послідовності та спадні послідовності.

Арифметична прогресія

Арифметичною прогресією називається послідовність, кожен член якої, починаючи з другого, дорівнює попередньому, до якого додається те саме число.

a 1 , a 2 , a 3 , . . . , a n, . . .

є арифметичною прогресією, якщо для будь-якого натурального числа n виконується умова:

a n +1 = a n + d,

де d - Деяке число.

Таким чином, різниця між наступним та попереднім членами даної арифметичної прогресії завжди постійна:

а 2 - a 1 = а 3 - a 2 = . . . = a n +1 - a n = d.

Число d називають різницею арифметичної прогресії.

Щоб задати арифметичну прогресію, достатньо вказати її перший член та різницю.

Наприклад,

якщо a 1 = 3, d = 4 , то перші п'ять членів послідовності знаходимо так:

a 1 =3,

a 2 = a 1 + d = 3 + 4 = 7,

a 3 = a 2 + d= 7 + 4 = 11,

a 4 = a 3 + d= 11 + 4 = 15,

a 5 = a 4 + d= 15 + 4 = 19.

Для арифметичної прогресії з першим членом a 1 і різницею d її n

a n = a 1 + (n- 1)d.

Наприклад,

знайдемо тридцятий член арифметичної прогресії

1, 4, 7, 10, . . .

a 1 =1, d = 3,

a 30 = a 1 + (30 - 1)d = 1 + 29· 3 = 88.

a n-1 = a 1 + (n- 2)d,

a n= a 1 + (n- 1)d,

a n +1 = a 1 + nd,

то, очевидно,

a n=
a n-1 + a n+1
2

кожен член арифметичної прогресії, починаючи з другого, дорівнює середньому арифметичному попереднього та наступного членів.

числа a, b і c є послідовними членами деякої арифметичної прогресії тоді і лише тоді, коли одне з них дорівнює середньому арифметичному двох інших.

Наприклад,

a n = 2n- 7 є арифметичною прогресією.

Скористаємося наведеним вище твердженням. Маємо:

a n = 2n- 7,

a n-1 = 2(n - 1) - 7 = 2n- 9,

a n+1 = 2(n+ 1) - 7 = 2n- 5.

Отже,

a n+1 + a n-1
=
2n- 5 + 2n- 9
= 2n- 7 = a n,
2
2

Відмітимо, що n -й член арифметичної прогресії можна знайти не тільки через a 1 , але й будь-який попередній a k

a n = a k + (n- k)d.

Наприклад,

для a 5 можна записати

a 5 = a 1 + 4d,

a 5 = a 2 + 3d,

a 5 = a 3 + 2d,

a 5 = a 4 + d.

a n = a n-k + kd,

a n = a n+k - kd,

то, очевидно,

a n=
a n-k + a n+k
2

будь-який член арифметичної прогресії, починаючи з другого дорівнює напівсумі рівновіддалених від нього членів цієї арифметичної прогресії.

Крім того, для будь-якої арифметичної прогресії справедлива рівність:

a m + a n = a k + a l,

m+n=k+l.

Наприклад,

в арифметичній прогресії

1) a 10 = 28 = (25 + 31)/2 = (a 9 + a 11 )/2;

2) 28 = a 10 = a 3 + 7d= 7 + 7 · 3 = 7 + 21 = 28;

3) a 10= 28 = (19 + 37)/2 = (a 7 + a 13)/2;

4) a 2 + a 12 = a 5 + a 9, так як

a 2 + a 12= 4 + 34 = 38,

a 5 + a 9 = 13 + 25 = 38.

S n= a 1 + a 2 + a 3 +. . .+ a n,

перших n членів арифметичної прогресії дорівнює добутку напівсуми крайніх доданків на кількість доданків:

Звідси, зокрема, випливає, що якщо потрібно підсумувати члени

a k, a k +1 , . . . , a n,

то попередня формула зберігає свою структуру:

Наприклад,

в арифметичній прогресії 1, 4, 7, 10, 13, 16, 19, 22, 25, 28, 31, 34, 37, . . .

S 10 = 1 + 4 + . . . + 28 = (1 + 28) · 10/2 = 145;

10 + 13 + 16 + 19 + 22 + 25 + 28 = S 10 - S 3 = (10 + 28 ) · (10 - 4 + 1)/2 = 133.

Якщо дана арифметична прогресія, то величини a 1 , a n, d, nіS n пов'язані двома формулами:

Тому, якщо значення трьох цих величин дано, то відповідні їм значення двох інших величин визначаються з цих формул, об'єднаних у систему двох рівнянь з двома невідомими.

Арифметична прогресія є монотонною послідовністю. При цьому:

  • якщо d > 0 , вона є зростаючою;
  • якщо d < 0 , то вона є спадною;
  • якщо d = 0 , то послідовність буде стаціонарною.

Геометрична прогресія

Геометричною прогресією називається послідовність, кожен член якої, починаючи з другого, дорівнює попередньому, помноженому на те саме число.

b 1 , b 2 , b 3 , . . . , b n, . . .

є геометричною прогресією, якщо для будь-якого натурального числа n виконується умова:

b n +1 = b n · q,

де q ≠ 0 - Деяке число.

Таким чином, ставлення наступного члена даної геометричної прогресії до попереднього є постійним:

b 2 / b 1 = b 3 / b 2 = . . . = b n +1 / b n = q.

Число q називають знаменником геометричної прогресії.

Щоб задати геометричну прогресію, достатньо вказати її перший член та знаменник.

Наприклад,

якщо b 1 = 1, q = -3 , то перші п'ять членів послідовності знаходимо так:

b 1 = 1,

b 2 = b 1 · q = 1 · (-3) = -3,

b 3 = b 2 · q= -3 · (-3) = 9,

b 4 = b 3 · q= 9 · (-3) = -27,

b 5 = b 4 · q= -27 · (-3) = 81.

b 1 та знаменником q її n -й член може бути знайдений за формулою:

b n = b 1 · q n -1 .

Наприклад,

знайдемо сьомий член геометричної прогресії 1, 2, 4, . . .

b 1 = 1, q = 2,

b 7 = b 1 · q 6 = 1 · 2 6 = 64.

b n-1 = b 1 · q n -2 ,

b n = b 1 · q n -1 ,

b n +1 = b 1 · q n,

то, очевидно,

b n 2 = b n -1 · b n +1 ,

кожен член геометричної прогресії, починаючи з другого, дорівнює середньому геометричному (пропорційному) попереднього та наступного членів.

Оскільки правильне і зворотне твердження, має місце таке твердження:

числа a, b і c є послідовними членами деякої геометричної прогресії тоді й лише тоді, коли квадрат одного з них дорівнює добутку двох інших, тобто одне з чисел є середнім геометричним двом іншим.

Наприклад,

доведемо, що послідовність, яка задається формулою b n= -3 · 2 n є геометричною прогресією. Скористаємося наведеним вище твердженням. Маємо:

b n= -3 · 2 n,

b n -1 = -3 · 2 n -1 ,

b n +1 = -3 · 2 n +1 .

Отже,

b n 2 = (-3 · 2 n) 2 = (-3 · 2 n -1 ) · (-3 · 2 n +1 ) = b n -1 · b n +1 ,

як і доводить необхідне твердження.

Відмітимо, що n -й член геометричної прогресії можна знайти не тільки через b 1 , але й будь-який попередній член b k , для чого достатньо скористатися формулою

b n = b k · q n - k.

Наприклад,

для b 5 можна записати

b 5 = b 1 · q 4 ,

b 5 = b 2 · q 3,

b 5 = b 3 · q 2,

b 5 = b 4 · q.

b n = b k · q n - k,

b n = b n - k · q k,

то, очевидно,

b n 2 = b n - k· b n + k

квадрат будь-якого члена геометричної прогресії, починаючи з другого дорівнює добутку рівновіддалених від нього членів цієї прогресії.

Крім того, для будь-якої геометричної прогресії справедлива рівність:

b m· b n= b k· b l,

m+ n= k+ l.

Наприклад,

у геометричній прогресії

1) b 6 2 = 32 2 = 1024 = 16 · 64 = b 5 · b 7 ;

2) 1024 = b 11 = b 6 · q 5 = 32 · 2 5 = 1024;

3) b 6 2 = 32 2 = 1024 = 8 · 128 = b 4 · b 8 ;

4) b 2 · b 7 = b 4 · b 5 , так як

b 2 · b 7 = 2 · 64 = 128,

b 4 · b 5 = 8 · 16 = 128.

S n= b 1 + b 2 + b 3 + . . . + b n

перших n членів геометричної прогресії зі знаменником q 0 обчислюється за такою формулою:

А при q = 1 - за формулою

S n= nb 1

Зауважимо, що якщо потрібно підсумувати члени

b k, b k +1 , . . . , b n,

то використовується формула:

S n- S k -1 = b k + b k +1 + . . . + b n = b k · 1 - q n - k +1
.
1 - q

Наприклад,

у геометричній прогресії 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, . . .

S 10 = 1 + 2 + . . . + 512 = 1 · (1 - 2 10) / (1 - 2) = 1023;

64 + 128 + 256 + 512 = S 10 - S 6 = 64 · (1 - 2 10-7+1) / (1 - 2) = 960.

Якщо дана геометрична прогресія, то величини b 1 , b n, q, nі S n пов'язані двома формулами:

Тому, якщо значення якихось трьох із цих величин дано, то відповідні їм значення двох інших величин визначаються з цих формул, об'єднаних у систему двох рівнянь із двома невідомими.

Для геометричної прогресії з першим членом b 1 та знаменником q мають місце такі властивості монотонності :

  • прогресія є зростаючою, якщо виконано одну з таких умов:

b 1 > 0 і q> 1;

b 1 < 0 і 0 < q< 1;

  • прогресія є спадною, якщо виконано одну з наступних умов:

b 1 > 0 і 0 < q< 1;

b 1 < 0 і q> 1.

Якщо q< 0 , то геометрична прогресія є знакозмінною: її члени з непарними номерами мають той самий знак, що й перший член, а члени з парними номерами — протилежний йому знак. Зрозуміло, що знакозмінна геометрична прогресія не є монотонною.

Твір перших n членів геометричної прогресії можна розрахувати за такою формулою:

P n= b 1 · b 2 · b 3 · . . . · b n = (b 1 · b n) n / 2 .

Наприклад,

1 · 2 · 4 · 8 · 16 · 32 · 64 · 128 = (1 · 128) 8/2 = 128 4 = 268 435 456;

3 · 6 · 12 · 24 · 48 = (3 · 48) 5/2 = (144 1/2) 5 = 12 5 = 248 832.

Нескінченна спадна геометрична прогресія

Нескінченно спадаючою геометричною прогресією називають нескінченну геометричну прогресію, модуль знаменника якої менший 1 , тобто

|q| < 1 .

Зауважимо, що нескінченно спадна геометрична прогресія може не бути спадною послідовністю. Це відповідає нагоді

1 < q< 0 .

При такому знаменнику послідовність знакозмінна. Наприклад,

1, - 1 / 2 , 1 / 4 , - 1 / 8 , . . . .

Сумою нескінченно спадної геометричної прогресії називають число, до якого необмежено наближається сума перших n членів прогресії при необмеженому зростанні числа n . Це число завжди звичайно і виражається формулою

S= b 1 + b 2 + b 3 + . . . = b 1
.
1 - q

Наприклад,

10 + 1 + 0,1 + 0,01 + . . . = 10 / (1 - 0,1) = 11 1 / 9 ,

10 - 1 + 0,1 - 0,01 + . . . = 10 / (1 + 0,1) = 9 1 / 11 .

Зв'язок арифметичної та геометричної прогресій

Арифметична та геометрична прогресії тісно пов'язані між собою. Розглянемо лише два приклади.

a 1 , a 2 , a 3 , . . . d , то

b a 1 , b a 2 , b a 3 , . . . b d .

Наприклад,

1, 3, 5, . . . - арифметична прогресія з різницею 2 і

7 1 , 7 3 , 7 5 , . . . - геометрична прогресія із знаменником 7 2 .

b 1 , b 2 , b 3 , . . . - геометрична прогресія із знаменником q , то

log a b 1, log a b 2, log a b 3, . . . - арифметична прогресія з різницею log aq .

Наприклад,

2, 12, 72, . . . - геометрична прогресія із знаменником 6 і

lg 2, lg 12, lg 72, . . . - арифметична прогресія з різницею lg 6 .